
Android Applications Classi�cation with Deep
Neural Networks
Mustapha Adamu Mohammed  (  adamu.mohammed@ktu.edu.gh )

Kwame Nkrumah University of Science and Technology
Michael Asante 

Kwame Nkrumah University of Science and Technology
Seth Alornyo 

Koforidua Technical University
Bernard Obo Essah 

University of Ghana

Research Article

Keywords: mobile opearting system, android security, deep learning, Deep Belief Neural Network,
benignware, andoid malware

Posted Date: October 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2196025/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-2196025/v1
mailto:adamu.mohammed@ktu.edu.gh
https://doi.org/10.21203/rs.3.rs-2196025/v1
https://creativecommons.org/licenses/by/4.0/


Springer Nature 2021 LATEX template

Android Applications Classification with

Deep Neural Networks

Mustapha Adamu Mohammed1,2*, Michael Asante2†, Seth

Alornyo1,3† and Bernard Obo Essah2,3†

3,2*Department of Computer Science, Koforidua Technical
University, Ghana.

2Department of Computer Science, Kwame Nkrumah University
of Science and Technology, Ghana.

3Department of Mathematics, University of Ghana, Ghana.

*Corresponding author(s). E-mail(s): adamu.
mohammed@ktu.edu.gh;

Contributing authors: masante.csi@knust.edu.gh;
sabigseth@ktu.edu.gh; boessah@st.ug.edu.gh;

†These authors contributed equally to this work.

Abstract

In an effort to foster the growth of Android in the mobile operating
system market and keep current consumers, Google has made millions
of applications, some of which are free and others of which are paid
apps, available in the Google Play store. Users have, however, regu-
larly complained that the store is full of malicious apps and low quality
apps, putting their devices and personal information at risk. Detec-
tion of mobile applications vulnerabilities remains a significant challenge
due to the constant evolution of methods to obfusticate and circumvent
current detection and security schemes.The ability to correctly classify
and categorize mobile applications, especially those built for Android, is
crucial for separating malignant applications from benign ones thereby
protecting the many more devices of unsuspecting users.This paper
presents a deep neural network technique to classify android applications
into legitimate and malware applications. Specifically,we first proposed
applications classification model based on deep belief neural network
classifier.The neural network was built and trained on real dataset to
classify android-based applications using TensorFlow library and imple-
mented on python programming language. We further trained and tested

1



Springer Nature 2021 LATEX template

2 Article Title

our neural network’s classification performance against that of four tra-
ditional deep feed-forward neural networks and seven baseline models
based on machine learning algorithms on the same data. According to
experimental results, a deep belief neural network-based model could
accurately categorize Android apps into benign and malicious cate-
gories with 98.7% of the time. Compared to all previous deep learning
and machine learning methods, this represents a significant improve-
ment. Also,the categorization accuracy of the DBN model is better
than that of numerous other models examined by earlier researchers.

Keywords: mobile opearting system;android security;deep learning; Deep
Belief Neural Network;benignware; andoid malware.

1 Introduction

Mobile apps allow users to execute tasks that were previously only available
on personal computers (PCs), thereby enhancing the functionality of smart-
phones.There are currently more than 6 billion cellphones, and 72% of them
run the Android operating system [1].Thus,making Android the most popular
mobile operating system on the market currently. In fact Android recorded
over 2.5 billion active devices on monthly basis in the year 2019 alone. In
fact,Android has become quite popular not only as an operating system for
smartphones but also for cars, tablets, smart appliances, and IoT gadgets [2].
Android has made millions of apps easily accessible and downloadable in an
effort to promote further growth and keep current customers. However, these
apps frequently fall short of meeting even the most basic security standards
and can be used to indirectly attack other managed or linked devices (such as
Internet of things nodes) that carry out delicate tasks like controlling a smart
automobile, opening a smart lock, or performing health checks.
Attackers would naturally choose a system with a large client base as their
target, hence malware authors are making malwares that target Android appli-
cations. In fact, recent research revealed that 50% of currently accessible apps
are susceptible to one or more serious vulnerabilities[3],[4],[5],[6]. In the future,
there will be an increase in both the quantity and variety of malware that tar-
gets Android-based applications [7].
It is crucial to note that Android now has a security system that relies heavily
on a sandbox and permissions system. Each Dalvic virtual machine in which
a program runs has a distinct user ID issued to it. Application code executes
independently of every other application code. In other words, one application
cannot allow access to the files of another application..
Additionally, Android operates under the Least Privilege Principle: access to
additional sensitive resources is restricted by the granting of certain permis-
sions, while each installed application is only given the minimal capabilities
necessary to ensure its operations.
Although the Android platform has these security models, side-loaded apps



Springer Nature 2021 LATEX template

Article Title 3

and Google Play’s open structure make application vulnerabilities frequent.
That is,Google play does not verify uploaded applications mannually [8]. Even
though google discourages users from side loading applications and third-party
applications due to security concerns,some installations from other third party
vendors are still permitted [9], [10].
Additionally,there are vulnerabilities associated with the adroid platfrom itself.
Remote access tools (RAT), which are used to transmit messages, enable cam-
eras for spying, and track GPS data, can access call history, online browser
history, installed applications, and more on mobile targets.
However, due to the quick development of evasive techniques used by mal-
ware developers to undermine existing security measures, the discovery of
vulnerabilities in Android applications remains a significant challenge. Social
engineering tactics that are frequently exploited by attackers would be used to
lure people. These include drive-by downloads, attachments, games, phishing,
spam campaigns, and fake advertisements.
The classification algorithms for Android applications currently in use have
some drawbacks. Even the more effective machine learning-based methods
for classifying applications have variable recognition rates and high levels of
computational complexity, which have an impact on software control and the
monitoring of applications.
Our work proposes an Android application categorization model based on
supervised deep neural network classifier to address the shortcomings of
current mobile application classification technologies, fully learn the character-
istics of mobile operating systems applications, and enhance the accuracy of
android application classification. To obtain the best classification accuracy,we
would subject our model through multiple stages, including data collection,
preprocessing, training, and testing, a procedure also used by Wijaya et
al.[11],in their study.
Hinton and Salakhutdinov [12], first presented the original Deep Belief Network
model. Deep Belief Networks,also called graphical generative models address
the automatic learning of features and also learn the important features that
characterize a given dataset and get over the training’s challenges by using the
layer by ayer initialization technique. The application of the Deep Belief Neu-
ral network algorithm for characteristic recognition and categorization offers
obviuos benefits [13].
The rest of this study is organized as follows: Section 2 discusses the prior
research on android based applications cateorization using machine learning
and deep neural networks. In section 3, we provide an overview of DBN and dis-
cuss how we built our DBN model using the Tensorflow library. Also, dataset
creation and model parameter selection is discussed. In section 4,we implement
our DBN android application model by training it on the datasets. Also,the
test datasets are used to examine the classification accuracy of our model,
and the outcome is compared to that of the plain neural network based model
under the same conditions. section 5 presents the summary of the paper.



Springer Nature 2021 LATEX template

4 Article Title

2 Related Work

The open handset alliance (OHA), an organization working to improve the
android environment day by day, has offered many security solutions for
Android platforms, including operating system improvements and software
updates. Again,suggestions have been made to the effect that users download
files and apps from reputable sites and sources. However these measures can
only be practiced by IT savvy users. Naive users,who unfortunately are in the
majority will always fall victims by not strictly observing these guidelines.The
biggest traction in recent years has been achieved by new android based mal-
ware detection approaches based on machine learning techniques[14], such as
ensemble clustering methods.
Akbar et al. [15], recently presented a permissions-based malware detection
method that assesses an app’s malice based on the use of suspecious per-
missions. The authors employed a multilevel technique by extracting the
important features like permissions from over 10000 android apps.To classify
the applications into their malicious or legitimate categories, the researchers
used a variety of machine learning algorithms,including Support Vector
Machine,Random Forest, Rotation Forest, and Näıve Bayes classifiers. Zhang
et al.[16],subsequently proposed android malware detection by analyzing sys-
tem call traces for legitimate and malicious android based apps. The authors
trained six machine learning algorithms for the malware detection system.
Shatnawi et al,[17], Syrris et al.[18], Herron et al.[19], Islam et al.[20] and
Raymond et al. [21],recently trained machine learning based models based on
static features of android applications datasets to determine the presence of
malignant applications in android systems. Much as machine learning based
approaches have proven successful at detecting android malware experimen-
tally as suggested by the above studies and many others. However,for the
purpose of obtaining useful feature sets, machine learning models significantly
rely on handcrafted feature engineering. Additionally, the majority of cur-
rent datasets based on Android are unlabeled, which limits the ability of
machine learning-based models to accurately categorize morden day android
apps. Deep neural network approaches have recently been the subject of numer-
ous studies on extending machine learning techniques for unlabelled data. For
instance,Lakshmanarao et al.[22] recently targeted specific opcode sequences
extracted from android applications dataset to train a recurrent neural net-
work for malware classification. Fallah et al.[23] modeled an instance of traffic
data as a series of flows by using long Short Term memory(LSTM) model for
malware detection and classification into legitimate and malicious samples.
Despite the fact that these most recent research (2022) seem to offer useful
strategies for fending off new threats to Android platforms. Deep neural net-
work techniques like LSTMs and RNNs, however, require a large quantities of
training data in order to learn the intricate and nonlinear functions necessary
to make accurate predictions. Therefore, these systems frequently underper-
form in predictions when the data is not large enough, rendering their methods
unsuitable for generalization. To address these shortfalls,we train a deep belief



Springer Nature 2021 LATEX template

Article Title 5

neural network (DBN) model on real dataset (CICInvesAndMal2019) collected
from University of New brunswick(UNB) dataset repository to classify android
applications that have never been seen before into malicious and legitimate
categories. DBNs can be trained with a less amount of labeled data by stacking
numerous Restricted Boltzmann Machines(RBMs)[24]. Since feature extrac-
tion is carried out unsupervised by multiple stacks of RBMs, a small collection
is adequate to train a network suitable to classify android dataset into benign
and malicious apps.

3 Methodology

The goal of this study is to categorize whether an app is a malware or benign-
ware, hence the problem is defined as a classification one. Therefore, we define
the Android application categorization problem, give a brief introduction to
deep belief networks, and demonstrate how it models our data in this section.
We then give a general overview of the pre-training process. Finally, we applied
a model to our dataset using the TensorFlow framework.
Definition of Problem: Given a set of Android Application Package (APK)
expressed as an input vector VL = {v1, v2, v3 · · · vn},where each vi is repre-
sented by a vector containing the values of n dimensional features.
Let vi = {feature1, feature2, feature3 · · · featuren, Output Label}
output label ∈ { normal APK, malicious APK } is the class label associated
with the application. V would be utilized to train a deep neural network clas-
sifier to learn the characteristics of both normal APK and malicious APK.
The goal of a trained deep neural network is to categorize a given unlabeled
APK unseen = {feature1, feature2, feature3, featuren, ???}, that has never
been seen before by assigning a label, Output Label where output label ∈ {
normal APK, malicious APK }.
Deep Belief Neural Networks:
Deep Belief Networks (DBN), is a deep neural network that forms the ori-
gin of unsupervised layer wise pretraining procedure for deep feed forward
neural networks. We build an entirely unsupervised generative model[25] that
mixes undirected and directed interactions between the variables that consti-
tute either the visible layer or the hidden layers. Figure 1 is a Deep belief

Fig. 1: A three hidden layer Deep Belief Network model

Network model with three hidden layers. As can be seen,we have undirectional
interactions at the top layers and directed connections at the lower layers. In



Springer Nature 2021 LATEX template

6 Article Title

a DBN,the top two layers will always form an RBM. Thus,the distribution,

p
(

H
(1)
L , H

(3)
L

)

of layer H
(2)
L and layer H

(3)
L ,is an RBM with undirected inter-

actions. The other layers are going to form a Bayesian network with directed
interactions. Specically the conditional distribution of the units given the layers
above them takes the form :

p

(

H
(1)
Lj = 1|H

(2)
L = σ

(

b(1) +W (2)⊤ +H
(2)
L

))

(1)

p

(

V(i) = 1|H
(2)
L = σ

(

b(1) +W (2)⊤ +H
(2)
L

))

(2)

This coresponds to a probabilistic model associated with the Logistic
model[26]. That is : for the probability of a visible unit in a visible layer to be
equal to 1, it is going to be the sigmoid (σ) applied on a linear transformation

of the layer above it. For H
(1)
L is going to be a linear transformation of H

(2)
L

,and for the visible layer VL, is going to be a linear transformation of H
(1)
L as

indicated in (1) and (2) respectively. When we have units that interact this
way,we call such a model Sigmoid Belief Network(SBN)[27].
Generative process associated with our DBN model:
To generate (model) our android application data from our DBN,we applied
Gibbs sampling procedure[28], between the top two layers over a number of
iterations through the following algorithms:

Algorithm 1 Training algorithm based on Contrastive Divergence Method
by Gibbs Sampling[29]

Initialize the training dataset
Set the states of the visible units to the training dataset
Positive Phase ← Update the Weights of all hidden units,using;

σ
(

Bj +
m∑
n
i=1

WijVi

)

Negative Phase ← Update the Weights of all visible units,using;

σ
(

Ai +
∑n

j=1 WijHj

)

while Wji 6= Wij do
if W = n, update the weights of all associated weights then

Wij + L ∗ σ
(

Bj +
∑m

i=1 WijVi

)

− σ
(

Ai +
∑n

j=1 WjHi

)

else if W = 0, Repeat over all training examples in one epoch, then
then repeat until convergence and utill they have different iterations

and epochs
Repeat steps with all training samples till optimal threshold is

obtained.
end if

end while



Springer Nature 2021 LATEX template

Article Title 7

Here,Bj is the bias associated with hidden units Hj ,Wij and Vi are the
connections and visual layer products directly associated with hidden units.
Also,Ai is the bias associated with visible layer Vi, and L is the learning rate.

Once H
(2)
L is sampled from the actual prior p

(

H
(2)
L , H

(3)
L

)

, then from H
(2)
L

we will directly generate H
(1)
L using the stochastic processes Eq(1) and Eq(2).

From H
(1)
L ,we will generate directly, the input VL,which gives us the sample

or observation of input layer VL from the DBN model. More specifically,the
joint distribution of the input layer VL and our three hidden layers is going to
be a prior

P
(

VL, H
(1)
L , H

(3)
L

)

= P
(

H
(2)
L , H

(3)
L

)

∗ P
(

H
(1)
L | H

(2)
L

)

which is going to take the form

p
(

H
(2)
L , H

(3)
L

)

= exp
(

H
(2)⊤
L ×W (3)H

(3)
L + b(2)

⊤

H
(2)
L + b(3)

⊤

H
(3)
L

)

| Z. (3)

We recognise here the probability distribution of Restricted Boltzmann

machine,where we have our weight W . Between H
(2)
L and H

(3)
L and the biases

b(2) and b(3) for the two layers ,and a normalization constant Z. So we have

the prior p
(

H
(2)
L , H

(3)
L

)

multiplied by H
(2)
L | H

(2)
L , that is part of the sigmoid

belief network corresponds to the conditional H
(1)
L | H

(2)
L . So we know here

for instance that H
(1)
L is independent of H

(3)
L given H

(2)
L in our model and we

multiply P
(

VL | H
(1)
L

)

,so VL is sampled from H
(1)
L using the sigmoid belief

network conditional distribution. Again,VL is only dependent on H
(1)
L . And

also,in the sigmoid belief network, the full distribution of H
(1)
L given H

(2)
L

factorises into individual conditionals.

p
(

H
(1)
L | H

(2)
L

)

= π̄jp
(

H
(1)
Lj
| H

(2)
L

)

(4)

in otherwords,given H
(2)
L ,each of the hidden units in the first hidden layer

are independent and similarly for the visible layer x given H
(1)
L ,thus

p
(

VL | H
(1)
L = πip

(

vi | H
(1)
L

)

(5)

Procedure of stacking RBMs for Pre-training the neural network:
We train a three layer DBN model Fig.2 in this study, by first going from a
one hidden layer DBN (a), (which in essence is an RBM). We train that for a
while and use its parameters to initialize a two hidden layer DBN (b). Then
we would be left with the top part of the DBN (i.e. the RBM part of the two
layer DBN) by keeping the weights fixed to initialize the parameters of the
top layer.
To move to the three layer DBN(c), we again use the weights of the two layer
(b) to initialize the lower part of (c) i.e. we use the weights of the top layer of
(b) to initialize the upper part of (c) to get a good initialization for the top



Springer Nature 2021 LATEX template

8 Article Title

layer of (c).

Fig. 2: A three layer DBN model. (a) is a on-layer DBN representing the
starting point of the pre-training process (basically an RBM) (b) is a two-
layer DBN initialized from (a). (c) shows a three-layer DBN forming a stack
of Restricted Boltzmann machine. We used the weights of the top layer of (b)
to initialize the upper part of (c) to get a good initialization to pre-train our
entire network. This RBM the automatically extract meaningful features from
the input vector (datasets)

Finally, we do a fine-tuning procedure by using the up-down method. DBN
neural nets can be divided into two major parts.The first part are multiple
layers of RBMs to pre-train our network. Secondly,we used a feed forward
backpropagation network to further refine the results from the RBM stack.
RBMs use unsupervised learning method to learn static analysis of features
in our data by reconstructing the input into permissions used between a
set of malware and benign samples. Pre-training is done using the stack
of RBMs such that the RBMs,model learns information about permissions
of applications,which represent features of the visible layer,and maps each
Android Application Package (APK) against a list of permissions in the hid-
den layer. We employ greedy layer-by-layer algorithm [30] and iterative Gibbs
Sampling [31], detailed ealier, for pre-training. The sigmoid belief network is
then trained through fine tuning, where we employed the back-propagation
technique to obtain the best weights; since we need to have labels for the
supervised learning problem.

3.1 Experiments

In this section, we run experiments to show how well our suggested model
performed. The purpose of the experiments is to contrast the DBN model
with other deep learning-based models that are already in use. In the end, we
evaluate the results of our work and contrast them with previously published
works that classified Android applications.



Springer Nature 2021 LATEX template

Article Title 9

A. Experimental Setup: The simulation experiments were performed on
a physical machine running macOS Monterey version 12.6 on a 1.4 GHz
quad-core Intel Core i5 processor with 8 GB of 2133 MHz LPDDR3 memory.
An NVIDIA GTX 1060 GPU with 6 GB memory sourced from Google colab-
oratory was used as an accelerator.
Our proposed DBN model and the baseline models trained for comparison
were implemented on the TensorFlow version 2.3.4. and Keras version with
python 3.
Internal hyperparameters were selected as follows: learning rate(L) was set
at 0.01 at the initial stage and at every 10 iterations(epochs), a decay of
10% used.The batch size of 64 was chosen with adam as an optimizer for
the trained models. We run the datset through 5000 epochs to arrive at the
convergence when it was realised that the error in the visible layer became
less than the treshold.

B. Dataset: The CICInvesAndMal2019 datasets, which is accessible at the
University of New Brunswick (UNB), was utilized in this study. This dataset
contains API calls, all created log files, permissions, and intents as static
features, as well as samples with dynamic features,and were collected from
real android devices. The datasets are used in prior studies, such as Taheri et
al.[32]. Since our model uses supervised learning, we needed both benign and
malicious applications to train it. As a result, we collected 5065 benign appli-
cations and 426 malicious applications, giving us a total of 5491 examples.

C. Metrics used in the Evaluation: The four widely used evaluation
metrics in machine learning: Accuracy, Recall, Precision, and F1 Score of the
top categorized apps, are used in this study. Accuracy essentially assesses
the consistency of our classifications in comparison to the overall predictions
observed. F1 Score is the weighted average of Precision and Recall, which
provides us a good overall picture of how well our model performed. Recall
indicates how effectively our model could identify the right apps, Precision is
how well the model can distinguish between benign and harmful apps.

D. Neural network Configuration and model implementation: We
built our DBN network in TensorFlow in two stages: first, we built a Python
class for RBM to create and use the RBM, then we built our DBN. once the
we create the RBM and load our datasets,we then create the DBN network.
Three RBMs were employed in this study; the first had 4,000 hidden units,
the second had 2000 hidden units, and the third had 50 hidden units. As a
result, we generated a deep hierachy of representation of the training dataset.
Each RBM was trained separately by calling the train function, which returns
the current RBM output and uses it as the input for the next RBM. The
learned representation of the input data is then transformed into a supervised
prediction, which is a binary classifier. Finally,we use the output of the last
hidden layer of the DBN network to classify applications.



Springer Nature 2021 LATEX template

10 Article Title

E. Model Training and Validation: We trained our network using a
dataset that includes both legitimate and malicious applications because our
study used the supervised learning technique as stated ealier. 80% of the
entire dataset used for training, and the remaining 20% for testing. Then,
we flip it 10 fold to simulate an unseen application by using a portion of the
entire dataset as test set. This would help us measure how effective our model
would be performing. The current training method involves training with
various epochs. Every epoch is a period in which a whole model is developed
and tested. Testing is carried out using the training and validation set, where
training loss and training accuracy were measured are tracked. The goal was
to choose the model that results in the least amount of training loss. When
we realized that the validation loss did not improve after every 100 epochs,
we created a mechanism for stopping the training. Therefore, in our study,
500 epochs of training were completed, which means that epoch 500 was the
point at which we found our optimum model.
As depicted in the figure 3,we have training loss decreasing with time at
various epochs before flatulating.The figure illustrates that there is close
relationship between training and validation loss as well as between training
accuracy and validation accuracy. This is signigficant because if they are too
wide apart, we begin to worry that our model might be overfitting.

(a) Training Loss (b) Validation Loss

Fig. 3: Training and Validation Losses

Table 1 shows different machine learning classifiers. Random Forest and
decision Tree classifiers outperformed all the other algorithms considered in
the study. With classification accuracy of 87.4% and 87.2% as well as 94.3%
and 92.3% precision recorded for these two learners,with can see these are
the closest to our DBN model. Logistic Regression classifier,(accuracy 63.2%)
was the worst performer on our dataset. However,it produced the highest F1
score of 48.7% of all the machine learning models. This is due to the fact that
our dataset is highly imbalanced classes of malicious apps 426 against benign
sample 5065. When there is imbalanced data, F1 score has been found to be a
more accurate measure of performance by Yerima et al[33]. We may therefore
state with confidence that logistic regression also accurately described our
data. Overall, the DBN model outperformed all seven well-known machine



Springer Nature 2021 LATEX template

Article Title 11

learning classifiers on which we trained our data.

4 Results and Discussion

4.1 Comparison with baseline Machine Learning models

trained on the CICInvesAndMal2019 dataset

.

Table 1: Comparison with baseline Machine Learning models
trained on the CICInvesAndMal2019 dataset.

Machine Learning Classification Algorithm Accuracy Precision Recall F1 Score
Logistic Regression Classifier 0.632 0.864 0.454 0.487

Linear Suppor Vector Machines 0.783 0.912 0.168 0.328
XGBoost Classifier 0.785 0.917 0.136 0.349
Gradient Boosting 0.762 0.950 0.153 0.416

Decision Tress Classifier 0.874 0.943 0.143 0.255
Random Forest Classifier 0.872 0.923 0.147 0.257

Bagging Classifier 0.867 0.963 0.191 0.247
KNeighbors Classifier 0.833 0.964 0.131 0.228

DBN Model 0.987 0.989 0.974 0.979

4.2 Comparison with baseline Deep Learning models

trained on the CICInvesAndMal2019 dataset

In the same experimental setting, we trained four back propgation neural
networks [34] on our data, and the results are shown in table 2. In general, the
results were excellent, with accuracy, precision, recall, and F1 score all exceed-
ing 98%. With these values, we have a model that is showing a lot of promise.



Springer Nature 2021 LATEX template

12 Article Title

Table 2: Comparison with baseline Deep Learning models trained
on the CICInvesAndMal2019 dataset.

Deep Learning Model Accuracy Precision. Recall. F1 Score
Deep Neural Network 0.872 0.728 0.874 0.795

Back-Propagation based
Neural Network model 0.985 0.982 0.965 0.973
Multilayer Perception

Neural Network 0.867 0.736 0.832 0.781
Rule based neural network 0.989 0.983 0.978 0.981

DBN Model 0.987 0.989 0.974 0.979

4.3 Comparison with current studies on android

applications classification

.
Table 3 compares our model with other existing techniques that also trained
models on cutting-edge Android datasets similar to our own, using deep learn-
ing techniques. The preliminary processing of the datasets in these studies is
the same as in this paper. The different entropy features of APK data are
extracted and those that can best represent Android applications are selected
and classified using deep learning algorithms.

Table 3: Comparison with current studies on android applications
classification

Study Reference Malware App/Benign App Model Dataset

Kimet al.[35] 170/4659 1D CNN Drebin
Cai et al.[36] 135/136 RF Algorithm AndroZoo

Masum et al.[37] 1260/2539 Deep NN MalGenome
Aktas et al.[38] 21/2479 kNN UpDroid
Turkeret al.[39] 1635/1635 MLP AMD
Our Study 426 / 5065 DBN CICInvesAndMal2019



Springer Nature 2021 LATEX template

Article Title 13

5 Conclusion

Applications classification is an essential step to seperating malicious apps
from legitimate ones to reduce the security threats on Android powered
smart devices. In this study, we have built a DBN neural network using
the TensorFlow framework, to model real Android application data (CICIn-
vesAndMal2019 dataset) and categorize Android applications into benign and
malicious classifications. The greedy layer-wise pre-training procedure was
adopted as a way of initializing better parameters of the DBN. After that we
used the same initialization to train other traditional neural networks with
varying layer configurations as well as seven machine learning classifiers,for
the purposes of fair comparison to assess the performance of our approach.
Our model provides an intuitive and yet promising, approach to classifying
Android applications.
The practicality of our approach is confirmed by comparative studies in tables
1,2,and 3. Additionally, it demonstrates that deep belief neural networks have
good classification performance and offers promising research opportunities for
addressing Android security problem.

References

[1] Caputo, D.: On the security and privacy challenges in android-based
environments. PhD thesis, University of Genoa, Italy (2022)

[2] Alani, M.M., Awad, A.I.: Paired: An explainable lightweight android
malware detection system. IEEE Access 10, 73214–73228 (2022)

[3] El-Zawawy, M.A., Faruki, P., Conti, M.: Formal model for inter-
component communication and its security in android. Computing, 1–27
(2022)

[4] Mazuera-Rozo, A., Escobar-Velásquez, C., Espitia-Acero, J., Vega-
Guzmán, D., Trubiani, C., Linares-Vásquez, M., Bavota, G.: Taxonomy
of security weaknesses in java and kotlin android apps. Journal of Systems
and Software 187, 111233 (2022)

[5] Garg, S., Baliyan, N.: Android security assessment: A review, taxonomy
and research gap study. Computers & Security 100, 102087 (2021)

[6] Garg, S., Baliyan, N.: Comparative analysis of android and ios from
security viewpoint. Computer Science Review 40, 100372 (2021)

[7] Meng, L., Zhang, Y.: Machine Learning and Intelligent Communications:
Third International Conference, MLICOM 2018, Hangzhou, China, July
6-8, 2018, Proceedings vol. 251. Springer, ??? (2018)

[8] Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: Dynalog: An automated dynamic



Springer Nature 2021 LATEX template

14 Article Title

analysis framework for characterizing android applications. In: 2016
International Conference On Cyber Security And Protection Of Digital
Services (Cyber Security), pp. 1–8 (2016). IEEE

[9] Sun, Y., Fang, J., Chen, Y., Liu, Y., Chen, Z., Guo, S., Chen, X., Tan, Z.:
Energy inefficiency diagnosis for android applications: a literature review.
Frontiers of Computer Science 17(1), 1–16 (2023)

[10] Polese, A., Hassan, S., Tian, Y.: Adoption of third-party libraries in
mobile apps: A case study on open-source android applications (2022)

[11] Wijaya, N., Mulyani, S.H., Anggraini, Y.W.: Deepfruits: efficient citrus
type classification using the cnn. Iran Journal of Computer Science, 1–7
(2022)

[12] Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data
with neural networks. science 313(5786), 504–507 (2006)

[13] Shao, H., Tang, L., Dong, L., Chen, L., Jiang, X., Wang, W.: A research
of network applications classification based on deep learning. In: Interna-
tional Conference on Machine Learning and Intelligent Communications,
pp. 13–21 (2018). Springer

[14] Senanayake, J., Kalutarage, H., Al-Kadri, M.O.: Android mobile mal-
ware detection using machine learning: A systematic review. Electronics
10(13), 1606 (2021)

[15] Akbar, F., Hussain, M., Mumtaz, R., Riaz, Q., Wahab, A.W.A., Jung,
K.-H.: Permissions-based detection of android malware using machine
learning. Symmetry 14(4), 718 (2022)

[16] Zhang, X., Mathur, A., Zhao, L., Rahmat, S., Niyaz, Q., Javaid, A.,
Yang, X.: An early detection of android malware using system calls
based machine learning model. In: Proceedings of the 17th International
Conference on Availability, Reliability and Security, pp. 1–9 (2022)

[17] Shatnawi, A.S., Yassen, Q., Yateem, A.: An android malware detec-
tion approach based on static feature analysis using machine learning
algorithms. Procedia Computer Science 201, 653–658 (2022)

[18] Syrris, V., Geneiatakis, D.: On machine learning effectiveness for malware
detection in android os using static analysis data. Journal of Information
Security and Applications 59, 102794 (2021)

[19] Herron, N., Glisson, W.B., McDonald, J.T., Benton, R.K.: Machine
learning-based android malware detection using manifest permissions.
(2021). Proceedings of the 54th Hawaii International Conference on



Springer Nature 2021 LATEX template

Article Title 15

System Sciences

[20] Islam, F.Z., Jamil, A., Momen, S.: Evaluation of machine learning meth-
ods for android malware detection using static features. In: 2021 IEEE
International Conference on Artificial Intelligence in Engineering and
Technology (IICAIET), pp. 1–6 (2021). IEEE

[21] Raymond, V.J., Raj, R., Retna, J.: Investigation of android malware with
machine learning classifiers using enhanced pca algorithm. COMPUTER
SYSTEMS SCIENCE AND ENGINEERING 44(3), 2147–2163 (2023)

[22] Lakshmanarao, A., Shashi, M.: Android malware detection with deep
learning using rnn from opcode sequences. International Journal of
Interactive Mobile Technologies 16(1) (2022)

[23] Fallah, S., Bidgoly, A.J.: Android malware detection using network traf-
fic based on sequential deep learning models. Software: Practice and
Experience 52(9), 1987–2004 (2022)

[24] Bulso, N., Roudi, Y.: Restricted boltzmann machines as models of
interacting variables. Neural Computation 33(10), 2646–2681 (2021)

[25] Wani, T.M., Gunawan, T.S., Qadri, S.A.A., Kartiwi, M., Ambikairajah,
E.: A comprehensive review of speech emotion recognition systems. IEEE
Access 9, 47795–47814 (2021)

[26] Tao, L., Mughees, A.: Deep Learning for Hyperspectral Image Analysis
and Classification vol. 5. Springer, ??? (2021)

[27] Zhang, Y., Henao, R., Li, C., Carin, L.: Bayesian dictionary learning with
gaussian processes and sigmoid belief networks. In: IJCAI, pp. 2364–2370
(2016)

[28] Yamaguchi, K., Templin, J.: A gibbs sampling algorithm with monotonic-
ity constraints for diagnostic classification models. Journal of Classifica-
tion 39(1), 24–54 (2022)

[29] Neo, Y., Teo, T.T., Woo, W.L., Logenthiran, T., Sharma, A.: Forecasting
of photovoltaic power using deep belief network. In: Tencon 2017-2017
IEEE Region 10 Conference, pp. 1189–1194 (2017). IEEE

[30] Gao, Z., Birge, J.R., Chen, R.L.-Y., Cheung, M.: Greedy algorithms for
the freight consolidation problem. In: 22nd Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2022) (2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik



Springer Nature 2021 LATEX template

16 Article Title

[31] Kang, Z., You, C., Zhang, R.: 3d placement for multi-uav relaying: An iter-
ative gibbs-sampling and block coordinate descent optimization approach.
IEEE Transactions on Communications 69(3), 2047–2062 (2020)

[32] Taheri, L., Kadir, A.F.A., Lashkari, A.H.: Extensible android malware
detection and family classification using network-flows and api-calls.
In: 2019 International Carnahan Conference on Security Technology
(ICCST), pp. 1–8 (2019). IEEE

[33] Yerima, S.Y., Sezer, S.: Droidfusion: A novel multilevel classifier fusion
approach for android malware detection. IEEE transactions on cybernet-
ics 49(2), 453–466 (2018)

[34] Karmakar, S., Goswami, S.: A new procedure for optimization of hidden
layer neurons during learning through gradient descent process of neural
network and improvement of performance in the chaos forecasting. Iran
Journal of Computer Science 4(4), 293–303 (2021)

[35] Kim, H.-I., Kang, M., Cho, S.-J., Choi, S.-I.: Efficient deep learning net-
work with multi-streams for android malware family classification. IEEE
Access 10, 5518–5532 (2021)

[36] Cai, H., Meng, N., Ryder, B., Yao, D.: Droidcat: Effective android
malware detection and categorization via app-level profiling. IEEE Trans-
actions on Information Forensics and Security 14(6), 1455–1470 (2018)

[37] Masum, M., Shahriar, H.: Droid-nnet: Deep learning neural network for
android malware detection. In: 2019 IEEE International Conference on
Big Data (Big Data), pp. 5789–5793 (2019). IEEE

[38] Aktas, K., Sen, S.: Updroid: Updated android malware and its familial
classification. In: Nordic Conference on Secure IT Systems, pp. 352–368
(2018). Springer

[39] Türker, S., Can, A.B.: Andmfc: Android malware family classification
framework. In: 2019 IEEE 30th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 1–6
(2019). IEEE


	Introduction
	 Related Work
	 Methodology
	 Experiments

	Results and Discussion
	 Comparison with baseline Machine Learning models trained on the CICInvesAndMal2019 dataset
	 Comparison with baseline Deep Learning models trained on the CICInvesAndMal2019 dataset
	 Comparison with current studies on android applications classification

	Conclusion

