Skip to main content
Log in

Regional contagion in health behaviors: evidence from COVID-19 vaccination modeling in England with social network theorem

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript

Abstract

Social contagion is a key mechanism that shapes health behaviors, but few studies have applied this approach at the regional level to examine how vaccination beliefs and rates vary and diffuse across geographic areas. Building upon the traditional SIR model, this paper addresses this gap by applying social network theory to a new compartmental model to simulate regional contagion in COVID-19 vaccination rates in England, using panel data of new and accumulated vaccination numbers from December 2020 to June 2022. This Social Network Vaccination Rate (SNVR) model estimates each region’s initial and changing vaccination beliefs and their mutual influence on each other. The results reveal that remote regions had higher initial vaccination beliefs and stronger spillover effects on other regions such as London with more population diversity. The paper suggests that policies to increase vaccination rates should consider the heterogeneity and peer effects among regions that collectively affect vaccination beliefs. The paper also discusses the limitations of the network model and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability Statement

The datasets generated by the research and/or analyzed during the current study alongside the example codes are available in the repository, https://doi.org/10.5281/zenodo.8267518

References

  1. Alcendor, D. J. (2021). Targeting COVID vaccine hesitancy in rural communities in Tennessee: implications for extending the COVID-19 pandemic in the South. Vaccines, 9(11), 1279.

    Article  Google Scholar 

  2. Alessa, A., & Faezipour, M. (2018). A review of influenza detection and prediction through social networking sites. Theoretical Biology and Medical Modelling, 15(1), 1–27.

    Article  Google Scholar 

  3. Aluttis, C., den Broucke, S. V., Chiotan, C., Costongs, C., Michelsen, K., and Brand, H. (2014). Public Health and Health Promotion Capacity at National and Regional Level: A Review of Conceptual Frameworks. Journal of Public Health Research, 3(1):jphr.2014.199. Publisher: SAGE Publications.

  4. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O’Connell, A.-M., Simons, D., Blomquist, P. B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G., Gharbia, S., Barrett, J. C., Elson, R., Ladhani, S. N., Ferguson, N., Zambon, M., Campbell, C. N., Brown, K., Hopkins, S., Chand, M., Ramsay, M., and Lopez Bernal, J. (2022). Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant. New England Journal of Medicine, 386(16):1532–1546.

  5. Aral, S., & Nicolaides, C. (2017). Exercise contagion in a global social network. Nature Communications, 8(1), 14753.

    Article  Google Scholar 

  6. Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., Rabczuk, T., & Atkinson, P. M. (2020). COVID-19 Outbreak Prediction with Machine Learning. Algorithms, 13(10), 249.

    Article  Google Scholar 

  7. Babić, K., Petrović, M., Beliga, S., Martinčić-Ipšić, S., Pranjić, M., and Meštrović, A. (2021). Prediction of COVID-19 Related Information Spreading on Twitter. In 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pages 395–399. ISSN: 2623-8764.

  8. Bagcchi, S. (2021). The world’s largest COVID-19 vaccination campaign. The Lancet Infectious Diseases, 21(3), 323.

    Article  Google Scholar 

  9. Berkman, L. F., & Kawachi, I. (2000). Social Epidemiology. Oxford: Oxford University Press.

    Book  Google Scholar 

  10. Bicchieri, C. (2016). Norms in the wild: How to diagnose, measure, and change social norms. Oxford: Oxford University Press.

    Google Scholar 

  11. Bivins, R. E. (2015). Contagious Communities: Medicine, Migration, and the NHS in Post-war Britain. Oxford University Press. Google-Books-ID: 7jlICgAAQBAJ.

  12. Carcione, J. M., Santos, J. E., Bagaini, C., and Ba, J. (2020). A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model. Frontiers in Public Health, 8.

  13. Chandani, S., Jani, D., Sahu, P. K., Kataria, U., Suryawanshi, S., Khubchandani, J., Thorat, S., Chitlange, S., & Sharma, D. (2021). COVID-19 vaccination hesitancy in India: State of the nation and priorities for research. Brain, Behavior, & Immunity - Health, 18, 100375.

    Article  Google Scholar 

  14. Cheng, C. (2022). Time-series associations between Public Interest in COVID-19 variants and national vaccination rate: a google trends analysis. Behavioral Sciences, 12(7), 223.

    Article  Google Scholar 

  15. Chia, S. C., Lu, F., and Sun, Y. (2023). Tracking the Influence of Misinformation on Elderly People’s Perceptions and Intention to Accept COVID-19 Vaccines. Health Communication, 38(5):855–865. Publisher: Routledge _eprint: https://doi.org/10.1080/10410236.2021.1980251.

  16. Cihan, P. (2021). Forecasting fully vaccinated people against COVID-19 and examining future vaccination rate for herd immunity in the US, Asia, Europe, Africa, South America, and the World. Applied Soft Computing, 111, 107708.

    Article  Google Scholar 

  17. Donato, K. M., & Duncan, E. M. (2011). Migration, Social Networks, and Child Health in Mexican Families. Journal of Marriage and Family, 73(4), 713–728. https://doi.org/10.1111/j.1741-3737.2011.00841.x

    Article  Google Scholar 

  18. Fishbein, M., & Ajzen, I. (2009). The Reasoned Action Approach. New York: Psychology Press.

    Google Scholar 

  19. Garett, R., & Young, S. D. (2021). Online misinformation and vaccine hesitancy. Translational Behavioral Medicine, 11(12), 2194–2199.

    Article  Google Scholar 

  20. Gilkey, M. B., Magnus, B. E., Reiter, P. L., McRee, A.-L., Dempsey, A. F., & Brewer, N. T. (2014). The Vaccination Confidence Scale: A Brief Measure of Parents’ Vaccination Beliefs. Vaccine, 32(47), 6259–6265.

    Article  Google Scholar 

  21. Gurwitz, D. (2021). COVID-19 vaccine hesitancy: Lessons from Israel. Vaccine, 39(29), 3785–3786.

    Article  Google Scholar 

  22. Huang, R., Moudon, A. V., Cook, A. J., & Drewnowski, A. (2015). The spatial clustering of obesity: does the built environment matter? Journal of Human Nutrition and Dietetics, 28(6), 604–612. https://doi.org/10.1111/jhn.12279

    Article  Google Scholar 

  23. Jahanbin, K., & Rahmanian, V. (2020). Using twitter and web news mining to predict COVID-19 outbreak. Asian Pacific Journal of Tropical Medicine, 13(8), 378.

    Article  Google Scholar 

  24. Konstantinou, P., Georgiou, K., Kumar, N., Kyprianidou, M., Nicolaides, C., Karekla, M., and Kassianos, A. P. (2021). Transmission of Vaccination Attitudes and Uptake Based on Social Contagion Theory: A Scoping Review. Vaccines, 9(6):607. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute.

  25. Kuhlman, C., Kumar, V. S. A., Marathe, M., Swarup, S., Tuli, G., Ravi, S. S., and Rosenkrantz, D. J. (2011). A Bi-Threshold Model of Complex Contagion and its Application to the Spread of Smoking Behavior. In Proceedings of the workshop on social network mining and analysis, SNA-KDD 2011.

  26. Lam, C. N., Kaplan, C., & Saluja, S. (2022). Relationship between mask wearing, testing, and vaccine willingness among Los Angeles County adults during the peak of the COVID-19 pandemic. Translational Behavioral Medicine, 12(3), 480–485.

    Article  Google Scholar 

  27. Lamsal, R., Harwood, A., & Read, M. R. (2022). Twitter conversations predict the daily confirmed COVID-19 cases. Applied Soft Computing, 129, 109603.

    Article  Google Scholar 

  28. Li, T., & Zhang, Y. (2015). Social network types and the health of older adults: Exploring reciprocal associations. Social Science & Medicine, 130, 59–68.

    Article  Google Scholar 

  29. Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K., and Larson, H. J. (2021). Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human Behaviour, 5(3):337–348. Number: 3 Publisher: Nature Publishing Group.

  30. MacDonald, N. E. (2015). Vaccine hesitancy: Definition, scope and determinants. Vaccine, 33(34), 4161–4164.

    Article  Google Scholar 

  31. Malik, A. A., McFadden, S. M., Elharake, J., & Omer, S. B. (2020). Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine, 26, 100495.

    Article  Google Scholar 

  32. Mehta, B., Jannat-Khah, D., Mancuso, C. A., Bass, A. R., Moezinia, C. J., Gibofsky, A., Goodman, S. M., & Ibrahim, S. (2020). Geographical variations in COVID-19 perceptions and patient management: a national survey of rheumatologists. Seminars in Arthritis and Rheumatism, 50(5), 1049–1054.

    Article  Google Scholar 

  33. Narayan, D. and Pritchett, L. (2000). Social capital: Evidence and implications. Social capital: A multifaceted perspective, pages 269–295. Publisher: The World Bank Washington, DC.

  34. Notarte, K. I., Catahay, J. A., Velasco, J. V., Pastrana, A., Ver, A. T., Pangilinan, F. C., Peligro, P. J., Casimiro, M., Guerrero, J. J., Gellaco, M. M. L., Lippi, G., Henry, B. M., and Fernández-de-las Peñas, C. (2022). Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. eClinicalMedicine, 53:101624.

  35. Paluck, E. L., Shepherd, H., & Aronow, P. M. (2016). Changing climates of conflict: A social network experiment in 56 schools. Proceedings of the National Academy of Sciences, 113(3), 566–571.

    Article  Google Scholar 

  36. Perry, M., Akbari, A., Cottrell, S., Gravenor, M. B., Roberts, R., Lyons, R. A., Bedston, S., Torabi, F., & Griffiths, L. (2021). Inequalities in coverage of COVID-19 vaccination: A population register based cross-sectional study in Wales, UK. Vaccine, 39(42), 6256–6261.

    Article  Google Scholar 

  37. Piotrowski, M. (2006). The effect of social networks at origin communities on migrant remittances: evidence from Nang Rong District. European Journal of Population/Revue Europenne de Dmographie, 22(1):67–94. Publisher: Springer.

  38. Poros, M. (2011). Migrant social networks: Vehicles for migration, integration, and development. Migration Policy Institute, 30.

  39. Rabb, N., Bowers, J., Glick, D., Wilson, K. H., and Yokum, D. (2022). The influence of social norms varies with “others” groups: Evidence from COVID-19 vaccination intentions. Proceedings of the National Academy of Sciences, 119(29):e2118770119. Publisher: Proceedings of the National Academy of Sciences.

  40. Rashed, E. A., & Hirata, A. (2021). Infectivity Upsurge by COVID-19 Viral Variants in Japan: Evidence from Deep Learning Modeling. International Journal of Environmental Research and Public Health, 18(15), 7799.

    Article  Google Scholar 

  41. Raveendran, A. V., Jayadevan, R., & Sashidharan, S. (2021). Long COVID: An overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(3), 869–875.

    Article  Google Scholar 

  42. Rickert, V. I., Auslander, B. A., Cox, D. S., Rosenthal, S. L., Rickert, J. A., Rupp, R., & Zimet, G. D. (2014). School-based vaccination of young US males: Impact of health beliefs on intent and first dose acceptance. Vaccine, 32(17), 1982–1987.

    Article  Google Scholar 

  43. Rosenberg, E. S., Dorabawila, V., Easton, D., Bauer, U. E., Kumar, J., Hoen, R., Hoefer, D., Wu, M., Lutterloh, E., Conroy, M. B., Greene, D., & Zucker, H. A. (2022). Covid-19 Vaccine Effectiveness in New York State. New England Journal of Medicine, 386(2), 116–127.

    Article  Google Scholar 

  44. Sadasivuni, S. T. and Zhang, Y. (2020). Using Gradient Methods to Predict Twitter Users’ Mental Health with Both COVID-19 Growth Patterns and Tweets. In 2020 IEEE International Conference on Humanized Computing and Communication with Artificial Intelligence (HCCAI), pages 65–66.

  45. Sallam, M. (2021). COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines, 9(2), 160.

    Article  Google Scholar 

  46. Santonja, F. J., Morales, A., Villanueva, R. J., & Corts, J. C. (2012). Analysing the effect of public health campaigns on reducing excess weight: A modelling approach for the Spanish Autonomous Region of the Community of Valencia. Evaluation and Program Planning, 35(1), 34–39.

    Article  Google Scholar 

  47. Sattar, N. S., & Arifuzzaman, S. (2021). COVID-19 Vaccination Awareness and Aftermath: Public Sentiment Analysis on Twitter Data and Vaccinated Population Prediction in the USA. Applied Sciences, 11(13), 6128.

    Article  Google Scholar 

  48. Shilo, S., Rossman, H., & Segal, E. (2021). Signals of hope: gauging the impact of a rapid national vaccination campaign. Nature Reviews Immunology, 21(4), 198–199.

    Article  Google Scholar 

  49. Southwell, B. G. (2013). Social Networks and Popular Understanding of Science and Health: Sharing Disparities. JHU Press.

  50. Stokols, D. (1992). Establishing and maintaining healthy environments: Toward a social ecology of health promotion. American Psychologist, 47:6–22. Place: US Publisher: American Psychological Association.

  51. Tran, T. Q. and Sakuma, J. (2019). Seasonal-adjustment Based Feature Selection Method for Predicting Epidemic with Large-scale Search Engine Logs. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 2857–2866, New York, NY, USA. Association for Computing Machinery.

  52. Tu, B., Wei, L., Jia, Y., & Qian, J. (2021). Using Baidu search values to monitor and predict the confirmed cases of COVID-19 in China: - evidence from Baidu index. BMC Infectious Diseases, 21(1), 98.

    Article  Google Scholar 

  53. Valente, T. W. (2010). Social Networks and Health: Models, Methods, and Applications. Oxford: Oxford University Press.

    Book  Google Scholar 

  54. Valente, T. W., Watkins, S. C., Jato, M. N., Van Der Straten, A., & Tsitsol, L.-P.M. (1997). Social network associations with contraceptive use among Cameroonian women in voluntary associations. Social Science & Medicine, 45(5), 677–687.

    Article  Google Scholar 

  55. Vulpe, S. N., & Rughiniş, C. (2021). Social amplification of risk and probable vaccine damage: A typology of vaccination beliefs in 28 European countries. Vaccine, 39(10), 1508–1515.

    Article  Google Scholar 

  56. Weissman, G. E., Crane-Droesch, A., Chivers, C., Luong, T., Hanish, A., Levy, M. Z., Lubken, J., Becker, M., Draugelis, M. E., Anesi, G. L., Brennan, P. J., Christie, J. D., Hanson, C. W., Mikkelsen, M. E., & Halpern, S. D. (2020). Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic. Annals of Internal Medicine, 173(1), 21–28.

    Article  Google Scholar 

  57. Wende, M. E., Stowe, E. W., Eberth, J. M., McLain, A. C., Liese, A. D., Breneman, C. B., Josey, M. J., Hughey, S. M., and Kaczynski, A. T. (2021). Spatial clustering patterns and regional variations for food and physical activity environments across the United States. International Journal of Environmental Health Research, 31(8):976–990. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/09603123.2020.1713304.

  58. Woo, H., Cho, Y., Shim, E., Lee, J.-K., Lee, C.-G., & Kim, S. H. (2016). Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea. Journal of Medical Internet Research, 18(7), e4955.

    Article  Google Scholar 

  59. World Health Organization. (2022). WHO Coronavirus (COVID-19) Dashboard. Technical report: World Health Organization.

    Google Scholar 

  60. Wouters, O. J., Shadlen, K. C., Salcher-Konrad, M., Pollard, A. J., Larson, H. J., Teerawattananon, Y., & Jit, M. (2021). Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet, 397(10278), 1023–1034.

    Article  Google Scholar 

  61. Youm, Y., & Laumann, E. O. (2002). Social network effects on the transmission of sexually transmitted diseases. Sexually Transmitted Diseases, 29(11), 689–697.

    Article  Google Scholar 

  62. Youm, Y., Laumann, E. O., Ferraro, K. F., Waite, L. J., Kim, H. C., Park, Y.-R., Chu, S. H., Joo, W.-T., & Lee, J. A. (2014). Social network properties and self-rated health in later life: comparisons from the Korean social life, health, and aging project and the national social life, health and aging project. BMC Geriatrics, 14(1), 102.

    Article  Google Scholar 

  63. Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: a comparative study. Chaos, Solitons & Fractals, 140, 110121.

    Article  Google Scholar 

  64. Zhang, J., & Centola, D. (2019). Social networks and health: new developments in diffusion, online and offline. Annual Review of Sociology, 45(1), 91–109.

    Article  Google Scholar 

  65. Zhou, X., & Li, Y. (2022). Forecasting the COVID-19 vaccine uptake rate: an infodemiological study in the US. Human Vaccines & Immunotherapeutics, 18(1), 2017216.

    Article  Google Scholar 

  66. Zhou, X., Li, Y., Correa, A., Salustri, F., & Skordis, J. (2023). The need for voices from the grassroots in China’s public health system. The Lancet Regional Health - Western Pacific, 32, 100743.

    Article  Google Scholar 

Download references

Acknowledgements

Y. Li and X. Zhou planned the study and developed the framework. Y. Li wrote the initial paper, and X. Zhou and Z. Lyv participated in the writing and revising of the paper. All authors participated in the data analysis and reviewed the final draft of the paper. Additionally, we appreciate the valuable comments from Jonathan Clindaniel and Sanja Miklin on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiang Li.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Authors’ Google Scholar Profiles:

Yiang Li: https://scholar.google.com/citations?user=Qljet7wAAAAJ &hl=en Xingzuo Zhou: https://scholar.google.com/citations?user=f3E2ExYAAAAJ &hl=en Zejian Lyv: not available

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here in Fig 3, we show the regional COVID-19 Vaccination Belief of all nine regions similar to what we discussed in the main manuscript 2a and 2b.

Fig. 3
figure 3figure 3figure 3

Regional COVID-19 vaccination belief 9 regions of England

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, X. & Lyu, Z. Regional contagion in health behaviors: evidence from COVID-19 vaccination modeling in England with social network theorem. J Comput Soc Sc 7, 197–216 (2024). https://doi.org/10.1007/s42001-023-00232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42001-023-00232-9

Keywords

Navigation