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Abstract: This paper is concerned with data clustering to separate clusters based on the connectivity 

principle for categorizing similar and dissimilar data into different groups. Although classical clustering 

algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow 

convergence rate in solving high-dimensional problems. To address these issues, many successful meta-

heuristic optimization algorithms and intelligence-based methods have been introduced to attain the 

optimal solution in a reasonable time. They are designed to escape from a local optimum problem by 

allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful 

approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized 

Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two 

versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled 

ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. 

Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to 

solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is 

a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large 

and complex real-world optimization problems, particularly data clustering applications. In this study, 

eight benchmark datasets including five datasets of the UCI machine learning repository and three 

challenging shape datasets are used to investigate the general performance of the proposed method. The 

results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-

of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly 

outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster 

Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and 

finding the optimal cluster centers. 

Keywords: Data clustering, K-means, Meta-heuristic optimization algorithm, Chimp optimization 

algorithm, Generalized normal distribution algorithm, Opposition-based learning. 

1. Introduction 

Over the past few decades, an enormous amount of unstructured information has been 
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widely produced in various fields of science. Due to the making effective use of this 

information, different methods are necessitated to classify or categorize them. Data clustering 

is one of the most useful and powerful techniques which has a significant effect on data analysis 

performance. The application of clustering can be considered in the fields of bioinformatics 

[1], image analysis [2], signal processing [3], text mining [4], and medicine [5]. Within the 

field of machine learning, there are two main types of tasks: supervised learning, and 

unsupervised learning. The main difference between the two approaches is that supervised 

learning uses labeled data to predict the output values, while the other does not. One of the 

most common techniques in unsupervised learning is clustering which does not require any 

prior information about data [6]. It is a process of categorizing a set of data into different 

clusters, where the data points within a specific cluster must be extremely similar to each other 

and the data within different clusters must be highly dissimilar to each other. 

Generally, there are five various kinds of clustering algorithms including partitional, 

hierarchical, fuzzy, density-based, and model-based methods. Partitioning algorithm [7] is a 

type of clustering technique that divides the data points into different groups based on their 

similarities, where the number of clusters should be pre-specified. In this category, K-means is 

regarded as the most successful and powerful algorithm. Hierarchical algorithm [8] is an 

alternative clustering approach that does not need to determine the number of groups for 

identifying clusters in the dataset. Single-link and complete-link are the two most popular 

hierarchical algorithms. Fuzzy algorithm [9] is also known as the soft clustering method, 

whereby, each data point has a probability of belonging to one of the groups. In other words, 

in soft clustering, each item can belong to more than one cluster, while in hard clustering, each 

item can only belong to one cluster. The Fuzzy C-Means (FCM) can be considered as the most 

well-known algorithm of the mentioned category. The density-based algorithm [10] is another 

type of clustering method that relies on separating the regions with high point density from the 

regions with low point density. DBSCAN (Density-Based Spatial Clustering and Application 

with Noise) is an example of a density-based algorithm that is suitable for identifying the 

clusters of different shapes and sizes in noisy datasets. The last method is model-based 

clustering algorithm [11] which assumes that the data were generated by a specific model. To 

this aim, it attempts to find the best fit model and assigns each data to the corresponding cluster. 

Despite the fact that traditional clustering algorithms are an effective strategy in a wide 

range of applications, they are faced with some issues and limitations. The first and foremost 

disadvantage is that they are completely dependent on the initialization parameters. The second 

drawback is that they suffer from the local optima problem. Moreover, they are not appropriate 

for large datasets due to their high computational cost and complexity. Lastly, there is not exist 

an efficient method for partitioning the set of data into different clusters when the dataset 

contains overlapping areas. To overcome the previous drawbacks, the clustering problem can 

be assigned as an optimization problem that the goal is to maximize or minimize the objective 

function. If the objective function is well-designed and capable of capturing the significant 

features from the datasets, then an efficient clustering technique can be expected. Within the 

field of data clustering, objective functions are commonly defined based on the similarity 

measure (distance metrics). The aim of the objective function is to identify the best possible 

cluster center, where the data points within a cluster should be closest to its centroid. In addition 



to the importance of the objective function, the optimization procedure can be modified to 

observe a significant impact on the clustering performance. The key component of this 

modification is Metaheuristic Optimization Algorithms (MOAs), which are employed to 

discover the search space for exploiting the best possible solution. MOAs applications are 

widely used in various fields of science, such as an ant-inspired algorithm for the collective 

discovery of workflow services [12], a Volcano Eruption Algorithm (VEA) for solving 

optimization problems [13], Ant-based Replication and Mapping protocol (ARMAP) for 

classification or clustering of Grid resources (Forestiero et al., 2005) and Horse Herd 

Optimization Algorithm (HHOA) for medical solving problems [14]. So, data clustering is a 

challenging task where the MOAs play a significant role in solving the specified problem. 

Through the analysis of recent scientific literature, it can be observed that MOAs have a number 

of important characteristics, particularly when data clustering is considered as an optimization 

problem. Totally, details are organized below: 

1) MOAs maintain the simple concept and structure.  

2) MOAs have the ability to escape from a local optima problem. 

3) MOAs are a type of derivation-free algorithm that is useful for solving real-world 

problems. 

4) MOAs can be applied to a wide range of problems without requiring any structural 

changes due to their flexibility and adaptability. 

In general, MOAs are categorized into four major groups including human-inspired 

algorithms, physics-inspired algorithms, Evolutionary Algorithms (EAs), and Swarm 

Intelligence Algorithms (SIAs). The first group is human-inspired optimization algorithms that 

mimic humans' behaviors in their social activities. The most recent and well-known algorithms 

of this group are Poor and Rich Optimization (PRO) [15], Human Mental Search (HMS) [16], 

Student Psychology-Based Optimization (SPBO) [17], and Algorithm of the Innovative 

Gunner (AIG) [18]. The next group is physics-inspired optimization algorithms where the 

physical phenomena are the primary source of their inspiration. Henry Gas Solubility 

Optimization (HGSO) [19], Equilibrium Optimizer (EO) [20], Archimedes Optimization 

Algorithm (AOA) [21], and Thermal Exchange Optimization (TEO) [22] are a few examples 

of physics-based algorithms. The third group is EAs, also known as bio-inspired algorithms, 

which are inspired by the ideas of biological evolution. It can be referred to as Genetic 

Algorithm (GA) [23], Porcellio Scaber Algorithm (PSA) [24], Sin Cosine Algorithm (SCA) 

[25], and Degree-Descending Search Evolution (DDSE) [26] among the conventional 

algorithms of this group. SIAs are the last group of MOAs, imitating the collective (swarm) 

behavior of different entities, especially those species who rely on consensus decision-making 

in their processes. Swarm behavior in birds, fishes, tetrapods, and insects is called flocking, 

schooling, herding, and colonies, respectively. Some of the common algorithms in this category 

include Particle Swarm Optimization (PSO) [27], Harris Hawks Optimization (HHO) [28], 

Chimp Optimization Algorithm (ChOA) [29] Binary Dragonfly Algorithm (BDA) [30], 

Butterfly Optimization Algorithm (BOA) [31], and Sparrow Search Algorithm (SSA) [32].  



Eventually, the successful application of MOAs in dealing with various optimization 

cases motivated us to incorporate SIAs into data clustering problems. Based on this idea, we 

utilized the recently proposed SIA called Chimp Optimization Algorithm (ChOA) to solve data 

clustering problems [33]. The major advantages of using SIAs over other MOAs in data 

clustering tasks can be summarized as follows: (i) simple structure, which enables scientists to 

implement SIAs more easily; (ii) few numbers of control parameters: this reduces the high 

computational complexity of SIAs associated with data clustering algorithms; (iii) limited 

critical operators: SIAs require less computational burden for finding the best solution 

compared to other existing EAs such as GA (crossover, mutation, etc); (iv) memory-based 

mechanisms, which refers to the SIA's ability to memorize the useful information during each 

iteration. Despite the significant achievements of ChOA in dealing with data clustering 

problems, the fundamental deficiencies of MOAs such as premature convergence, trapping in 

local optima, inability to maintain a promising balance between local search and global search, 

and not always converging to the best global solution motivates us to develop a hybrid approach 

to mitigate the limitations of individual algorithms. Moreover, the No-Free Lunch (NFL) 

theory [34] states that no single MOAs can efficiently solve the extensive range of complicated 

optimization problems. Consequently, this paper introduces a novel hybrid clustering method, 

called ChOAGNDA by the combination of ChOA and GNDA algorithms with Opposition-

Based Learning (OBL) strategy for dealing with more complex clustering problems. 

The main objective of this study is to develop a reliable clustering algorithm that can 

be able to categorize a set of data into different clusters accurately. The proposed algorithm not 

only improved the clustering performance but also reduced the number of misclassified data. 

Meanwhile, it can successfully deal with the local minimum problem and slow convergence 

speed. Furthermore, the proposed algorithm can be applied to a wide range of clustering 

problems including challenging shape datasets and high-dimensional benchmark datasets. In 

brief, ChOAGNDA is designed to transform clustering into an optimization problem, and then 

optimize the specified objective function to find the appropriate cluster centers. Following that, 

all of the data in a dataset are divided into different clusters based on the principle of minimum 

distances between each data and its centroid. To the best of our knowledge, this is the first time 

that ChOA, GNDA, and OBL technique have been combined and formed a hybrid algorithm 

to solve data clustering problems. The major contributions of this paper are as follows: 

• This study suggested a new hybrid approach based on ChOA and GNDA algorithms 

with a selective OBL strategy (ChOAGNDA) for solving complex data clustering 

problems. 
 

• The combination of ChOA and GNDA strategies enhanced the algorithm's 

performance in achieving the best possible results in terms of convergence behaviors, 

search efficiency, and evaluation measures (SICD and ER). Moreover, the use of OBL 

technique allowed for a stable balance between exploration and exploitation phases to 

avoid local optima. 
 

• Two modifications are incorporated into the ChOA algorithm to improve its 

preformance in dealing with challenging clustering cases. 



i. Firstly, we proposed another version of ChOA called ChOA(II) and compared 

it to the proposed ChOA(I) in Ref. [33]. These two ChOA versions are 

completely different in terms of global and local search, which ensures the best 

clustering performance.  

ii. Secondly, we employed seven chaotic maps with different characteristics in 

ChOA to guarantee the best possible result. ChOA is extremely sensitive to the 

chaotic value, so this is a useful idea to improve its capability during the 

optimization process. 

• Finally, the performance of the proposed method is evaluated using five benchmark 

and three shape datasets, and the results are compared against several optimization 

algorithms and well-regarded hybrid approaches. 

The remainder of this study is outlined as follows: Section 2 reviews the related 

literature. Section 3 presents preliminaries including data clustering process, Chimp 

Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and 

Opposition‑based learning (OBL) mechanism. In section 4, the details of the clustering 

problem and proposed methods are presented. The experimental results and statistical analysis 

are elaborated in section 5, while the conclusion and future directions are summarized in 

section 6.   

2. Review of the Related Literature 

During the last few years, many studies focused on data clustering not only as an 

important task of data mining but also as a dynamic way for testing optimization algorithms' 

efficiency. This is a prominent area that has recently attracted a lot of attention from researchers 

and professionals from various fields of science. In order to provide a clear perspective of 

clustering methods, Table (1) categorizes and lists the most significant researches that have 

been proposed to solve data clustering problems. 

In the available literature, the diversity of optimization algorithms for data clustering 

problems is numerous. Class Topper Optimization (CTO) [35] is a kind of human-based 

optimization algorithms, which is inspired by the students' learning intelligence. Students in 

the same classroom make effort to increase their knowledge in order to succeed in their exams. 

Besides, various examinations are performed to assess the students' performance to identify the 

best student in each class. The best student of the class is referred to as a "class topper", and 

the CTO algorithm aims to enhance the class  topper's performance during all the further 

examinations process. Das et al. 2020 [35] considered the CTO algorithm as an optimization 

method to solve clustering problems. The proposed clustering algorithm requires the encoding 

of four essential parameters: students, class topper, courses, and exams. Students refer to the 

search agents which are assigned to find the optimal solution. Class topper refers to the best 

cluster center that has the minimum sum of intra-cluster distances. The number of courses taken 

by each student indicates the number of clusters, and the number of examinations shows the 

number of iterations. The proposed algorithm is evaluated regarding the SICD result, Average 

Percentage of Error (APE), and convergence rate. The main advantage of the CTO algorithm 



is the ability to find the best cluster centers while maintaining the minimum range of error rates. 

However, the main drawback of this algorithm is its inability to deal with non-spherical data. 

 

Table 1. Previous literature of data clustering using Meta-heuristic optimization algorithms. 

Category Algorithm (s) Name 
Arbitrary 

Name 

First  

Author 
Year Ref. 

Human-based 

Stem Cells Algorithm 

Heart Optimization Algorithm 

Imperialist Competitive Algorithm 

Class Topper Optimization  

Teaching Learning Based Optimization  

SCA 

HOA 

ICA 

CTO 

TLBO 

Taherdangkoo M 

Hatamlou A 

Zadeh MR 

Das P 

Naik A 

2012 

2014 

2014 

2018 

2020 

[36] 

[37] 

[38] 

[35] 

[39] 

Physics-based 

Big Bang–Big Crunch  

Gravitational Search Algorithm  

Black Hole  

Multi-Verse Optimizer  

Improved Black Hole  

BBBC 

GSA 

BH 

MVO 

IBH 

Hatamlou A 

Hatamlou A 

Hatamlou A 

Shukri S 

Deeb H 

2011 

2011 

2013 

2018 

2021 

[40] 

[41] 

[42] 

[43] 

[44] 

Evolutionary 

Genetic Algorithm  

Quantum Evolutionary Algorithm  

Biogeography-Based Optimization  

Sine Cosine Algorithm  

Gradient Evolution  

GA 

QEA 

BBO 

SCA 

GE 

Murty MN 

Ramdane C 

Hammouri AI 

Kumar V 

Kuo RJ 

2008 

2010 

2014 

2017 

2020 

[45] 

[46] 

[47] 

[48] 

[49] 

Swarm-based 

Particle Swarm Optimization  

Cuckoo Search Algorithm  

Grasshopper Optimization Algorithm  

Moth–Flame Optimization  

Modified Grey Wolf Optimizer  

PSO 

CSA 

GOA 

MFO 

MGWO 

Van DW 

Manikandan P 

Lukasik S 

Shehab M 

Ahmadi R 

2003 

2014 

2017 

2020 

2021 

[50] 

[51] 

[52] 

[53] 

[54] 

Hybrid 

Genetic Algorithm, Particle Swarm Optimization  

Krill Herd Algorithm, Hybrid Function  

K-means, Ant Lion Optimization  

Firefly Algorithm, Particle Swarm Optimization  

Whale Optimization Algorithm, Tabu Search  

GAPSO 

MMKH 

K-ALO 

FAPSO 

WOATS 

Kuo RJ 

Abualigah LM 

Majhi SK 

Agbaje MB 

Ghany KK 

2010 

2018 

2018 

2019 

2020 

[55] 

[56] 

[57] 

[58] 

[59] 

Multi-Verse Optimizer (MVO) [60] is a type of physics-based optimization algorithm 

that is based on the theory of multi-verse in astrophysics. According to this theory, three kinds 

of holes including white holes, black holes, and worm holes are used to create an interaction 

between different universes. In more particular, various universes are formed through different 

big bangs, whereby, each universe has the possibility of having white holes, black holes, and 

worm holes. The responsibility of each component is as follows: white holes emit the objects, 

black holes absorb the objects, and worm holes prepare a connection between the universes by 

making a tunnel through space-time. The algorithm's objective is to find the best universe and 

then improve the performance of the corresponded universe during the interaction process. 

Shukri et al. 2018 [43] employed the MVO algorithm as an optimization method to tackle data 

clustering problems in two distinct approaches. The first approach is a type of static clustering 

method (SCMVO), in which the number of clusters requires to be predefined in advance. In 



contrast, the second approach is a type of dynamic clustering method (DCMVO) that the 

number of clusters is determined by the algorithm. The proposed clustering algorithm needs 

encoding of five major parameters: universes, white holes, black holes, time, and inflation rate. 

Universes refer to the clustering solutions, where each universe is regarded as the center of 

candidate solutions. White holes represent the best set of cluster centers that has the highest 

objective value, while black holes show the worst set of cluster centers with the lowest 

objective value. Time and inflation rate indicate the number of iterations and the objective 

value of each universe, respectively. Finally, the performance of the MVO algorithm is 

evaluated in terms of purity (the percentage of correctly classified objects), entropy (the 

semantic distribution of the objects within each cluster), and the convergence rate. The results 

show that the proposed algorithm obtains an acceptable value of purity and entropy in only half 

of the given datasets, besides it has the slowest convergence rate among all the algorithms. 

Grey Wolf Optimizer (GWO) [61] is a kind of SIAs, which simulates the hunting 

behavior of grey wolves. There are four kinds of grey wolves in the leadership hierarchy 

entitled alpha, beta, delta, and omega. Alpha is the highest-ranked wolf (leader) in the pack, 

and he/she is responsible for managing the members of the pack. The second-ranked wolf is 

beta that assists the alpha wolf in different duties such as decision-making, tracking, hunting, 

etc. Omega is the lowest ranking wolf in the hierarchy of grey wolves that plays an important 

role in maintaining the pack's survival. Lastly, any wolf that does not belong to one of the 

previous categories is referred to as delta, which is ranked third among the hierarchy of grey 

wolves. The process of grey wolf hunting is divided into three major phases: searching, 

surrounding, and attacking. The purpose of the GWO algorithm is to find the prey's location 

and finish the hunting process by attacking the prey. Ahmadi et al. 2021 [54] proposed 

Modified Grey Wolf Optimizer (MGWO) as an optimization method for solving data clustering 

limitations. In this algorithm, a new control parameter is utilized to make an appropriate 

balance between the exploration and exploitation parts. It is an effective way to improve the 

GWO performance. In the proposed clustering algorithm, different types of grey wolves are 

considered as the center of candidate solutions (cluster centers). Alpha wolf indicates the best 

solution, beta wolf refers to the second-best solution, delta wolf is the third-best solution, and 

the rest of the solutions belong to omega wolves. The algorithm's objective is to improve the 

performance of the alpha wolves in each iteration. Eventually, the efficiency of the proposed 

clustering algorithm is evaluated regarding the objective value (sum of intra-cluster distances) 

and the error rate (the percentage of misclassified objects). The conducted experiments 

illustrate that MGWO achieves promising results in most of the given datasets. 

Firefly Algorithm (FA) [62] and Particle Swarm Optimization (PSO) algorithm are the 

two well-known SIAs that have been successfully employed to solve a wide range of 

optimization problems. FA mimics the luminous behavior of fireflies in nature, while PSO 

imitates the social behavior of swarms such as bird flocks, schooling fish, etc. The basic 

principles of FA are as follows: first of all, fireflies are a type of unisex species that their mating 

strategy is based on the quantity of their light intensity. Secondly, the brightest firefly moves 

randomly, while the low brightness fireflies move towards the high brightness fireflies. Lastly, 

the light intensity of each firefly is specified by its distance from the other fireflies and it is 

considered as the objective function. If the distance is increased, the light intensity will be 



decreased. On the other hand, the main principle of the PSO algorithm is associated with two 

properties namely velocity and position. The PSO algorithm starts with an initial random 

population of candidate solutions, where each one of them has the potential of being an optimal 

solution. Each candidate solution is referred to as a particle. Particles differ in terms of velocity 

and they move through the search space according to their velocity values. In other words, the 

velocity directs the movement of each particle to its optimum position by following two 

parameters. The first parameter is called local best (Pbest) which represents the best position 

of each particle, and the second parameter is called global best (Gbest) which refers to the best 

position of neighbor particles. Finally, the position of each particle is determined by its 

velocity. Agbaje et al. 2019 [58] designed an efficient hybrid algorithm called FAPSO, in 

which a modified FA is combined with PSO to handle the clustering problems. FAPSO 

algorithm employs the FA as the primary search algorithm at the early stages of the search 

process and then continues with PSO to discover the best optimal solutions (cluster centers). 

Experimental results prove the efficiency of FAPSO algorithm regarding the convergence 

speed and clustering quality, compared to the other clustering algorithms such as FA and PSO. 

It should be noted that the significant disadvantage of FAPSO algorithm is that the combination 

of two MOAs incredibly increases the amount of computational complexity. 

In summary, the main highlights of the technical limitations associated with existing 

approaches are listed below. This motivates us to propose a new clustering algorithm which 

can overcome the shortcomings of individual techniques. 

• The majority of existing techniques still suffer from trapping in local minima. 

• They have a slow convergence rate especially in solving high-dimensional problems. 

• They have a high execution time, which makes them unable to find optimal solutions 

in a reasonable amount of time. 

• Due to the number of control parameters, some clustering strategies are more 

computationally expensive than other approaches. 

• Among existing algorithms, many of them fail to minimize the SICD value while 

maintaining the ER range as small as possible. 

• Most of the proposed techniques are faced with some deficiencies, such as dealing 

with various types of data (shape, spherical, non-spherical, etc). 

3. Preliminaries 

This section describes the prerequisite theories and algorithms in the following 

subsections. Section 3.1: data clustering background, Section 3.2: chimp optimization 

algorithm, Section 3.3: generalized normal distribution algorithm, and Section 3.4: 

opposition‑based learning mechanism. 

3.1. Data Clustering Analysis 

  The main objective of data clustering is to partition N data objects into K clusters. N can 

be defined as N = {Di:D1, D2, …, DN}, where N indicates the number of samples and Di 

represents the position of each sample. Furthermore, K can be specified as K = {Cj:C1, C2, …, 

CK}, where K shows the number of clusters and Cj is the position of each cluster's center. Data 



points within the same cluster should be highly similar to each other, while data points within 

different clusters should be dissimilar as much as possible. To this aim, various distance metrics 

such as Euclidean distance [63], Manhattan distance [64], and Minkowski distance [65] are 

proposed to determine the similarity measure. In this work, we utilize the Euclidean distance 

metric to calculate the distances between m-dimensional data objects and their cluster centers, 

as follows:  

dis (Di , Cj) = √ ∑(Din − Cjn)2
m

n=1

 
(1) 

To achieve the highest performance in data clustering, the similarity of data objects within the 

same cluster should be maximized and the similarity of data objects within different clusters 

needs to be minimized. For this purpose, Sum of the Intra-Cluster Distances (SICD) based on 

Euclidean distance is considered as the objective function, and the target is to minimize the 

SICD. The objective function of our proposed clustering algorithm is defined according to 

Equation (2). 

f (D,C)=∑∑Wij‖Di − Cj‖
2

K

j=1

N

i=1

 (2) 

Where f (D, C) represents the objective value which is also known as cluster integrity, ‖Di-Cj‖ 

indicates the Euclidean distance between a data sample and the cluster center, and Wij is the 

association weight that could be one (if sample i is assigned to cluster j) or zero (if sample i is 

not assigned to cluster j). 

3.2. Chimp Optimization Algorithm  

Chimp Optimization Algorithm (ChOA) is one of the latest SIAs, introduced by Khishe 

and Mosavi in 2020 [29]. This algorithm imitates the social behavior of chimps including their 

individual intelligence and sexual motivation while they are in a hunting group. Each group 

contains various types of chimps that are not similar to each other regarding their ability and 

intelligence. Although they are all carrying out their responsibilities as a member of the group, 

they have their own strategy to discover the environment. A chimp colony consists of four 

kinds of chimps including drivers, barriers, chasers, and attackers. They all have unique skills 

and each skill can be efficient in a specific part of the hunting process. Drivers pursue the prey 

without trying to overtake it. Barriers construct a dam on top of the trees to prevent the prey 

from moving forward. Chasers are responsible for following the prey to overtake it. Lastly, 

attackers attack the prey by closing its escape route, which forces it back to the chasers or leads 

it into the trap. The attackers' performance is closely related to their age, intelligence, and 

physical strength. In general, the chimps' hunting process consists of two critical parts namely 

exploration and exploitation. The exploration part refers to driving, chasing, and blocking the 

prey, while the exploitation part refers to attacking and hunting the prey. The significant point 

in achieving the high performance of ChOA is that the appropriate balance should be chosen 

between exploration and exploitation. 



Preparing a mathematical model for the ChOA algorithm needs five independent parts 

which are formulated as follows: 

3.2.1. Encircling Part  

As noted previously, the prey is encircled by the chimps during the hunting process.  

Equations (3) and (4) represent the mathematical model of the driving and chasing mechanism: 

d = |c.Xprey(t) −  M.Xchimp(t)| (3) 

Xchimp(t+1) = Xprey(t)  −  a.d (4) 

Where t, X prey, and X chimp  show the number of current iterations, the position vector of prey, 

and the vector of chimp position, respectively. a, c, and M parameters are the coefficient vectors 

and they are computed using Equations (5)-(7), respectively. 

a = 2.f.r1 −  f (5) 

c = 2.r2 (6) 

M = Chaotic_Value (7) 

Where f indicates the boundary range of non-linearly that is declined from 2.5 to 0 over the 

course of iterations. r1 and r2 are the random vectors between 0 to 1, and M is a chaotic vector 

that demonstrates the impact of chimp sexual behavior on the hunting process. It should be 

stated that each chimp has multiple options of selecting any possible positions around the prey's 

location. To this aim, selecting or changing the position of each chimp is adjusted according to 

the r1 and r2 vectors, and the movement direction of each chimp is determined through the a 

and c values. Therefore, each chimp is able to randomly update its location based on the prey's 

position by using Equations (3) and (4).  

3.2.2. Exploitation Part 

It refers to the attacking behavior of chimps in which the entire process is guided by the 

attackers. In other words, attacker chimps are in charge of the main tasks, while the other 

chimps (drivers, barriers, and chasers) assist them in the hunting process. As mentioned 

previously, this is an unsupervised searching where is no information available about the prey's 

location (optimal solution). Therefore, it is supposed that the best solutions are obtained by the 

first driver, chaser, barrier, and attacker (search agents) and the rest of the chimps update their 

positions based on the location of the best chimps. Equations (8)-(10) are the mathematical 

model of the attacking mechanism: 



dAttacker = |c1XAttacker −  M1X| 

dBarrier = |c2XBarrier −  M2X| 

dChaser = |c3XChaser −  M3X| 

dDriver = |c4XDriver −  M4X| 

(8) 

X1 = XAttacker −  a1(dAttacker) 

X2 = XBarrier −  a2(dBarrier) 

X3 = XChaser −  a3(dChaser) 

X4 = XDriver −  a4(dDriver) 

(9) 

X (t+1) = 
X1  + X2 + X3 + X4

4
 (10) 

Where parameters a, c, and M represent the coefficient vectors which were calculated by 

Equations (4)-(6), X refers to the chimp positions, and d is the distance between each chimp 

and its prey. To clarify the process of updating positions in ChOA, Figure (1) is provided to 

depict how a chimp's position is updated based on the location of other chimps. It is observed 

that the prey's location is approximated by the four of the best chimps including the driver, 

chaser, barrier, and attacker, then the rest of the chimps update their positions through the 

random area surrounding the prey. 

 

 

 

 

 

 

 

 

 

 
  

Figure 1. Position updating in Chimp optimization algorithm. 



3.2.3. Utilization Part 

It refers to the last stage of the hunting process where the chimps attack the prey to 

terminate the hunting event by obtaining the meat. In the mathematical models for formulating 

the attacking part, a is a random number between the range of [-2f, 2f ] and f is a boundary 

range of [0, 2.5] which is declined during the iterations. Whenever the |a| value is in the interval 

of [-1, 1], it indicates that the chimp's next location could be anywhere between its current 

position and the prey's position. To this aim, the inequality |a|<1 obliges the chimps to move 

forward the prey, while inequality |a|>1 obliges the chimps to move backward in search of 

another prey. Figure (2) shows the position updating mechanism of chimps based on the value 

of |a|. 

 

 

 

 

 

 

3.2.4. Exploration Part 

As previously stated, the ChOA may be trapped in local optima due to its updating 

mechanism, which is based on the positions of the driver, chaser, barrier, and attacker chimps 

in the search space. Hence, the algorithm must devote more attention to the exploration part to 

prevent the mentioned issue. The exploration part refers to the searching task for finding the 

prey's location in order to finish the hunting process. In the mathematical models, two key 

parameters can affect the performance of the exploration part. The first parameter is a, which 

represents a random value that can be greater than 1 or less than -1. The inequality |a|<1 means 

that the chimps should converge to the prey, meanwhile |a|>1, shows that the chimps should 

diverge from the prey to find more suitable prey. The second parameter is c, which is a random 

vector between the range of 0 and 2. The inequalities c >1 and c <1 are able to strengthen and 

weaken the effect of prey's position on distance calculation, respectively. Additionally, the c 

parameter requires the generation of random values over the course of iterations, which leads 

to getting rid of the local minima problem. 

3.2.5. Social Motivation Part 

It refers to the sexual incentive of chimps, in which they attempt to acquire meat 

chaotically to exchange it for their social needs such as sex and grooming. This chaotic 

behavior helps them solve two significant issues: slow convergence rate and trap in local 

minima. Currently, many types of chaotic maps exist that can be applied to the ChOA 

algorithm. The details of the chaotic maps employed for the proposed clustering algorithm are 

 

Figure 2. Effect of the |a| value on position updating procces. 

 



explained in the next section. The mathematical model of simultaneous updating position is 

defined in Equation (11). In this model, the possibility of 0.5 is considered for selecting 

between the normal updating position and the chaotic updating mechanism. 

XChimp(t+1) = {
 Xprey(t) − a.d             if μ < 0.5

 
 Chaotic_Value          if μ ≥ 0.5

 (11) 

Where μ is a random value between 0 and 1. Eventually, Algorithm (1) represents the pseudo-

code of ChOA in detail. 

Algorithm 1.  Pseudo-code of ChOA 

1.            Initialize the population Xi (i = 1, 2, …, n)  

2.            Initialize f, a, c, and M 

3.            Calculate the position of each chimp 

4.            Divide chimps randomly into different groups until the condition is satisfied 

6.            Calculate the fitness of each chimp 

7.            XAttacker = the best search agent 

8.            XChaser = the second-best search agent 

9.            XBarrier = the third-best search agent 

10.          XDriver = the fourth-best search agent 

11.                While (t < maximum number of iterations) 

12.                       for each chimp: 

13.                             Extract the chimp's group 

14.                             Use its group strategy to update f, c, and M 

15.                             Use f, c, and M to calculate a and d 

16.                       end for 

17.                              for each search chimp 

18.                                               if (μ < 0.5) 

19.                                                          if (|a| < 1) 

20.                                    Update the position of the current search agent by Equation (4) 

21.                                                              else if (|a| > 1) 

22.                                                                          Select a random search agent 

23.                                                          end if  

24.                                                  else if (μ > 0.5) 

25.                                     Update the position of the current search agent by Equation (11) 

26.                                              end if 

27.                              end for  

28.                  Update f, a, c, and M 

29.                  Update XAttacker, XChaser, XBarrier, and XDriver 

30.                   t = t + 1 

31.                end while 

32.          return XAttacker      



3.3. Generalized Normal Distribution Algorithm 

The Generalized Normal Distribution Algorithm (GNDA) is another recent MOAs, 

proposed by Zhang, Jin, and Mirjalili in 2020 [66]. The framework of the original GNDA is 

divided into four subsections. Section 3.3.1 discusses the motivation of GNDA, Section 3.3.2 

explains the local search strategy, Section 3.3.3 provides the explanation of global search 

strategy, and Section 3.3.4 investigates the screening mechanism of GNDA. 

3.3.1. Inspiration 

The primary source of its inspiration is normal distribution theory, also known as 

Gaussian distribution, which plays an important role in defining natural phenomena. The 

mathematical formulation of the normal distribution is modeled according to the Equation (12). 

f (x)=
1

√2πδ
exp(−

(X − μ)2

2δ2
 (12) 

Where X represents a normal random variable, 𝜇 indicates a probability distribution, and 𝛿 is 

a scale parameter.  

3.3.2. Local Exploitation 

As previously mentioned, the optimization process of GNDA is divided into two parts: 

local search strategy and global search strategy. This section explains local exploitation, which 

is the process of determining optimal solutions in the search space among all individual 

positions. According to the  correlation between the population distribution and normal 

distribution, the generalized normal distribution model is mathematically formulated as 

Equation (13): 

Vi
t = μi + δi × η,          i = 1,2,3, . . . , N (13) 

Where 𝑉𝑖
𝑡  represents the trial vector of the 𝑖𝑡ℎ  solution at 𝑡𝑡ℎ iteration, 𝜇𝑖  indicates the 

generalized mean value of the 𝑖𝑡ℎ solution, 𝛿𝑖 refers to the generalized standard deviation, and 

𝜂 is the penalty factor. In addition, the value of 𝜇𝑖, 𝛿𝑖, and 𝜂 is obtained from Equations (14) 

to (16). 

μi =
1

3
(Xi

t + XBest
t +M) (14) 

δi = √
1

3
[(Xi

t − μ)2 + (XBest
t − μ)2 + (M − μ)2] (15) 

η = {
√−log(λ1) × cos(2πλ2),                    if A ≤ B

√−log(λ1) × cos(2πλ2 + π),      Otherwise
 (16) 



Where A , B , 𝜆1 , and 𝜆2  reperesnt a random number between the range of [0, 1 ] , 𝑋𝐵𝑒𝑠𝑡
𝑡  

indicates the best position, and M is the mean value of the current population. Moreover, M is 

obtained from Equation (17). 

M =
∑ xi

tN
i=1

N
 (17) 

3.3.3. Global Exploration 

This section describes global exploration, which is the process of exploring the search 

space to discover promising areas. Therefore, the global exploration in GNDA can be 

mathematically formulated as Equation (18): 

Vi
t = Xi

t + β × (|λ3| × V1) + (1 − β) × (|λ4| × V2) (18) 

Where λ3  and λ4  represent the random numbers, which are controlled through the normal 

distribution. β is another random number between the range of [0, 1 ], and V1 and V2 are trial 

vectors. Furthermore, V1 and 𝑉2 are calculated according to the Equations (19) and (20).  

V1 = {
Xi
t − XP1

t ,       if f(Xi
t) < f(XP1

t )

XP1
t − Xi

t,             Otherwise     
 (19) 

V2 = {
XP2
t − XP3

t ,       if f(XP2
t ) < f(XP3

t )

XP3
t − XP2

t ,             Otherwise      
 (20) 

Where P1, P2, and P3 represent the random integers in the interval of [0, N], which should be 

P1 ≠ P2 ≠ P3 ≠ i.  

3.3.4. Screening Mechanism of GNDA 

 GNDA, like other optimization algorithms, starts by generating a random population 

by using Equation (21). 

Xi,j
t = Lj + (Uj − Lj) × λ5,     i = 1,2,3, . . . , N,    j = 1,2,3, . . . , D (21) 

Where Lj and Uj represent the lower and upper bound of jthvariables, respectively. Besides, 𝐷 

shows the number of decision variables and λ5 is a random number between 0 and 1. Finally, 

Equation (22) is used to model the screening process of GNDA, and Algorithm (2) represents 

the pseudo-code of GNDA. 

Xi
t+1 = {

Vi
t,        if f(Vi

t) < f(Xi
t)

Xi
t,            Otherwise    

 (22) 

 



Algorithm 2.  Pseudo-code of GNDA 

1.            Initialize the population by Equation (21) 

2.                While (t < maximum number of iterations) 

3.                       Calculate the fitness of each population 

4.                       for (𝐢 = 𝟏: 𝐍) 

5.                             Select a random number 𝜶 between the range of [0, 1 ]  

6.                                 if (𝛂 > 0.5) → Local Exploitation   

7.                                 Select 𝐗𝐁𝐞𝐬𝐭
𝐭  and calculate 𝐌 by Equation (17) 

8.                                 Calculate 𝛍, 𝛅, and 𝛈 by Equations (14) to (16), respectively    

9.                                 Update the solutions by Equations (13) and (22) 

10.                                      else → Global Exploration   

11.                                      Update the solutions by Equations (18), (19), (20), and (22) 

12.                               end if            

13.                     end for 

30.                  t = t + 1 

31.              end while 

32.              return 𝑿𝑩𝒆𝒔𝒕
       

3.4. Opposition‑Based Learning Mechanism 

Opposition‑Based Learning (OBL) is a straightforward search strategy, introduced by 

Tizhoos in 2005 [67]. It has been employed in MOAs to enhance the performance of original 

algorithms when searching for the optimal solution. Morevoer, it is a highly effective technique 

to avoid the local minima dilemma and accelerate the convergence rate. According to the OBL 

strategy, the fitness value of each solution and its corresponding opposite solution is calculated, 

then the best one is selected for the next phase. The OBL concept can be mathematically 

formulated as follow: 

First, consider R as a real solution between the range of [Lb, Ub], where Lb and Ub are 

the lower and upper bounds of the search space. After that, the opposite solution of R is 

obtained using Equation (23).  

ROBL = Lb + Ub − R  
  (23) 

Where ROBL  represent the oppositional solution. For the N dimensional search spaces, the 

previous equation can be extended to:   

ROBLi = Lbi + Ubi − Ri 
 ,     i = 1,2,3, . . . . , N (24) 

Where ROBLi = [ROBL1 + ROBL2 + ROBL3+. . .+ROBLN]  and Ri = [R1 + R2 + R3+. . . +RN] 

refer to the real solution and the oppositional solution in a N dimensional search space. Lastly, 

the algorithm updates the current optimal solution Ri with the oppositional solution ROBLi if 

f(ROBL) > f(R). 



4. Proposed Clustering Approach  

In this section, a novel hybrid method based on Chimp Optimization Algorithm (ChOA) 

and Generalized Normal Distribution Algorithm (GNDA) with an Opposition‑Based Learning 

(OBL) search strategy, entitled ChOAGNDA, is suggested for solving data clustering 

problems. The proposed approach is categorized into two subsections. Section 4.1 outlines the 

two proposed modifications into the ChOA algorithm. Following that, the improved version of 

ChOA is combined with GNDA and OBL techniques to form a new hybrid algorithm. Details 

of the proposed approach has been presented in Section 4.2.   

4.1. ChOA Modifications 

The proposed modifications into the ChOA algorithm are divided to three parts. The 

first part discusses two versions of the ChOA clustering technique, while the second part 

describes the chaotic strategy in ChOA. The final section goes into the details of data clustering 

based on the ChOA algorithm. 

4.1.1. Versioning Scheme 

As already mentioned, various types of chimps have different behaviors in their local 

and global searches. Therefore, each independent group employs its own strategy to update f. 

There are a variety of continuous functions that can be used to update f. The only characteristic 

of these functions is that the value of f must be declined after each iteration. Among all the 

available continuous functions, some of the most suitable ones are selected to propose two 

versions of clustering algorithms entitled ChOA(I) and ChOA(II). Table (2) demonstrates the 

dynamic coefficients of the f vector, where t and T are the number of current iteration and the 

maximum number of iterations, respectively. Further, the mathematical models of the proposed 

dynamic coefficients are illustrated in Figure (3). 

Table 2. The dynamic coefficient of f vector. 

Groups ChOA(I) ChOA(II) 

Group 1 1.95− 2
t
1

4⁄

T
1

3⁄
 2.5− 2

log( t)

log (T)
 

Group 2 1.95− 2
t
1
3⁄

T
1
4⁄
 −2.2

t3

T3
 + 2.5 

Group 3 (−3
t
1

3⁄

T
1

3⁄
)  + 1.5 2.2+ 2exp[ − (4 t

T⁄ )
2
] 

Group 4 (−2
t3

T3
)  + 1.5 2.5+2( t

T⁄ )
2
− 2(2 t

T⁄ ) 

There are some potential advantages behind the dynamic coefficients, which help to enhance 

the performance of the proposed clustering algorithms. These points can be summarized as 

follows: 



• Independent groups of chimps include Exponential and Logarithmic functions (non-

linear functions) which can efficiently handle the complex clustering tasks. 

• Each group of chimps has different abilities to discover the search space for finding the 

best cluster centers. 

• Dynamic coefficient helps the clustering algorithm to achieve an appropriate balance 

between the local and global search. 

 

 

 

 

 

 

 

 

 

 

4.1.2. Chaotic Scheme 

The chaotic value (M) is another significant parameter of ChOA that can be used to 

increase the performance of the proposed clustering algorithm. It should be noted that the 

remarkable improvement in the proposed algorithm has not been made only by grouping 

chimps into independent groups but also by using the new chaotic map in the final stage. In 

this paper, seven well-known chaotic maps [68] are employed to simulate the random behavior 

of the chimps at the last stage of the hunting process. The initial value is 0.7 for all the chaotic 

maps. It should be noted that the initial value of the chaotic maps can be any number in the 

interval of [0, 1]. Table (3) represents the details of the selected chaotic maps. 

Generally, the following points can be considered to understand how chaotic maps 

affect the performance of ChOA clustering algorithm: 

• Chaotic maps could promote the exploration and exploitation phase. 

• Chaotic maps could be beneficial in solving the slow convergence rate issue. 

• Chaotic maps help ChOA to escape from a local optima problem. 

• Chaotic maps are effective in finding the best possible cluster center. 

• Chaotic maps could be effective in achieving the minimum SICD result. 

• Chaotic maps could decrease the error rate value. 

• Chaotic maps do not need any additional computational cost for the proposed algorithm. 

 

  

(a) (b) 

Figure 3. Mathematical models of the proposed dynamic coefficients for (a) ChOA(I) and (b) ChOA(II). 



Table 3. Details of chaotic maps. 

Name Chaotic map Range 

Circle  Xi+1 = mod (Xi+b− (
a

2π
) sin(2πXk) ,1),   a = 0.5 and b = 0.2 (0, 1) 

Gauss/mouse Xi+1 = {

     1                       Xi = 0 
1

mod(Xi,1)
           otherwise

 (0, 1) 

Logistic  Xi+1 = aXi(1 −Xi),   a = 4 (0, 1) 

Sine  Xi+1 = 
a

4
sin(πXi),   a = 4 (0, 1) 

Singer  Xi+1 = μ(7.86Xi − 23.31Xi
2+28.75Xi

3 − 13.302875Xi
4),   μ = 1.07 (0, 1) 

Tent  Xi+1={
      

Xi
0.7

                Xi<0.7       

10

3
(1‑Xi)         Xi>0.7       

 (0, 1) 

Piecewise 𝑋𝑖+1 =

{
 
 
 

 
 
 

𝑋𝑖
𝑃
                       0 ≤ 𝑋𝑖 < 𝑃     

𝑋𝑖 − 𝑃

0.5 − 𝑃
                 𝑃 ≤ 𝑋𝑖 < 0.5        

1 − 𝑃 − 𝑋𝑖
0.5 − 𝑃

            0.5 ≤ 𝑋𝑖 < 1 − 𝑃      

1 − 𝑋𝑖
𝑃

                1 − 𝑃 ≤ 𝑋𝑖 < 1     

𝑃 = 0.4 (0, 1) 

In brief, the unconditional (chaotic) behavior in the final stage helps ChOA to improve 

the performance of the proposed clustering algorithm. Chaotic maps have very unique shapes, 

where they provide a large and extremely variable amplitude in the early stages, while their 

amplitude and variableness decline dramatically in the following stages. These special shapes 

of chaotic maps make chimps behave both very broadly in the early stages and narrowly in the 

final stages. In general, chaotic maps provide a smooth transition between global and local 

search capability. These maps help the proposed algorithm to escape from a local optimum 

problem due to the stochastic movement of chimps in the final stages. Accordingly, chimps are 

more likely to discover promising areas of search space and exploit the best possible cluster 

center. These are the primary reasons for the superior performance of ChOA in solving data 

clustering problems. 

4.1.3. Description of ChOA Clustering Algorithm 

The main aim of the ChOA algorithm is to solve data clustering problems while 

mitigating the aforementioned drawbacks of the other approaches. in brief, the task of the 

proposed algorithm is to make an efficient partitioning of N data objects into K prespecified 

number of clusters. Data clustering based on SIAs consists of two major parts: defining an 

objective function and encoding candidate solutions (individuals). The objective function of 

the proposed clustering algorithm is fully discussed in the previous section. On the other hand, 



transforming the ChOA into a clustering-based algorithm requires the encoding of candidate 

solutions. For this purpose, Chimps are assigned to represent the clustering solutions, where 

each solution refers to the sets of cluster centroids. Attacker chimps are the best set of cluster 

centers that has the highest objective value, while driver chimps are the worst set of cluster 

centers with the lowest objective value. Lastly, the algorithm's objective is to improve the 

performance of the attacker chimps during each iteration. Figure (4) demonstrates a candidate 

solution with K clusters and d dimensions. Finally, Algorithm (3) describes the key steps of 

ChOA clustering algorithm in detail, and Figure (5) illustrates the flow chart of the proposed 

method. 

 

 

 

 

 

 

 

In brief, the ChOA clustering algorithm starts by creating a random population of 

chimps. Afterward, chimps are randomly categorized into four independent groups: attacker, 

barrier, chaser, and driver. Each independent group employs its own strategy to update its f 

coefficients. Then, the position and fitness value of each chimp (candidate solution) are 

calculated for the next stage. During the iteration process, each group of chimps estimates the 

prey's location and then updates their positions according to the potential location of prey. In 

the evaluation procedure, the previous best fitness value generated by ChOA (best solution) is 

compared to the new population. The chimp with the highest fitness value is taken to be 

considered as the best solution (cluster center). Similarly, the coefficient parameters (f, c, and 

M) are updated before being used to calculate a and d. The inequality |a|<1 obliges the chimps 

to move toward the prey, while inequality |a|>1 obliges the chimps to move backward the prey. 

Iteratively, the positions and fitness values of the new solutions are updated until the 

termination condition is reached. Eventually, the ChOA clustering algorithm selects XAttacker as 

the best set of cluster centers and assigns each data object to the nearest cluster center. 

4.2. Proposed ChOAGNDA Algorithm 

In this section, we described the key characteristics of the proposed hybrid approach, 

called ChOAGNDA, which is a selective opposition algorithm based on ChOA and GNDA 

algorithms. Although the proposed ChOA clustering algorithm is capable of dealing with 

various types of clustering problems, it still suffers from the following deficiencies: (i) slow 

convergence rate; (ii) getting trapped in local optima; (iii) failing to retain an appropriate 

balance between exploration and exploitation phases; and (iv) not always finding the best 

solution. To this aim, the best-obtained version of ChOA, entitled ChOA(II), is combined with 

GNDA algorithm and OBL technique to develop an efficient clustering approach. Figure (6) 

shows the overall framework of the proposed ChOAGNDA algorithm. 

             

 

C1,1 C1,2 …. C1,d C2,1 C2,2 …. C2,d ………. CK,1 CK,2 …. CK,d 

Centroids of 1st cluster Centroids of 2nd cluster Centroids of Kth cluster 

Figure 4. Encoding of a K×d candidate solution. 



Algorithm 3.  The procedure of ChOA clustering algorithm 

1.            Define objective function: 

2.                •   Fobj: Sum of the Intra-Cluster Distances (SICD)    

3.            Set the initial parameters: 

4.                •   K: The number of clusters 

5.                •   Itermax: Maximum number of iterations    

6.                •   P: The size of population     

7.                •   I: Input dataset 

8.            Initialize algorithm's parameters: f, a, c, and M 

9.            Initialize the position of chimps 

10.          Divide chimps randomly into different groups 

11.          Calculate the fitness of each chimp: FAttacker, FChaser, FBarrier, and FDriver 

12.          Calculate the position of each chimp: XAttacker, XChaser, XBarrier, and XDriver 

13.          Arrange the chimp's positions according to their fitness value: 

14.              •   XAttacker: The best set of cluster centers 

15.              •   XChaser: The second-best set of cluster centers 

16.              •   XBarrier: The third-best set of cluster centers 

17.              •   XDriver: The fourth-best set of cluster centers 

18.              While (Iter < Itermax) 

19.              Update population by new chimp: 

20.              Calculate the fitness value of updated chimp (Fnew) 

21.              Update Attackers, Barrier, Chaser, and Driver: 

22.                   •   Update Attacker: If Fnew < FAttacker   

23.                   •   Update Chaser: If Fnew > FAttacker && Fnew < FChaser   

24.                   •   Update Barrier: If Fnew > FAttacker && Fnew > FChaser && Fnew < FBarrier   

25.                   •   Update Driver: If Fnew > FAttacker && Fnew > FChaser && Fnew > FBarrier && Fnew > FDriver  

26.                   for each group of chimps 

27.                       Use its group strategy to update f, c, and M 

28.                       Use f, c, and M to calculate a and d 

29.                   end for 

30.                          for each search chimp 

31.                                if (|a| < 1) 

32.                               Calculate the position of updated chimps by Equation (4) 

33.                               else if (|a| > 1) 

34.                               Select a random search agent 

35.                               end if 

36.                          end for 

37.                   Update f, a, c, and M 

38.                   Update XAttacker, XChaser, XBarrier, and XDriver 

39.                   Iter = Iter + 1 

40.                end while 

41.            return XAttacker as the best set of cluster centers 

42.          Set XAttacker as the best set of cluster centers 

43.          Assign each data object to the cluster that has the closest cluster center 



 

Figure 5. Flow chart of the proposed ChOA for data clustering. 



 

Figure 6. Flow chart of the proposed ChOAGNDA for data clustering. 



Generally, the following steps are the main skeleton of the proposed ChOAGNDA 

algorithm for data clustering tasks. At first, the algorithm generates a random population as 

Equation (25), then calculates the opposite population as Equation (26), and finally sorts the 

population matrix as Equation (27). 

Population= [

R1,1 ⋯ R1,N
⋮ ⋱ ⋮
RP
2,1

⋯ RP
2,N

]

P
2×N

  (25) 

Opposite Population= [

ROBL1,1 ⋯ ROBL1,N
⋮ ⋱ ⋮

ROBLP
2,1

⋯ ROBLP
2,N

]

P
2×N

  (26) 

Position Matrix= [

X1,1 ⋯ X1,N
⋮ ⋱ ⋮
XP,1 ⋯ XP,N

]

P×N

  (27) 

Where P represents the number of population, N shows the dimension of each population, and 

X is the position of each population. Briefly, the ChOAGNDA clustering algorithm consists of 

five main phases. In the first phase, the proposed algorithm starts with a random population of 

chimps. To this aim, not only the initial population of search agents is generated using Equation 

(25) but also the opposite population is produced using Equation (26) according to the OBL 

technique. Following that, the fitness of each population is calculated, and the population with 

the highest fitness value is selected for the next phase. In the second phase, the ChOA algorithm 

is employed to discover the search space for finding the best possible solution. Accordingly, it 

returns the best solution as XAttacker and replaces the solutions with the lowest fitness value with 

their corresponding opposite solutions. Next, the GNDA algorithm begins the third phase with 

the solution produced by ChOA during the previous phase. Then, it tries to optimize the search 

space and returns XBest as the best optimal solution. In the fourth phase, XAttacker and XBest are 

compared, and the best one with the lowest fitness value is chosen for the following process. 

After that, the algorithm calculates the opposite solution of XAttacker or XBest to ensure that the 

optimal solution is achieved. Iteratively, the positions and fitness values of the new solutions 

are updated until the termination condition is reached. Lastly, the ChOAGNDA selects the best 

solution as the best set of cluster centers and assigns each object to the nearest cluster center. 

5. Experimental Analysis and Discussion 

This section investigates the performance of the proposed approaches in solving data 

clustering problems by applying them to the eight standard benchmark datasets. The results are 

compared against ten well-known meta-heuristic algorithms and five recently proposed 

clustering techniques. To this end, the entire algorithms are implemented using MATLAB 

2018b, and all experiments are carried out with an Intel Core i5 processor, 2.4 GHz CPU, and 

6 GB of RAM. The following subsections elaborate a full explanation of parameter tuning, 

dataset description, evaluation criteria, experimental results, and statistical analysis. 



5.1. Parameters Tuning 

Optimization algorithms are notably sensitive to the value of their control parameters. 

Generally, these parameters have a significant effect on the algorithm's ability to find optimal 

solutions. For this reason, tuning the parameters of metaheuristic algorithms is a crucial task 

that should be performed appropriately. In this paper, the proposed methods are compared with 

several state-of-art algorithms including GA [23], PSO [27], MVO [60], GWO [61], ABC [69], 

ACO [70], WOA [71], and GNDA [66]. Table (4) represents the details of the optimal 

parameters for the mentioned algorithms.  

             Table 4. Parameters setting of the proposed approach and other existing algorithms. 

Algorithm Abbreviation Parameter Value 

ChOA r1, r2 

M 

f 

P 

Random numbers 

Chaotic value 

Coefficient vector 

No. of chimps 

[0, 1] 

[0, 1] 

Table (2) 

60 

GA Pc 

Pm 

Mu 

nPop 

Crossover probability rate 

Mutation probability rate 

Mutation rate 

Population size 

0.8 

0.3 

0.02 

60 

PSO r1, r2 

C1 

C2 

W 

P 

Random number 

Cognitive constant 

Social constant 

Local constant 

No. of particles 

[0, 1] 

2 

2 

0.7 

60 

ABC M 

a 

α 

P 

Modification rate 

Acceleration coefficient 

Step size 

No. of bees 

0.4 

1 

0.0001 

60 

ACO 𝛼 

𝛽 

Rho 

Pheromone weight 

Heuristic Weight 

Evaporation rate 

1 

1 

0.05 

GNDA A, B, λ1, λ2 

𝛽 

P 

Random numbers 

Adjust parameter 

Population size 

[0, 1] 

5 

60 

WOA A 

C 

P 

Coefficient vector 

Coefficient vector 

No. of whales 

[-2, 2] 

[0, 2] 

50 

GWO A 

C 

P 

Coefficient vector 

Coefficient vector 

No. of wolves 

[-2, 2] 

[0, 2] 

60 

MVO r1, r2, 𝑟3 

Wmin 

Wmax 

P 

Random numbers 

Minimum wormhole 

Maximum wormhole 

No. of search agents 

[0, 2] 

0.2 

1 

60 



These experimental setups have been chosen according to the recommendations of the 

respective authors from previous studies. Additionally, each algorithm contains some common 

parameters such as population size, the number of iterations, and the number of independent 

runs. We set the same value for all the common parameters to ensure fair comparisons with 

other algorithms. This study considers the maximum number of 900 iterations for the UCI 

datasets and the maximum number of 200 iterations for the shape datasets. It should be noted 

that each experiment is executed 50 times independently to obtain more reliable and confident 

results. 

5.2. Dataset Description 

In this paper, ten benchmark datasets including five real-world datasets from the UCI 

data repository and three shape datasets from the previous literature [72–74], have been 

employed to assess the performance of the algorithms. The purpose of considering shape 

datasets is to evaluate the capability of the algorithms in solving complex shapes of clusters. 

The characteristics of these datasets are diverse in terms of the number of clusters (classes), 

features, and data samples. A full explanation about each UCI dataset is provided as follows: 

• Iris dataset: this dataset, which was created by Fisher in 1936, is one of the most widely 

used datasets in data mining tasks such as classification, prediction, and clustering. Iris 

dataset includes four attributes: length of sepals, width of sepals, length of petals, and 

width of petals, as well as three classes namely Virginica, Versicolor, and Setosa, each 

with 50 samples. 
 

• Wine dataset: this dataset illustrates the quality of three kinds of wines derived from 

various cultivars and grown in a particular region of Italy. The chemical examinations 

of the dataset are conducted by Forina et al. (1991). The Wine dataset contains 178 

instances, 13 numerical attributes, and three classes, each with 59, 71, and 48 samples. 
 

• Cancer dataset: Wisconsin Breast Cancer dataset was periodically collected by 

Wolberg from his clinical cases at the University of Wisconsin clinics in Madison, 

United States of America (USA). It represents whether the patients suffer from serious 

breast cancer or not. This dataset consists of 683 instances, nine attributes, and two 

classes: malignant and benign, with 239 and 444 samples, respectively. 
 

• Blood dataset: this dataset was collected from 748 donors at the Blood Donor Center 

in Taiwan. It includes 748 data samples, where each sample is represented by four 

attributes entitled Frequency, Recency, Monetary, and Time. Moreover, the Blood 

dataset is a type of binary dataset in which the instances are divided into two classes: 

whether a donor donated blood in March 2007 or not. 
 

• CMC dataset: Contraceptive Method Choice (CMC) dataset was extracted from the 

Indonesia Demographic and Health Survey. It contains information about the 

contraceptive method decisions of pregnant women. This dataset consists of 1473 data 

samples where each sample is expressed by nine attributes. CMC classes are divided 

into three classes: not use method, short-term method, long-term method with 629, 510, 

and 334 instances, respectively. 



Table (5) describes general information about all the datasets discussed above, including the 

number of instances, features, and classes. 

Table 5. Summary of five UCI datasets and three shape datasets. 

Category Dataset No. of classes No. of features No. of instances Size of classes 

UCI datasets Iris 3 4 150 50, 50, 50 

 Wine 3 13 178 59, 71, 48 

 Cancer 2 9 683 239, 444 

 Blood 2 4 748 178, 570 

 CMC 3 9 1473 629, 510, 334 

Shape datasets Path-based 3 2 300 110, 97, 93  

 Flame 2 2 240 88, 152 

 Aggregation 7 2 788 170, 34, 45, 102, 

130, 273, 34 

5.3. Evaluation Criteria 

In this study, we evaluate the performance of clustering algorithms using the following 

metrics: Sum of Intra-Cluster Distances (SICD), convergence rate, and Error Rate (ER). The 

primary measurement is SICD, and it is calculated using Equation (2) as described in Section 

3. Note that the minimum value of SICD represents a better quality of data clustering. The 

convergence comparison is the second measurement, where the clustering algorithms are 

compared in terms of their convergence speed to the optimal solution. The last measurement is 

ER which specifies the percentage of misclassified data objects, as formulated in Equation (28): 

ER = 
Number of misclassified data objects

Total number of objects
 × 100 (28) 

5.4. Results and Discussion 

Experimental results are categorized into four major stages: 

Stage 1: We investigate the impact of dynamic coefficients (f) and chaotic maps (M) on the 

effectiveness of the proposed clustering algorithm. The results related to ChOA(I) [33] and the 

proposed ChOA(II) are assessed based on the SICD results and convergence behaviors.  

Stage 2: According to the previous section, the best-obtained version of ChOA is selected for 

the proposed hybrid algorithm and the resluts are compared against eight well-known 

clustering algorithms in terms of the SICD value, convergence rate, and ER value.  

Stage 3: Then, a comparative analysis of the ChOAGNDA and other clustering algorithms 

from the past literature is performed according to their SICD and ER results. 

Stage 4: Lastly, to emphasize the capability of the proposed algorithm, the ChOAGNDA along 

with eight existing clustering approaches are statistically analyzed through the obtained SICD 

and ER results. 



The SICD and ER performances of all the previous comparisons are reported in terms 

of the following criteria: the best, the mean, the worst, and the Standard Deviation (STD) value 

of the solutions. Note that the results are obtained from 50 independent runs. 

5.4.1. Assessment of the influence of dynamic coefficients and chaotic maps 

In this section, we perform several experiments to determine the performance of two 

ChOA versions through their chaotic maps. To this end, the impact of dynamic coefficients (f) 

and chaotic maps (M) are examined on the efficiency of ChOA(I) and ChOA(II) in terms of 

their objective values (SICDs) and convergence rates. For all the following tables, the concepts 

of best, mean, worst, and STD are considered to show the ability of proposed algorithms in 

solving data clustering problems. Note that the bracketed numbers in the following tables show 

the ranks obtained by each chaotic map, which ranged from 1 (best result) to 7 (worst result). 

Table (6) illustrates the SICD results of ChOA(I) according to seven chaotic maps on eight 

datasets. It can be observed that the ChOA(I) through its particular chaotic map (Gauss), 

achieved the best SICD results in terms of the best, mean, worst, and STD in five out of eight 

datasets. Furthermore, to make a better comparison, we provide Figure (6) to analyze the 

average results of SICD obtained by ChOA(I). The lower average value of SICD indicates the 

better performance of the proposed algorithm for solving clustering problems. According to 

Figure (6), the ChOA(I) based on the Gauss map provided the best results for Iris, Cancer, 

Blood, CMC, and Aggregation datasets, whereas the Singer, Piecewise, and Circle maps 

obtained the best results just for one dataset including Wine, Path-Based, and Flame datasets, 

respectively. On the other hand, the same observation from Table (7) shows the superior results 

of ChOA(II) based on the Gauss map regarding the best, mean, worst, and STD in seven out 

of eight datasets. Figure (7) represents the average results of SICD criteria for ChOA(II). It is 

evident that the Gauss map has produced better results among all the proposed maps for all 

datasets except one dataset (namely: Iris). For the Iris dataset, the lowest SICD value is 

obtained by the Sine map. 

By inspecting the numerical results in Tables (6) and (7), we can conclude that the 

ChOA(II) has attained the best SICD results in comparison with ChOA(I). This significant 

performance is due to two key reasons: (a) the mechanism of updating strategy and (b) the local 

search capability. To put it another way, independent groups of ChOA(II) are more likely than 

ChOA(I) to detect the optimal solution at the early iterations, which leads to better behavior in 

local search more than global search. In the case of the chaotic map, the superior results of 

ChOA(II) are achieved according to the Gauss map. The particular form of the Gauss map 

enables chimps to efficiently discover the search space in both the early and late phases of the 

hunting process. More precisely, the Gauss map has several advantages such as increasing the 

exploration performance in the initial stages, improving the exploitation capability in the final 

stages, and decreasing the possibility of trapping in local optima. Figure (8) demonstrates the 

convergence analysis of ChOA(I) and ChOA(II) based on their particular chaotic variant 

(namely: Gauss) on eight datasets. As we can observe from this graph, ChOA(II) provides a 

better convergence rate than ChOA(I) for all the datasets. It is worth mentioning that the 

ChOA(II) has not only started with the smallest objective value at the beginning steps of the 

optimization process but also converged towards the optimum solution faster than ChOA(I).  



 Eventually, it can be claimed that the ChOA(II) based on the Gauss map proves its 

significant performance in terms of various criteria. To this end, the combination of ChOA(II) 

and Gauss map has been chosen as the best-obtained model for the following experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. SICD results of the ChOA(I) based on seven chaotic maps on eight datasets after 50 runs. 

Dataset Measure Circle Gauss Sine Singer Tent Logistic Piecewise 

Iris Best 

Mean 

Worst 

STD 

Rank 

97.54851 

99.53009 

102.9539 

2.396627 

(7) 

96.85061 

97.83918 

99.07350 

0.740934 

(1) 

97.47174 

99.16945 

101.1746 

1.513020 

(6) 

97.09601 

98.36368 

99.52520 

0.994551 

(3) 

96.95510 

98.54192 

99.11267 

0.889109 

(4) 

97.50693 

99.07854 

99.78421 

0.938750 

(5) 

97.55666 

98.20342 

99.11149 

0.815624 

(2) 

Wine Best 

Mean 

Worst 

STD 

Rank 

16421.780 

16687.438 

16968.950 

245.22460 

(6) 

16344.551 

16457.708 

16555.211 

86.247403 

(2) 

16390.535 

16582.723 

16645.152 

128.36470 

(5) 

16415.814 

16447.419 

16481.488 

26.169251 

(1) 

16389.271 

16470.143 

16622.753 

111.38096 

(3) 

16386.011 

16478.350 

16555.304 

76.039951 

(4) 

16426.570 

16746.898 

16999.464 

293.92258 

(7) 

Cancer Best 

Mean 

Worst 

STD 

Rank 

2964.3887 

2964.3915 

2964.3945 

0.0024953 

(2) 

2964.3881 

2964.3909 

2964.3953 

0.0032766 

(1) 

2964.3890 

2964.3964 

2964.3944 

0.0059039 

(7) 

2964.3888 

2964.3922 

2964.3988 

0.0041324 

(3) 

2964.3890 

2964.3926 

2964.3971 

0.0034895 

(4) 

2964.3893 

2964.3945 

2964.4058 

0.0076441 

(5) 

2964.3894 

2964.3960 

2964.4048 

0.0061371 

(6) 

Blood Best 

Mean 

Worst 

STD 

Rank 

407745.95 

407793.24 

407810.81 

44.983510 

(7) 

407731.83 

407748.72 

407779.58 

12.638360 

(1) 

407755.97 

407768.70 

407785.08 

72.321510 

(4) 

407745.72 

407758.77 

407909.61 

16.382892 

(2) 

407742.32 

407764.09 

407786.01 

17.897610 

(3) 

407741.05 

407770.09 

407801.53 

29.126569 

(5) 

407739.45 

407776.26 

407800.07 

29.015712 

(6) 

CMC Best 

Mean 

Worst 

STD 

Rank 

5653.6428 

6143.1224 

7034.1194 

695.48406 

(7) 

5552.4410 

5638.5444 

5688.5781 

49.062837 

(1) 

5611.1899 

5746.4596 

6008.8822 

184.88288 

(4) 

5582.7723 

5933.8117 

70118.791 

610.24267 

(5) 

5590.3029 

5710.7537 

5904.9778 

126.13409 

(3) 

5586.0711 

5677.9923 

5798.1505 

110.95835 

(2) 

5659.9392 

5951.3896 

7025.8425 

602.88203 

(6) 

Path-Based Best 

Mean 

Worst 

STD 

Rank 

1425.0005 

1426.6204 

1428.6208 

1.3523846 

(5) 

1425.0601 

1426.3430 

1429.4342 

1.7686005 

(2) 

1425.0836 

1426.5705 

1431.2255 

2.6098421 

(4) 

1427.2101 

1428.4715 

1429.7494 

1.1179014 

(7) 

1425.5378 

1426.4387 

1428.0156 

0.9928647 

(3) 

1424.8671 

1427.6385 

1432.5778 

3.0010539 

(6) 

1424.9418 

1425.9667 

1427.8864 

1.1662687 

(1) 

Flame Best 

Mean 

Worst 

STD 

Rank 

769.97760 

769.98615 

770.00511 

0.0129142 

(1) 

769.97580 

769.98872 

769.99781 

0.0096717 

(3) 

769.96840 

769.98837 

770.01301 

0.0190561 

(2) 

769.97481 

769.99145 

770.01881 

0.0205182 

(4) 

769.97054 

770.01640 

770.10948 

0.0630889 

(7) 

769.98391 

770.00780 

770.02351 

0.0184114 

(6) 

769.97210 

769.99560 

770.01031 

0.0170493 

(5) 

Aggregation Best 

Mean 

Worst 

STD 

Rank 

2934.2637 

3030.6645 

3137.3475 

74.159450 

(4) 

2816.6471 

2994.6958 

3040.1369 

34.146433 

(1) 

2934.6703 

3063.6589 

3139.0926 

84.239170 

(7) 

3009.1905 

3063.1798 

3120.5615 

47.461059 

(6) 

2854.2696 

3030.6644 

3114.9775 

106.59080 

(3) 

2958.3298 

2997.4797 

3113.9597 

72.777519 

(2) 

2996.2643 

3038.0770 

3090.5396 

34.548081 

(5) 

Average Ranking 4.875 1.5 4.875 3.875 3.75 4.375 4.75 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The average values of SICD for the ChOA(I) based on seven chaotic maps on eight datasets.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. SICD results of the ChOA(II) based on seven chaotic maps on eight datasets after 50 runs. 

Dataset Measure Circle Gauss Sine Singer Tent Logistic Piecewise 

Iris Best 

Mean 

Worst 

STD 

Rank 

96.54991 

96.62142 

96.70700 

0.059821 

(7) 

96.54991 

96.58314 

96.60721 

0.020715 

(3) 

96.56020 

96.57033 

96.58000 

0.009155 

(1) 

96.56432 

96.57493 

96.59601 

0.014363 

(2) 

96.57611 

96.58900 

96.60658 

0.011903 

(4) 

96.58743 

96.60744 

96.62557 

0.017246 

(5) 

96.60101 

96.60843 

96.63377 

0.014279 

(6) 

Wine Best 

Mean 

Worst 

STD 

Rank 

16308.784 

16310.383 

16338.189 

12.822433 

(2) 

16304.192 

16307.714 

16314.820 

2.9196171 

(1) 

16307.092 

16313.324 

16318.662 

5.9706711 

(4) 

16316.910 

16325.463 

16334.331 

6.3406451 

(7) 

16307.684 

16311.013 

16320.509 

2.9996501 

(3) 

16305.422 

16314.029 

16322.943 

7.2810584 

(6) 

16307.510 

16313.913 

16331.174 

9.7545801 

(5) 

Cancer Best 

Mean 

Worst 

STD 

Rank 

2964.3888 

2964.3949 

2964.4001 

0.0041823 

(7) 

2964.3861 

2964.3868 

2964.3902 

0.0015770 

(1) 

2964.3886 

2964.3911 

2964.3936 

0.0021377 

(3) 

2964.3885 

2964.3923 

2964.3968 

0.0032692 

(5) 

2964.3885 

2964.3935 

2964.4035 

0.0059823 

(6) 

2964.3888 

2964.3914 

2964.3945 

0.0020440 

(4) 

2964.3883 

2964.3909 

2964.3971 

0.0036251 

(2) 

Blood Best 

Mean 

Worst 

STD 

Rank 

407837.23 

407718.64 

408514.43 

0.0005431 

(7) 

407714.23 

407714.23 

407714.23 

0.0000001 

(1) 

407715.00 

407715.78 

407716.37 

0.7002719 

(4) 

407715.14 

407715.60 

407715.86 

0.3309083 

(3) 

407715.65 

407715.93 

407715.77 

0.2584705 

(5) 

407715.38 

407716.52 

407717.50 

0.8914174 

(6) 

407714.83 

407715.21 

407716.67 

0.8373989 

(2) 

CMC Best 

Mean 

Worst 

STD 

Rank 

5537.1145 

5541.5880 

5545.8701 

3.7953006 

(6) 

5534.0589 

5536.0522 

5539.8698 

2.2840939 

(1) 

5534.9423 

5541.0747 

5550.3954 

6.5772807 

(5) 

5535.8251 

5538.7952 

5544.5521 

3.4396789 

(2) 

5537.2617 

5539.2564 

5542.1799 

3.9414996 

(3) 

5538.0998 

5542.3312 

5544.8580 

2.5477437 

(7) 

5535.2241 

5539.8356 

5544.4929 

3.9379777 

(4) 

Path-Based Best 

Mean 

Worst 

STD 

Rank 

1424.9235 

1426.2359 

1427.1778 

0.9629935 

(4) 

1424.8284 

1425.9166 

1426.7908 

0.7976612 

(1) 

1425.3479 

1425.9238 

1426.8658 

0.8043567 

(2) 

1425.1316 

1427.2298 

1431.0888 

2.3106192 

(6) 

1425.2814 

1426.0102 

1426.8002 

0.8026767 

(3) 

1424.9862 

1426.6745 

1429.9413 

1.6964070 

(5) 

1425.1035 

1427.6521 

1429.8431 

1.8613868 

(7) 

Flame Best 

Mean 

Worst 

STD 

Rank 

769.97171 

769.99194 

770.01930 

0.0190969 

(6) 

769.96651 

769.96870 

769.96961 

0.0018207 

(1) 

769.99181 

769.99349 

770.01834 

0.0164117 

(7) 

769.98871 

769.99045 

770.01680 

0.0179179 

(5) 

769.97755 

769.98175 

770.06581 

0.0048283 

(2) 

769.96832 

769.98308 

770.00212 

0.0136659 

(3) 

769.97644 

769.98478 

769.99933 

0.0088264 

(4) 

Aggregation Best 

Mean 

Worst 

STD 

Rank 

2774.0879 

2784.9206 

2843.6293 

40.644002 

(2) 

2766.3764 

2778.0064 

2786.4754 

7.9005134 

(1) 

2779.4178 

2856.1863 

3023.1693 

100.74101 

(4) 

2767.6853 

2898.3827 

3075.4964 

145.35414 

(5) 

2751.4661 

2791.7621 

2818.9691 

28.183541 

(3) 

2780.6119 

2919.3303 

3050.0264 

88.913061 

(6) 

2781.5202 

2945.1331 

3205.8344 

204.14626 

(7) 

Average Ranking 5.125 1.25 3.75 4.375 3.625 5.25 4.625 

 

 

 

 

 



 

 

 

  

 

 

 

 

 

 

 

 

Figure 7. The average values of SICD for the ChOA(II) based on seven chaotic maps on eight datasets. 



 

 

 

  

 

 

 

 

 

 

 

 

(a) Iris (b) Wine 

(c) Cancer (d) Blood 

(e) CMC (f) Path-Based 

(g) Flame (h) Aggregation 

Figure 8. The comparative convergence curves of ChOA(I) and ChOA(II) according to their best 

chaotic maps on (a) Iris, (b) Wine, (c) Cancer, (d) Blood, (e) CMC, (f) Path-Based, (g) Flame, and 

(h) Aggregation datasets. 



5.4.2. Comparison between ChOAGNDA and other meta-heuristic algorithms 

In this section, we verify the performance of the proposed approach (ChOAGNDA) on 

data clustering problems by comparing it against the most well-known meta-heuristic 

algorithms (K-Means, GA, PSO, MVO, GWO, ABC, ACO, GNDA, ChOA, and WOA). The 

algorithms are evaluated regarding SICD value, ER result, and convergence rate on eight 

clustering datasets. Note that the bracketed numbers in the following tables show the ranks 

obtained by each algorithm, which ranged from 1 (best result) to 11 (worst result). 

• SICD analysis: Table (8) represents a comparison between ChOAGNDA and other 

clustering algorithms with respect to the SICD results on eight datasets. It is observed 

that ChOAGNDA significantly outperforms other algorithms in terms of the best, mean, 

worst, and STD in all datasets. Moreover, the minimum STD value of ChOAGNDA 

proves its satisfactory stability and robustness in achieving promising results. 

• Convergence analysis: Figure (9) demonstrates the average convergence behaviors of 

the clustering algorithms regarding their objective values for eight datasets. It can be 

observed that the ChOAGNDA has a better convergence curve in seven out of eight 

datasets. In the case of the Iris dataset, ChOAGNDA, GA, MVO, and PSO algorithms 

begin the optimization with almost similar convergence trends, but ChOAGNDA beats 

all the other algorithms after a limited number of iterations. For the Wine dataset, WOA, 

ChOA, PSO, GWO, and MVO algorithms have the same convergence curve through 

the whole optimization process. On the other side, all of the examined algorithms 

perform a similar pattern on Cancer, Blood, and CMC datasets, where ChOAGNDA 

obtains the fastest trend and ranks first among all approaches. In the case of the Path-

Based dataset, ChOAGNDA and GA start the optimization process far better than the 

other algorithms, and the ChOAGNDA eventually obtains the lowest objective value at 

the end of the process. For the Flame dataset, MVO generates a poor convergence rate 

compared to the other algorithms, while ChOAGNDA and PSO have the best 

convergence behavior and reach the optimal solution with the minimum number of 

iterations. For the Aggregation dataset, although PSO, MVO, GA, GWO, and WOA 

perform a better convergence trend at the initial steps of the optimization process, 

ChOAGNDA outperforms all existing approaches after passing half of the total 

iterations. Additionally, Figure (10) provides a more detailed comparison of the 

proposed algorithm the original algorithms used in our approach. It is obvious that the 

proposed ChOAGNDA not only converges to the optimal solution during the initial 

iterations but also achieves the minimum SICD value for all the tested datasets. 

• ER analysis: Table (9) illustrates a comparison of ChOAGNDA with other meta-

heuristic algorithms in terms of the ER results on eight datasets. According to this table, 

the minimum ER value is obtained by the proposed clustering approach as 9.10% in 

Iris, 26.51% in Wine, 3.53% in Cancer, 34.81% in Blood, 49.33% in CMC, 24.70% in 

Path, 15.21 in Flame, and 23.09% in Aggregation dataset. These statistical results prove 

the superiority of ChOAGNDA over the compared algorithms on all datasets. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. The comparative results of ChOAGNDA and other clustering algorithms regarding the SICD value on 

eight datasets after 50 runs. 

Algorithm Measure Iris Wine Cancer Blood CMC Path Flame Aggregation 

K-Means Best 

Mean 

Worst 

STD 

Rank 

97.3243 

104.7182 

124.2111 

12.3875 

(11) 

16,55.6723 

16963.0492 

23755.0410 

1180.6942 

(11) 

2986.9521 

3032.2478 

5216.0894 

315.1456 

(6) 

408336.41 

410298.29 

415329.73 

2436.52 

(10) 

5691.6285 

5703.5253 

5706.3197 

2.5238 

(8) 

1527.4675 

1696.7224 

1821.5590 

77.2663 

(11) 

781.2574 

818.5320 

853.4439 

28.3541 

(11) 

3352.5869 

3635.1877 

3931.2492 

143.4151 

(11) 

GA Best 

Mean 

Worst 

STD 

Rank 

98.3741 

99.4470 

103.7833 

15.3671 

(10) 

16350.8024 

16520.1760 

16530.5729 

58.2548 

(7) 

2981.1355 

3048.7738 

3138.3160 

49.8137 

(11) 

408174.38 

411779.55 

416711.92 

2723.58 

(11) 

5588.7356 

5632.2107 

5739.6956 

74.1708 

(6) 

1442.8257 

1457.4935 

1613.2532 

17.9593 

(7) 

770.9752 

777.8678 

812.5009 

9.1533 

(6) 

2792.1168 

2822.7590 

3239.7090 

44.2162 

(4) 

PSO Best 

Mean 

Worst 

STD 

Rank 

96.8753 

98.1534 

99.7706 

0.8530 

(7) 

16305.4821 

16317.2787 

16344.7893 

13.6027 

(5) 

2975.3709 

2982.6757 

3054.5025 

10.4675 

(5) 

407853.43 

407997.81 

408339.55 

128.92 

(9) 

5539.2834 

5547.8037 

5560.6549 

7.4673 

(5) 

1425.6268 

1443.4412 

1588.2870 

14.8569 

(4) 

769.9773 

770.4814 

832.1860 

0.6341 

(3) 

2763.1175 

2879.0641 

3888.4430 

52.5715 

(6) 

MVO Best 

Mean 

Worst 

STD 

Rank 

96.6831 

98.5849 

99.7281 

0.91289 

(8) 

16319.2761 

16376.7196 

16422.6621 

20.2831 

(6) 

2964.7511 

2965.2314 

2965.9140 

0.3249 

(4) 

407725.35 

407816.54 

407875.90 

81.3497 

(8) 

5754.1564 

5824.1445 

5940.6081 

49.2360 

(11) 

1458.3487 

1546.3827 

1673.8310 

45.6529 

(10) 

770.4246 

813.8370 

864.5372 

24.1463 

(10) 

3043.7696 

3441.3369 

3819.7929 

151.4479 

(10) 

GWO Best 

Mean 

Worst 

STD 

Rank 

96.6671 

99.2368 

104.5501 

13.2762 

(9) 

16307.4370 

16316.7419 

16386.3261 

10.4675 

(4) 

2964.3901 

2964.3949 

2964.3991 

0.0024 

(3) 

407723.25 

407781.39 

407812.40 

31.4540 

(7) 

5538.3369  

5544.6011  

5549.3044  

4.1229 

(4) 

1427.5647 

1465.6109 

1499.7663 

21.3615 

(9) 

769.9772 

775.3835 

789.3884 

3.7673 

(5) 

2829.2701 

2865.3370 

2897.7719 

17.5243 

(5) 

ABC Best 

Mean 

Worst 

STD 

Rank 

97.0521 

97.9335 

99.1932 

0.5412 

(6) 

16431.2519 

16844.6520 

17225.7713 

288.7715 

(10) 

2988.4301 

3041.8441 

3124.4719 

49.5219 

(10) 

407722.98 

407750.51 

407782.28 

23.2710 

(6) 

5644.3381 

5692.6004 

5757.8220 

31.1663 

(7) 

1432.0479 

1461.6157 

1499.6310 

10.2712 

(8) 

769.9330 

778.3412 

794.9007 

13.6561 

(7) 

2897.3401 

3087.1705 

3223.5089 

20.5471 

(7) 

ACO Best 

Mean 

Worst 

STD 

Rank 

97.1241 

97.1709 

97.6729 

0.5173 

(5) 

16523.5298 

16636.2372 

16705.6603 

8.59156 

(9) 

2973.4419 

3035.2670 

3128.2662 

21.3186 

(8) 

407724.41 

407740.11 

407778.34 

17.1065 

(5) 

5715.8133 

5789.6272 

5820.3348 

39.2976 

(10) 

1439.2568 

1457.2687 

1490.5423 

19.3714 

(6) 

769.9988 

779.3134 

799.2086 

7.4512 

(9) 

2899.2945 

3092.1786 

3273.3245 

20.2208 

(9) 

WOA Best 

Mean 

Worst 

STD 

Rank 

96.7208 

96.7931 

96.8303 

0.1081 

(3) 

16291.9083 

16295.1044 

16320.7573 

2.7155 

(2) 

2994.4401 

3036.1273 

3081.4401 

12.2019 

(9) 

407720.33 

407727.45 

407751.90 

3.5636 

(3) 

5537.7530 

5539.6891 

5546.0744 

3.7991 

(3) 

1424.8395 

1438.6106 

1487.2219 

13.4105 

(3) 

769.9670 

770.5922 

771.2871 

0.5130 

(4) 

2782.7009 

2798.3320 

2817.9106 

8.3309 

(3) 

GNDA Best 

Mean 

Worst 

STD 

Rank 

97.1011 

97.1512 

97.6169 

0.4183 

(4) 

16521.4197 

16633.1366 

16703.5501 

7.4805 

(8) 

2972.3379 

3033.1640 

3126.1772 

20.3186 

(7) 

407722.41 

407739.09 

407775.55 

16.9033 

(4) 

5713.7103 

5787.5357 

5819.2205 

37.1976 

(9) 

1438.2108 

1456.2200 

1489.7323 

19.3714 

(5) 

769.9916 

779.3110 

799.2001 

6.5612 

(8) 

2898.1422 

3091.1266 

3271.4073 

18.2208 

(8) 

ChOA Best 

Mean 

Worst 

STD 

Rank 

96.5499 

96.5831 

96.6072 

0.0207 

(2) 

16304.1921 

16307.7144 

16314.8209 

2.9196 

(3) 

2964.3861 

2964.3868 

2964.3902 

0.0015 

(2) 

407714.23 

407714.23 

407714.23 

0.0001 

(2) 

5534.0589 

5536.0522 

5539.8698 

2.2840 

(2) 

1424.8284 

1425.9166 

1426.7908 

0.7976 

(2) 

769.9665 

769.9687 

769.9696 

0.0010 

(2) 

2766.3764 

2778.0064 

2786.4754 

7.9005 

(2) 

ChOAGNDA Best 

Mean 

Worst 

STD 

Rank 

96.5400 

96.5403 

96.5404 

0.0001 

(1) 

16292.1842 

16292.1846 

16292.6127 

0.0008 

(1) 

2964.3860 

2964.3862 

2964.3870 

0.0002 

(1) 

407714.19 

407714.21 

407714.28 

0.0001 

(1) 

5532.0156 

5532.1847 

5532.1893 

0.0007 

(1) 

1424.7147 

1424.7166 

1424.7958 

0.0030 

(1) 

769.9662 

769.9663 

769.9664 

0.0001 

(1) 

2712.9089 

2713.1577 

2734.4129 

0.400 

(1) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Iris (b) Wine 

(c) Cancer (d) Blood 

(e) CMC (f) Path-Based 

(g) Flame (h) Aggregation 

Figure 9. The average convergence curves of ChOAGNDA and other state-of-art algorithms regarding 

the mean objective value on (a) Iris, (b) Wine, (c) Cancer, (d) Blood, (e) CMC, (f) Path-Based, (g) Flame, 

and, (h) Aggregation datasets. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Iris (b) Wine 

(c) Cancer (d) Blood 

(e) CMC (f) Path-Based 

(g) Flame (h) Aggregation 

Figure 10. The comparative convergence curves of ChOAGNDA, ChOA, and GNDA according to the 

mean objective value on (a) Iris, (b) Wine, (c) Cancer, (d) Blood, (e) CMC, (f) Path-Based, (g) Flame, 

and (h) Aggregation datasets. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.3. Comparison of the proposed method with past literature 

In recent years, many studies have been focused on solving real-world optimization 

problems, particularly in the field of data clustering. To ensure the strength of our method, this 

section provides a comparison between the proposed algorithm (ChOAGNDA) and the most 

powerful metaheuristics-based clustering algorithms in previous literature. The results of the 

Gravitational Search Algorithm (GSA) [41], Gravitational Search Algorithm based on K-

Means (GSA-KM) [75], Improved Krill Herd (IKH) [76], the combination of Improved 

Cuckoo optimization with Modified Particle Swarm Optimization and K-Harmonic Means 

(ICMPKHM) [77], Symbiotic Organism Search (SOS) [78], Quantum-inspired Ant Lion 

Optimized hybrid K-means (QALO-K) [79], and Hybrid Harris Hawks Optimization (H-HHO) 

(Abualigah et al., 2021) are directly taken from their references, while the results of the Cuckoo 

Search (CS), Genetic Quantum Cuckoo Search (GQCS), Hybrid Cuckoo Search and 

Differential Evolution (HCSDE), hybrid K-means and Improved Cuckoo Search (KICS), and 

Quantum Chaotic Cuckoo Search (QCCS) are obtained from the paper [81]. Finally, the 

performance of the mentioned algorithms is compared in terms of two parameters (SICD and 

ER) as reported in Table (10). For the sake of clarity, the best results among all clustering 

methods are illustrated in bold type. It should be noted that the abbreviation "N/A" denotes that 

no information is available. 

 

 

Algorithm Measure Iris Wine Cancer Blood CMC Path Flame Aggregation 

K-Means Mean (%) 

Rank 

13.44 

(11) 

31.12 

(11) 

4.37 

(11) 

35.22 

(6) 

54.45 

(5) 

29.67 

(11) 

17.82 

(11) 

29.22 

(11)  

GA Mean (%) 

Rank 

10.00 

(3) 

28.75 

(4) 

3.87 

(6) 

34.92 

(5) 

57.66 

(11) 

27.45 

(6) 

16.35 

(6) 

25.50 

(4) 

PSO Mean (%) 

Rank 

10.06 

(6) 

28.79 

(7) 

3.79 

(4) 

34.90 

(3) 

54.48 

(7) 

26.57 

(4) 

15.92 

(3) 

25.88 

(6) 

MVO Mean (%) 

Rank 

10.45 

(9) 

28.77 

(5) 

3.80 

(5) 

34.91 

(4) 

54.92 

(9) 

29.57 

(10) 

17.50 

(10) 

26.87 

(10) 

GWO Mean (%) 

Rank 

10.73 

(10) 

29.48 

(10) 

3.65 

(3) 

34.90 

(3) 

55.23 

(10) 

29.34 

(8) 

16.03 

(5) 

25.73 

(5) 

ABC Mean (%) 

Rank 

10.04 

(5) 

28.92 

(9) 

3.93 

(10) 

34.91 

(4) 

54.39 

(3) 

29.07 

(7) 

17.22 

(7) 

26.45 

(7) 

ACO Mean (%) 

Rank 

10.02 

(4) 

28.78 

(6) 

3.88 

(8) 

34.90 

(3) 

54.47 

(6) 

26.62 

(5) 

17.38 

(8) 

26.80 

(8) 

WOA Mean (%) 

Rank 

10.08 

(7) 

28.12 

(3) 

3.91 

(9) 

34.89 

(2) 

54.41 

(4) 

26.51 

(3) 

15.97 

(4) 

25.37 

(3) 

GNDA Mean (%) 

Rank 

10.40 

(8) 

28.90 

(8) 

3.85 

(7) 

34.91 

(4) 

54.57 

(8) 

29.49 

(9) 

17.44 

(9) 

26.85 

(9) 

ChOA Mean (%) 

Rank 

9.30 

(2) 

27.92 

(2) 

3.62 

(2) 

34.89 

(2) 

53.93 

(2) 

26.00 

(2) 

15.83 

(2) 

24.59 

(2) 

ChOAGNDA Mean (%) 

Rank 

9.10 

(1) 

26.51 

(1) 

3.53 

(1) 

34.81 

(1) 

49.33 

(1) 

24.70 

(1) 

15.21 

(1) 

22.09 

(1) 

Table 9. The comparative results of ChOAGNDA and other clustering algorithms regarding the 

average error rate (%) on eight datasets after 50 runs.  



Table 10. Comparison of the ChOAGNDA and other clustering algorithms from the past literature in 

terms of SICD and ER values on the clustering datasets. 

Dataset Method Year 
SICD 

 

ER 

Best Mean Worst STD 
 

Mean 

Iris GSA 

GSA-KM 

IKH  

KICS  

ICMPKHM  

SOS  

QALO-K  

H-HHO  

Proposed Method 

2011 

2012 

2016 

2017 

2018 

2019 

2020 

2021 

Present 

96.6970 

96.6790 

96.6555 

96.7349 

96.6123 

96.6555 

96.6600 

97.2352 

96.5400 

96.7210 

96.6890 

96.6555 

96.9525 

96.6223 

96.6555 

96.7300 

98.2954 

96.5403 

96.7640 

96.7050 

96.6555 

97.1901 

96.6370 

96.6555 

97.3500 

122.365 

96.5404 

0.0123 

0.0076 

0.000009 

0.1443 

0.0105 

2.82e-14 

N/A 

4.3658 

0.0001 

 

10.04% 

N/A 

9.78% 

10.66% 

9.76% 

N/A 

N/A 

20.86% 

9.10% 

Wine GSA 

GSA-KM 

IKH  

KICS  

ICMPKHM  

SOS  

QALO-K  

H-HHO  

Proposed Method 

2011 

2012 

2016 

2017 

2018 

2019 

2020 

2021 

Present 

16315.356 

16294.250 

16292.210 

16298.627 

16292.120 

16292.184 

16357.920 

16121.571 

16292.184 

16376.619 

16294.310 

16294.300 

16341.463 

16293.180 

16293.052 

16453.160 

16291.219 

16292.184 

16425.584 

16294.640 

16292.840 

16437.384 

16293.580 

16294.170 

16518.750 

18457.545 

16292.6127 

31.3412 

0.0406 

0.7067 

37.7510 

0.4800 

0.8185 

N/A 

19.5451 

0.0008 

 

29.15% 

N/A 

28.90% 

28.98% 

28.22% 

N/A 

N/A 

33.56% 

26.51% 

Cancer GSA 

GSA-KM 

IKH  

KICS  

ICMPKHM  

SOS  

QALO-K  

H-HHO  

Proposed Method 

2011 

2012 

2016 

2017 

2018 

2019 

2020 

2021 

Present 

2967.963 

2965.140 

2964.387 

2967.216 

2965.110 

2964.387 

2964.390 

2964.386 

2964.386 

2973.583 

2965.210 

2964.389 

2973.387 

3024.790 

2964.387 

2977.930 

2987.256 

2964.3862 

2990.834 

2965.300 

2964.393 

2982.068 

3147.080 

2964.387 

2986.960 

2998.654 

2964.3870 

8.1731 

0.0670 

0.0012 

4.1859 

0.3810 

3.312e12 

N/A 

19.2654 

0.0002 

 

3.74% 

N/A 

3.69% 

3.80% 

3.68% 

N/A 

N/A 

39.11% 

3.51% 

CMC GSA 

GSA-KM 

IKH  

KICS  

ICMPKHM  

SOS  

QALO-K  

H-HHO  

Proposed Method 

2011 

2012 

2016 

2017 

2018 

2019 

2020 

2021 

Present 

5698.156 

5697.030 

5693.720 

5537.534 

5692.110 

5693.724 

5542.180 

5532.188 

5532.015 

5599.845 

5697.360 

5693.735 

5540.652 

5695.130 

5693.725 

5545.050 

5541.297 

5532.184 

5702.092 

5697.870 

5693.779 

5542.182 

5697.690 

5693.728 

5543.440 

5554.269 

5532.189 

1.7244 

0.2717 

0.0079 

1.6126 

0.8120 

0.0020 

N/A 

1.2954 

0.0007 

 

55.67% 

N/A 

55.90% 

57.64% 

54.41% 

N/A 

N/A 

54.10% 

49.33 

Blood CS  

GQCS  

HCSDE  

KICS  

QCCS  

Proposed Method 

2014 

2014 

2015 

2017 

2018 

Present 

407942.005 

407714.446 

408228.567 

407722.178 

407714.231 

407714.218 

408838.235 

407716.715 

411305.327 

407807.439 

407714.231 

407714.210 

410019.615 

407724.582 

416367.360 

407986.313 

407714.233 

407714.280 

536.1597 

2.2487 

2307.6760 

71.2328 

0.0005 

0.0001 

 

34.89% 

34.89% 

34.89% 

34.89% 

34.89% 

 34.81% 

Table (10) summarizes the statistical results of our proposed method and previous 

studies on SICD and ER values obtained from the Iris, Wine, Cancer, CMC, and Blood 

datasets. From Table (10), it can be observed that the ChOAGNDA significantly outperforms 



other existing algorithms in terms of average SICD and ER results on the Iris dataset. By 

inspecting the results in Table (10), it is found that the H-HHO provides the minimum value of 

SICD compared with other algorithms for the Wine dataset. However, ChOAGNDA has 

obtained the best value of ER among all competing approaches. For the Cancer dataset, the 

results confirm the superior performance of ChOAGNDA compared with other algorithms 

according to the SICD and ER values. Moreover, it is obvious that our proposed method 

performs much better results than the others in terms of SICD and ER values on the CMC 

dataset. Lastly, the results of Table (10) show the significant performance of ChOAGNDA 

among all the considered algorithms regarding the SICD value on the Blood dataset. In terms 

of the ER results, ChOAGNDA has provided a better value for the Blood dataset. 

5.5. Statistical Performance Evaluation 

The results of subsection 5.4.2 show that the proposed method outperforms other 

clustering algorithms in terms of SICD and ER results on almost all datasets. To prove the 

validity of this claim, two statistical techniques (namely: Friedman and Post-Hoc) [82] have 

been carried out on the mean values of SICD and ER results from 50 independent runs. In 

particular, non-parametric statistical experiments are performed to determine whether any 

notable difference exists among the results of various clustering approaches. The Friedman test 

evaluates the performance of different algorithms according to the principle of the null 

hypothesis (H0), where the rejection of H0 indicates that the algorithm significantly outperforms 

other existing algorithms. In this study, different algorithms are ranked based on their SICD 

and ER results obtained from eight clustering datasets (see Tables (8) and (9)). The approach 

with the best performance received the lowest rank, while the approach with the worst 

performance received the highest rank. Equation (29) calculates the Average Rank (AR) of 

each clustering method according to the Friedman's statistic, and the results are summarized in 

Tables (11) and (12). 

AR = 
The sum of the total algorithm's ranks for each dataset

Total number of datasets
 (29) 

 

 

 

 

 

 

 

 

 Table 11. Statistical ranking 

based on the mean values of 

SICD performances.  

Algorithm AR 

K-Means 8.125 

GA 6.25 

PSO 4.25 

MVO 6.625 

GWO 4.375 

ABC 6 

ACO 5.625 

WOA 2.625 

ChOAGNDA 1 

 

Table 12. Statistical ranking 

based on the mean values of 

ER performances.  

Algorithm AR 

K-Means 7.875 

GA 4.5 

PSO 4 

MVO 6.125 

GWO 5.375 

ABC 5.25 

ACO 4.875 

WOA 3.25 

ChOAGNDA 1 

 



Figures (11) and (12) compare the AR values of each considered algorithm on all 

datasets based on their SICD and ER results, respectively. It can be observed that the proposed 

ChOAGNDA is ranked as the first-best algorithm among all existing methods. 

 

 

 

 

 

 

 

 

 

In the following, the statistical validations are conducted to compare the performance 

of the ChOAGNDA with other clustering algorithms. It should be noted that the level of 

significance in our case is ∝=0.05. The calculated Friedman statistic on the SICD results is 

39.43, and the corresponding p-value is 0.000004084. Consequently, the null hypothesis is 

rejected, meaning that the proposed method performs significantly better than the other 

approaches. All existing algorithms are further analyzed using the Post-Hoc test to confirm the 

statistical superiority of the proposed method. Table (13) reports the findings achieved by the 

Post-Hoc procedure over the SICD results, while ChOAGNDA is considered as the control 

algorithm. The results clearly indicate that the null hypothesis is rejected in the majority of 

pairwise comparisons. 

             Table 13. Statistical results of Post-Hoc test according to the SICD values (∝=0.05). 

Algorithm Z-value P-value Null Hypothesis (H0) 

ChOAGNDA vs K-Means 5.112077 0.000000318 Rejected 

ChOAGNDA vs GA 3.742771 0.000182002 Rejected 

ChOAGNDA vs PSO 2.282177 0.002247887 Rejected 

ChOAGNDA vs MVO 4.016632 0.000059035 Rejected 

ChOAGNDA vs GWO 2.373464 0.017622091 Rejected 

ChOAGNDA vs ABC 3.560197 0.000370577 Rejected 

ChOAGNDA vs ACO 3.286335 0.001500101 Rejected 

ChOAGNDA vs WOA 2.276335 0.273321730 Not Rejected 

On the other hand, the calculated Friedman statistic on the ER results is 36.09, and the 

corresponding p-value is 0.0000689. Hence, the null hypothesis is rejected at the 0.05 level of 

significance. Afterward, the Post-Hoc test is applied over the ER results to confirm whether 

 

 

Figure 11. Average ranking of the clustering 

algorithms according to the SICD results using 

Friedman test. 

 

Figure 12. Average ranking of the clustering 

algorithms according to the ER results using 

Friedman test. 



the suggested method is significant or not. Table (14) represents the experimental results of the 

Post-Hoc procedure. From Table (14), we can say that the ChOAGNDA is statistically 

considerable in comparison to the other meta-heuristic algorithms. By reconsidering all the 

reported results, it can be concluded that the proposed method outperforms other clustering 

techniques in terms of the SICD results, ER values, convergence rates, and statistical 

performances.   

             Table 14. Statistical results of Post-Hoc test according to the ER values (∝=0.05). 

Algorithm Z-value P-value Null Hypothesis (H0) 

ChOAGNDA vs K-Means 5.340295 0.000000092 Rejected 

ChOAGNDA vs GA 2.875543 0.004033327 Rejected 

ChOAGNDA vs PSO 2.327821 0.001992162 Rejected 

ChOAGNDA vs MVO 4.016632 0.000059035 Rejected 

ChOAGNDA vs GWO 3.331979 0.000862308 Rejected 

ChOAGNDA vs ABC 3.377622 0.000731154 Rejected 

ChOAGNDA vs ACO 2.966831 0.003886803 Rejected 

ChOAGNDA vs WOA 1.643168 0.100348221 Not Rejected 

6. Conclusion 

 Recently, the application of meta-heuristic algorithms has grown substantially due to 

the limitations of classical techniques in solving clustering problems. Classical algorithms have 

some disadvantages associated with getting stuck in local optima or suffering from slow 

convergence speed in high-dimensional datasets. To overcome these deficiencies, this paper 

suggested a new technique for solving clustering problems based on the chimp optimization 

algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-

based Learning (OBL) technique, called ChOAGNDA. The performance of the proposed 

algorithm was evaluated on eight benchmark datasets, and the experimental results were 

compared against several well-known clustering algorithms. The effectiveness of the 

approaches was further investigated according to the three measurements: SICD result, ER 

value, and convergence rate. Lastly, some statistical tests have been conducted to verify that 

the obtained dissimilarities between the ChOAGNDA and other algorithms are significantly 

meaningful. Experimental results proved the superior performance of the proposed clustering 

technique on the majority of evaluation criteria.    

The main contributions of this study provide several enhancements for solving data 

clustering problems. First of all, ChOAGNDA contains a limited number of parameters to 

adjust. Secondly, independent groups of chimps in ChOA assist ChOAGNDA algorithm in 

dealing with complex clustering tasks. Thirdly, selecting a proper chaotic map can resolve two 

significant issues: slow convergence rate and trap in local minima. Moreover, not only the 

dynamic coefficient of the f vector guarantees to reach an appropriate balance between the local 

and global search but also the OBL technique allows ChOAGNDA for a stable balance between 

exploration and exploitation phases to avoid local optima. Finally, the proposed algorithm 

outperformed the existing clustering methods in terms of SICD and ER results. This study 



opens up several research directions for future work in a variety of scientific fields and real-

world problems. Accordingly, the proposed clustering algorithm can be widely used for many 

applications, such as: (i) fraud detection: identification of fraud risk through text mining, (ii) 

real-life examples: market and customer segmentation, (iii) biomedical fields: medical-image 

analysis, (iv) engineering sciences: recommendation systems, (v) health informatics: 

biomedical data analysis and identification of cancer cells, and (vi) industrial domains: 

identification of heavy metal pollution sources. For the future direction, various applications 

of ChOAGNDA algorithm are highly recommended. We believe that the proposed hybrid 

approach will be beneficial for solving some complex real-world problems. 
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