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Abstract
In the last few years, various types of machine learning algorithms, such
as Support Vector Machine (SVM), Support Vector Regression (SVR),
and Non-negative Matrix Factorization (NMF) have been introduced. The
kernel approach is an effective method for increasing the classification
accuracy of machine learning algorithms. This paper introduces a family
of one-parameter kernel functions for improving the accuracy of SVM clas-
sification. The proposed kernel function consists of a trigonometric term
and differs from all existing kernel functions. We show this function is a
positive definite kernel function. Finally, we evaluate the SVM method
based on the new trigonometric kernel, the Gaussian kernel, the polyno-
mial kernel, and a convex combination of the new kernel function and the
Gaussian kernel function on various types of datasets. Empirical results
show that the SVM based on the new trigonometric kernel function and
the mixed kernel function achieve the best classification accuracy. More-
over, some numerical results of performing the SVR based on the new
trigonometric kernel function and the mixed kernel function are presented.

Keywords: Support vector machine, Kernel-method, Trigonometric kernel
function
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1 Introduction
Support Vector Machine (SVM) is a supervised learning algorithm mostly used
for classification, but it can also be applied for regression. Vapnik [1] proposed
the SVM method for the first time, and it has been utilized in a wide range of
real-world problems such as bioinformatics [2], biometrics [3], power systems [4],
and chemoinformatics [5]. In SVM, the training data are used for training and
building the classification model. This model is then used to classify unknown
samples.

SVM achieves competitive results when the data are linearly separable.
However, kernel functions can be considered for non-separable data. They
map the data into a vector space and use linear algebra and geometry to find
out the structure of the data. There are some reasons to map the data into a
feature space. By mapping the original data into higher-dimensional space, it is
possible to transform nonlinear relations within the data into linear ones [6].

It has been proven that the kernel’s theory is based on structural risk
minimization by using the maximum margin idea [7]. The kernel function,
which is a key factor in determining algorithm performance, is at the heart
of many machine learning algorithms. Kernels allow data to be mapped into
high-dimensional feature space to increase the computational power of linear
machines. Thus, it is a way of extending linear hypotheses to non-linear ones, and
this step can be performed implicitly. SVM can be classified into linear and non-
linear approaches [8]. Trying to learn a non-linear separating boundary in the
input space increases the computational requirements during the optimization
phase because the separating surface will be of at least the second order. Instead,
SVM maps the data, using predefined kernel functions, into a new but higher-
dimensional space, where a linear separator would be able to discriminate
between the different classes. The SVM’s optimization phase will thus entail
learning only a linear discriminant for surfacing the mapped space. Of course,
the kernel function’s selection and settings are critical for SVM performance.
Kernel methods, in fact, transfer the original data into another space, the
so-called "feature space," and reveal the data’s hidden features [9].

Various kernel functions for machine learning algorithms have been intro-
duced, and some of their significant properties have been explored [10–12]. The
Gaussian kernel function is a popular kernel function used in most machine
learning algorithms [13]. Table 1 demonstrates four popular kernel functions
used in most classification papers.

Table 1: Four common kernel functions

i name K(xi, xj)
1 Polynomial kernel K1(xi, xj) = (1 + xixj)

p

2 Gaussian kernel K2(xi, xj) = exp(−‖xi−xj‖
2

2σ2 )
3 RBF Kernel K3(xi, xj) = exp(−γ‖xi − xj‖2)
4 Sigmoid kernel K4(xi, xj) = tanh(α+ βxTi xj)
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The number of kernel parameters is one of the prime issues in many kernel-
based methods. Finding the best values for kernel parameters is a challenging
problem because their values have a significant impact on their performance.
In fact, when the kernel has at least two parameters, the kernel-based method
consumes more time in the training phase to find the best values for these
parameters. During these years, researchers have been focusing on introducing
new kernel functions with one parameter. For example, due to the existence of
two parameters in the Sigmoid kernel function in Table 1, machine learning
algorithms based on this kernel function spend more time finding the best
values for the parameters α and β. The Gaussian kernel function is an example
with one parameter and has been widely utilized in most machine learning
algorithms. However, the accuracy of the SVM classification based on this
kernel function on some datasets is still not good. In this regard, many efforts
have been made to introduce new kernel functions to increase the classification
accuracy of the SVM. Recently, Tharwat [14] suggested a new approach for
estimating the best values for kernel parameters. Their method works based on
the maximum and minimum distances between samples in each class of dataset.

In the two past decades, significant efforts have been devoted to the develop-
ment of kernel functions for kernel-based methods. Combining kernel functions
is a successful approach for kernel-based methods. It has been proven that the
combination of two or more kernel functions is also a kernel function, and the
new combined kernel function can significantly improve the performance of the
SVM [15].

1.1 Contribution
• This paper gives a new family of one-parameter trigonometric kernel function

to improve accuracy of the SVM and SVR approaches. We demonstrate that
the new kernel function satisfies the kernel conditions. Moreover, we prove
that the new proposed kernel function is a positive definite, which is a critical
condition for kernel functions.

• We propose a new mixed kernel function, which is obtained by combining
the new trigonometric function and the Gaussian function.

• We adapt the proposed method in [14] to the new trigonometric kernel-SVM
and show how to predict the best value for parameter σ.

• We perform an extensive implementation to demonstrate the efficiency of
the new trigonometric kernel function. We evaluate the accuracy of the
SVM based on the new trigonometric kernel function, the Gaussian kernel
function, the polynomial kernel function, as well as a convex combination
of the trigonometric kernel function and the Gaussian kernel function on
24 datasets with different ranges of dimensions and numbers of features.
Empirical results show that the new proposed kernel function gives good
classification accuracy in nearly all the data sets, especially those of high
dimensions. It is shown that the new mixed kernel function is very efficient for
data classification. Moreover, we examine the efficiency of the SVR method
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based on the new trigonometric kernel function and the new mixed kernel
function.

The paper is organized as: In Section 2, we first recall that some properties of
kernel function and then introduce the new trigonometric kernel function. We
also investigate some properties of the new kernel function. In section 3, we
present a new mixed kernel function by using a convex combination of the new
kernel function and the Gaussian kernel function. Some numerical results of
performing kernel-SVM kernel-SVR on 24 datasets are shown in Section 3. We
finally end up the paper by providing some concluding remarks.

We use the following notations conventions throughout the paper: ‖.‖
denotes the Euclidean norm of a vector, the non-negative and positive orthants
are denoted by Rn+ and Rn++ respectively.

2 A new kernel function
This section is devoted to presenting a new trigonometric kernel function for
SVM and investigating various important properties of the new proposed kernel
function.

We start this section by examining an example. Let us investigate exactly
how a kernel function makes data classification easier. Assume X is a randomly
generated dataset with two class labels of 1, 0. This dataset has 400 samples and
consists of two circles. We plot the original data in Fig. 1 (left). It is obvious
that a linear SVM is not able to classify data with a good accuracy. To address
this problem, we utilize a kernel function and map data into a new space, Fig.
1 (right). After mapping, a linear SVM can classify data with high accuracy.

Fig. 1: Behavior of kernel function

Our next goal is to define a new kernel function. To this end, we first remind
that the definition of the kernel function demonstrated in [16].

Definition 1 Let X ∈ Rd be a non-empty set. A function K : X ×X → R on X is a
kernel function if there exists a K-Hilbert space H and a map Φ : X → H such that:

K(x, x′) =< Φ(x),Φ(x′) >, ∀ x, x′ ∈ X. (1)
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where Φ is a nonlinear (or sometimes linear) map from the input space X to the
feature space F , and 〈., .〉 is an inner product. Besides, the function Φ is so-called a
feature map and H called a feature space of K.

Definition 2 A kernel function is shift-invariant if it has the following form:

K(x, x′) = K(x− x′). (2)

Now we can introduce a new kernel function for SVM. In this regard,
consider the following trigonometric function:

ψ(x) = sin(h(x)), h(x) =
π

2 + σx2
, (3)

where σ is a positive real number. The behaviour of the functions ψ(x), ψ′(x),
and h(x) with different values of parameter σ are shown in Fig. 2.

Fig. 2: The behaviour of the function ψ(x), ψ′(x), and h(x) with different
values of parameter σ.

From Fig. 2, we can conclude that:

• The new kernel function has a different value for each value of parameter σ.
It implies that, we can figure out the best value for the σ for each dataset.

• The kernel function’s first derivative is negative, implying that ψ(x) is a
decreasing function for all x ≥ 0.

• We have h(x) ∈ (0, π2 ], for all x ≥ 0.

Next lemma presents some properties of the function given by Eq. 3.

Lemma 1 Let ψ be a function defined by Eq. 3. Then, we have:
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• ψ(0) = 1.
• ψ(x) > 0 for all x ∈ R.
• ψ′(x) ≤ 0, for all x ∈ R+.
• ψ is bounded, i.e., for all x ∈ R, we have ‖ψ(x)‖ ≤ ψ(0).

Proof Using this fact sin(π2 ) = 1, we can conclude that the first item is true.
To prove the second item, we know that ‖.‖ is non-negative, so h1(x) = π

2+σ‖x‖2 ∈
(0, π2 ] for all x, which implies sin(h1(x)) ∈ (0, 1]. To prove the third item, we have:

ψ′(x) = h′(x) cos(h1(t))

It is clear that h(x) is a decreasing function, so we can conclude that h′(x) < 0.
On the other hand, cos(h(x)) is a positive function for all x ∈ (0, π2 ], i.e., the first
derivative of the function ψ(x) given by Eq. 3 is negative.

The fourth item of the lemma is obtained by using the fact that ψ(0) = 1, ψ(x) ≤ 0
and ψ(x) ≥ 0 for all x ≥ 0. �

Now, we are in the position to define a new trigonometric kernel function
for the SVM approach for the first time.

Definition 3 Suppose x, x′ ∈ X, and the feature map function ψ(x) given by Eq. 3,
then a new trigonometric kernel function is defined by:

K(x, x′) = sin(
π

2 + σ‖x− x′‖2
) (4)

where σ is a positive real constant.

Using the symmetric property for the inner product, the first property of
the new proposed kernel function can be expressed as follows:

K(x, x′) = sin(
π

2 + σ‖x− x′‖2
) = sin(

π

2 + σ‖x′ − x‖2
) = K(x′, x), (5)

It implies that the new trigonometric kernel function satisfies the symmetric
property.

The following definition recalls another property of the kernel function
called positive definite.

Definition 4 (Positive definite kernel [16]) Let X be a nonempty set. K : X×X → R
is called a positive kernel function if and only if for any c ∈ Rm, the following
inequality is true:

m∑
i,j=1

cicjKi,j ≥ 0, (6)

in which Ki,j = K(xi, xj).
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Remark 1 Suppose that K : X ×X → R is a kernel function. Then K is-so called
strictly positive definite if and only if for any c ∈ Rm, we have:

m∑
i,j=1

cicjKi,j > 0. (7)

Chasing the mentioned conditions is very challenging for some kernel func-
tions. A common way to address these challenges is to utilize the matrix of the
kernel function. Van Den Berg et al. [16] proved that a kernel function is posi-
tive definite if and only if the symmetric matrix K is positive definite. Note that,
components of the matrix Ki,j are K(xi, xj), as well as Ki,i = K(xi, xi) = 1
for i = 1, 2, ..., n. It shows all elements on the main diagonal matrix K are one.
Now, we are in the position to present the positive definite property for the
new proposed kernel function, which delineates some properties of the new
proposed kernel function.

Lemma 2 ([16]) Suppose K : X ×X → R is a kernel function. Then K is positive
definite if and only if

det(K(xi, xj)i,j≤n) ≥ 0, {x1, x2, ..., xn} ⊆ X.

Theorem 1 The new proposed kernel functions defined by Eq. 3 is positive definite.

Proof We begin by induction on n. Considering the structure of matrix K as:

K =


1 l12 · · · l1n
l21 1 · · · l2n
...

... · · ·
...

ln1 l2n · · · 1

 , (8)

where 0 ≤ lij < 1, i 6= j, 1 ≤ i, j ≤ n, and lij = K(xi, xj). The property K(xi, xj) =
K(xj , xi) implies K is a symmetric matrix. For the matrix K, we have:

n = 1, det(K1,1) = 1 > 0;

n = 2, det(K2,2) = 1− l212 > 0,

in which Ki,i denotes a square matrix with dimension i. Let us suppose the theorem
be true for n − 1. We prove that det(Kn,n) > 0. Using the fact that K11 = 1 > 0
and by subtracting K1,1 times the first column from the K-th column, K = 2, . . . , n,
the new matrix where the first column remained unchanged and other columns are
changed by using the relation K′jk = Kjk −K1kKj1 for k ≥ 2 can be obtained. In
addition, the new matrix has the same principal minors as the matrix K, so we have:

det(K′j,k≤p) = det(Kj,k≤p), p = 1, 2, . . . , n. (9)

So, the matrix K′ can be rewritten as:

K′ =


1 0 · · · 0
0 k′22 · · · k′2n
...

... · · ·
...

0 k′2n · · · k′nn

 , (10)
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Determinant of the matrix K can be calculated as follows:

det(K) = 1 ∗ det

 k′2,2 · · · k′2,n
... · · ·

...
k′2,n · · · k′n,n

 > 0,

where the inequality is obtained from the fact that determinate of matrix Kn−1,n−1
is positive. �

Theorem 1 implies that the proposed kernel functions is positive definite.

3 A new mixed kernel function
Mixing or combining several kernel functions into one kernel function was used
to improve the performance of a single kernel function [17]. Here, we utilize this
idea and suggest a new mixed kernel function, that is a convex combination of
the Gaussian kernel function and the new trigonometric kernel function given
by Eq. 1. For this purpose, we first recall a lemma allowing us to combine two
kernel functions.

Lemma 3 Let f and g be two kernel functions. Then, a convex combination of f and
g, i.e., βf + (1− β)g is also a kernel function for all β ∈ [0, 1].

Using Lemma 3, we introduce a new mixed kernel function.

Proposition 2 If β ∈ [0, 1], then the new mixed kernel function is given by:

Kc(x, x
′) := β sin(h1(x, x′))+(1−β)e

‖x−x′‖2

2σ2 , where h1(x, x′) =
π

2 + σ‖x− x′‖2
.

(11)

Using Lemma 3, we have the following Remark.

Remark 2 The kernel function defined by Eq. 11 is a positive definite kernel function.

Note that Eq. 11 is a kernel function and satisfies the properties of the kernel
function. To compare behaviour of the new mixed kernel with the Gaussian
kernel function and new trigonometric kernel function, we plot behaviour of
these functions in Fig 3. This figure clearly shows that the value of the mixed
fraction is always between the new proposed kernel function and the Gaussian
function. In fact, the mixed kernel function can control the effects of changing
the parameter σ well.

4 Numerical results
This section gives some numerical results of performing the kernel-SVM and
kernel-SVR on various data sets.
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Fig. 3: Behavior of the new mixed kernel function, the Gaussian kernel function
and new trigonometric kernel function.

4.1 SVM problem
The kernel SVM optimization problem can be express as:

min
α

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)−
n∑
i=1

αj

S.t.

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C,

where n denotes the number of samples, C is the penalty or regularization
parameter, and K(xi, xj) is a kernel function.

4.2 Kernel functions
We implement the SVM based on the following kernel functions:

K1(x, xj) = (1 + xxj)
p, p = 2 (12)

K2(x, xj) = exp(−‖x− xj‖
2

2σ2
) (13)

K3(x, x
′) = sin(

π

2 + σ‖x− x′‖2
) (14)

K4(x, x
′) = β sin(

π

2 + σ‖x− x′‖2
) + (1− β)e

‖x−x′‖2

2σ2 , β =
1

2
. (15)

4.3 Parameter selection
We use the idea presented in [14] to find the best values for the parameters
C and sigma. In fact, we select the best values for sigma and C from the
following set:

c, σ ∈ {2−5, 2−4, ..., 210}.
To apply [14]’s idea, we first calculate the minimum and maximum distances
between samples in each class. After that, we choose large values for σ when
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the dataset is compact and small values when the dataset is sparse. In this
regard, we consider the following three datasets.

• Gaussian dataset: Gaussian dataset has 400 samples and two classes. Each
sample has two features. This is a compact dataset because the maximum
distances between samples of the first and second classes are 4.736 and 5.8477,
respectively, and the minimum distances between samples of the first and
second classes are 0.0412 and 0.1427, respectively. We run the kernel-SVM
with different values of the parameters σ and C. The obtained results for
C = 1 and C = 10 are shown in Tables 2 and 3. Large values for σ produce
better results because the distance between samples is small.

Table 2: The number of misclassified training samples (# TrE.), number of
misclassified testing samples (# TsE.), and number of support vectors (# SVs)
of the new trigonometric kernel SVM using different values of parameter σ
with C = 1 with Gaussian dataset.
Results σ = 0.1 σ = 1 σ = 2 σ = 10 σ = 50 σ = 100 σ = 1000
# SV 2 156 315 128 173 215 315
# TrE. 63 48 43 27 17 10 3
# TsE. 17 35 35 27 22 18 14

Table 3: The number of misclassified training samples (# TrE.), number of
misclassified testing samples (# TsE.), and number of support vectors (# SVs)
of the new trigonometric kernel SVM using different values of parameter σ
with C = 10 with Gaussian dataset.
Results σ = 0.1 σ = 1 σ = 2 σ = 10 σ = 50 σ = 100 σ = 1000
# SV 267 180 199 93 317 179 312
# TrE. 108 66 62 31 14 3 0
# TsE. 31 24 22 33 35 19 16

• College dataset: The college dataset has 777 samples and two classes. Each
sample has 17 features. The first class has 565 samples, and the second has
212 samples. We discovered that the maximum distances between samples
of the first and second classes are 20, 111 and 47, 861, respectively, and the
minimum distances between samples of the first and second classes are 0.
Small values for σ can produce better results in this case. We run the kernel-
SVM with various values of the sigma and C parameters. The obtained
results for C = 1 and C = 10 are shown in Tables 4 and 5.
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Table 4: The number of misclassified training samples (# TrE.), number of
misclassified testing samples (# TsE.), and number of support vectors (# SVs)
of the new trigonometric kernel SVM using different values of parameter σ
with C = 1 with College dataset.
Results σ = 0.1 σ = 1 σ = 2 σ = 10 σ = 50 σ = 100 σ = 1000
# SV 621 621 621 621 621 621 621
# TrE. 0 0 0 0 0 0 0
# TsE. 33 29 30 32 31 33 39

Table 5: The number of misclassified training samples (# TrE.), number of
misclassified testing samples (# TsE.), and number of support vectors (# SVs)
of the new trigonometric kernel SVM using different values of parameter σ
with C = 10 with College dataset
Results σ = 0.1 σ = 1 σ = 2 σ = 10 σ = 50 σ = 100 σ = 1000
# SV 621 621 621 621 621 621 621
# TrE. 0 0 0 0 0 0 0
# TsE. 31 31 28 228 34 34 38

• Tic-Tac-Toc dataset: This dataset has two classes: the first class has 323
samples, and the second has 626 samples and nine features. The maximum
distances between samples of the first and second classes were 4.90 and 4.47,
respectively. In this case, we need large values for parameter σ. We present
a summary of the results in Table 6.

Table 6: The number of misclassified training samples (# TrE.), number of
misclassified testing samples (# TsE.), and number of support vectors (# SVs)
of the new trigonometric kernel SVM using different values of parameter σ
with C = 1 with the Tic-Tac-Toc dataset
Results σ = 0.1 σ = 1 σ = 2 σ = 10 σ = 50 σ = 100 σ = 1000
# SV 674 348 476 751 766 766 766
# TrE. 37 8 0 0 0 0 0
# TsE. 47 35 28 24 19 16 22

4.4 Datasets
We perform the SVM on the 24 datasets with different number of samples and
features1. There are two data samples are used in all experiments; 80% of the
data were used to train SVM and 20% of the data were used to test model.
Table 7 gives details about 24 datasets used in this section. Note that “Name”

1https://www.openml.org/search?q=gisette&type=data&sort=runs&status=active
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denotes the name of the dataset, “F” presents the number of the features of
the dataset, and “N” is the number of samples.

Table 7: Data Sets
i Name #F #N i Name #F #N
1 Banana 2 5300 13 Sonar 60 208
2 Bill-authentication 4 1372 14 SPECT 22 80
3 Carseats 10 400 15 Weekly 8 1089
4 College 17 777 16 Wisc-bc-data 31 569
5 Column-2C-weka1 6 310 17 PhpVDlhKL 230 64
6 Dataset-spine 12 309 18 Fri-c1-100-10 11 100
7 Ex2data1 2 100 19 Svmguide1 4 3089
8 Ex2data2 2 118 20 tic-tac-toe.data 10 958
9 GaussianData 2 400 21 analcatdata−lawsuit 5 264
10 GSE58606-data1 1927 133 22 phpAmSP4g 31 569
11 Numeric-sequence 28 2400 23 kc2 22 5228
12 Pimalndians1 8 390 24 haberman 4 306

4.5 Results of performin SVM
Classification accuracy for SVM based on four kernel functions given by Eqs. 12–
15 are demonstrated in Fig 4. Note that x-axis denotes the number of dataset
(i.e., i) in Table 7. In addition, “K1" shows the accuracy results for polynomial
kernel-SVM, “K2” denotes the results for the Gaussian kernel function, and
“K3” and “K4” are results for the new trigonometric kernel function and mixed
kernel function given by Eq. 15, respectively.

Fig. 4: Accuracy results of performing SVM based on the four kernel functions
on 24 data-set denoted in Table 7.
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4.6 Kernel SVR
Here we investigate efficiency of the proposed kernel functions for SVR approach.
In this regard, we implement the SVR based on the kernel functions given by
Eqs. 14 and 15 on a set of 200 data points generated by using the following
function:

f(x) = sin(x) ∗ exp(−0.2 ∗ x) + ε
where ε is a random number.
Fig. 5 demonstrates the behaviour of the SVR based on two mentioned kernel
functions. This figure shows SVR based on the new proposed kernel function
and mixed kernel function can fit the best curve within an ε tube to predict
the model.

Fig. 5: Behaviour of SVR based on the kernel functions given by Eq. (14) and
Eq. (15).

4.7 Discussion
Based on Tables 2– 7, Figs. 4 and 5, we can conclude that:

• A variety of datasets with different numbers of samples and features have
been used.

• The average classification accuracies of the SVM method based on the poly-
nomial, Gaussian, new trigonometric, and mixed kernel functions are 77.93%,
82.79%, 84.88%, and 87.64% respectively.

• The new trigonometric kernel-SVM improved the accuracy of the Gaussian
kernel-SVM (from 82.79% to 84.88%) based on average accuracy.

• The new mixed kernel function improved the classification accuracy of the
SVM. According to the results, it improves the 4.85% accuracy of the Gaussian
kernel-SVM and the 2.66% accuracy of the new proposed kernel-SVM.

• The new kernel-SVM achieves better classification accuracy for 10 datasets
than the Gaussian kernel-SVM.

• The new proposed kernel function achieves the best results with small values
of σ when the dataset is sparse and with large values of σ when the dataset
is compact.
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• The SVR based on the new proposed kernel functions is able to predict an
appropriate graph with the minimum error.

5 Concluding remarks
In this paper, we introduced a new trigonometric kernel function for machine
learning. Various properties of the proposed kernel function were investigated.
Then we combined the proposed kernel function with the Gaussian kernel
function and introduced a new mixed kernel function. The numerical results
confirmed that the new proposed trigonometric kernel function improved the
classification accuracy of the SVM for the most considered datasets. Moreover,
the mixed kernel function achieved the best results in terms of classification
accuracy.
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