
Quantum-classical reinforcement learning for decoding noisy

classical parity information

Daniel K. Park,1, 2, ∗ Jonghun Park,1, 2 and June-Koo Kevin Rhee1, 2

1School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea

2ITRC of Quantum Computing for AI,

KAIST, Daejeon, 34141, Republic of Korea

Abstract

Learning a hidden parity function from noisy data, known as learning parity with noise (LPN),

is an example of intelligent behavior that aims to generalize a concept based on noisy examples.

The solution to LPN immediately leads to decoding a random binary linear code in the presence

of classification noise. This problem is thought to be intractable classically, but can be solved

efficiently if a quantum oracle can be queried. However, in practice, a learner is more likely to

receive data from classical oracles. In this work, we show that a naive application of the quantum

LPN algorithm to classical data encoded in an equal superposition state requires an exponential

sample complexity. We then propose a quantum-classical reinforcement learning algorithm to solve

the LPN problem for data generated by a classical oracle and demonstrate a significant reduction

in the sample complexity. Simulations with a hidden bit string of length up to 12 show that the

quantum-classical reinforcement learning performs better than known classical algorithms when

the sample complexity, run time, and robustness to classical noise are collectively considered. Our

algorithm is robust to any noise in the quantum circuit that effectively appears as Pauli errors on

the final state.

∗ dkp.quantum@gmail.com

1

ar
X

iv
:1

91
0.

00
78

1v
1

 [
qu

an
t-

ph
]

 2
 O

ct
 2

01
9

mailto:dkp.quantum@gmail.com

I. INTRODUCTION

Recent discoveries of quantum algorithms for machine learning and artificial intelligence

have gained much attention, and stimulated further exploration of quantum technologies for

applications in complex data analysis. A type of machine learning considered in this work is

related to the ability to construct a general concept based on examples that contain errors.

This task can be formulated in the probably approximately correct (PAC) framework [1] in

which a learner constructs a hypothesis h with high probability based on a training set of

input-output pairs such that h(x) agrees with f(x) on a large fraction of the inputs. In this

context, important metrics for characterizing the learnability are the sample complexity and

the time complexity that correspond to the minimum number of examples required to reach

the goal and the run time of the algorithm, respectively.

A famous example of such tasks is the problem of learning a hidden Boolean function

that outputs a binary inner product of an input and a hidden bit string of length n by

making queries to an oracle that draws an input uniformly at random. This problem can

also be tackled by making queries to a quantum oracle that produces all possible input-

output pairs in an equal superposition state. Learning the parity function from a noiseless

oracle is easy in both classical and quantum cases. When the outcomes from an oracle are

altered by noise, learning from a classical oracle becomes intractable while the quantum

version remains to be efficient [2]. This problem is also known as learning parity with noise

(LPN). The LPN problem is equivalent to decoding a random linear code in the presence of

noise [3], and several cryptographic applications have been suggested based on the hardness

of this problem and its generalizations [4, 5]. Furthermore, the robustness of the quantum

learning against noise opens up possibilities for achieving a quantum advantage with near-

term quantum devices without relying on quantum error correction. However, the existence

of a quantum oracle for solving a specific problem is highly hypothetical. In practice, a

learner often has to learn from a classical data set. The ability to exhibit the advantage of

quantum learning, especially when training examples are classical, remains an interesting

and important open problem.

In this work, we show that a naive application of the quantum LPN algorithm to classi-

cal data requires an exponential amount of examples (i.e., training samples) or computing

resources, thereby nullifying the quantum advantage. We then propose a quantum-classical

2

hybrid algorithm based on the reinforcement learning framework for solving the LPN prob-

lem in the absence of the quantum oracle. The proposed algorithm uses noisy classical

samples to prepare an input quantum state that is compatible with the original quantum

LPN algorithm. Based on the outcome of the quantum algorithm, a reward is classically

evaluated and an action is chosen by a greedy algorithm to update the quantum state in the

next learning cycle. Numerical calculations show that the required number of samples and

run time can be significantly reduced. Furthermore, simulations show that in the regime of

small n, the quantum-classical hybrid algorithm performs comparably to or better than the

classical algorithm that performs the best in this regime in terms of the sample complexity.

Simulation results also suggest that our algorithm is more robust to noise than the classical

algorithms. Our algorithm is expected to improve the run time of the classical algorithms,

provided that an efficient means to update a quantum state with classical data, such as

quantum random access memory, exists. Another notable feature of our algorithm is that

it is robust to noise that accumulates to depolarizing error on the outcome prior to the

measurement.

Our algorithm also fits within the framework of variational quantum algorithms, a

classical-quantum hybrid approach that has been developed as a promising avenue to

demonstrate the quantum advantage with noisy intermediate scale quantum (NISQ) de-

vices. Variational quantum algorithms have been used with success to find near-optimal

solutions for various important problems in quantum chemistry [6–10], quantum machine

learning [11–17], and quantum control [18]. A unique challenge of the problem considered in

this work is that the algorithm must find the exact and unique solution, i.e., the hidden bit

string, with high probability. Thus, our work serves as an intriguing example that utilizes

the concept of variational method for finding the exact solution of a problem.

The remainder of the paper is organized as follows. Section II reviews LPN. Section III

shows that in the absence of the quantum oracle, the naive application of the quantum

algorithm to classical data results in an exponential complexity. In Sec. IV, we present a

quantum-classical hybrid algorithm based on reinforcement learning for solving the LPN

problem. Numerical calculations in Sec. IV B demonstrate that both sample and time com-

plexities of the hybrid algorithm are significantly reduced compared to the native application

of the quantum LPN algorithm. Section IV C compares the performance of our algorithm

and known classical algorithms via simulations. Section V discusses the resilience to depo-

3

Sx f ′(x) = x · s⊕ e mod 2

FIG. 1. A pictorial representation of the LPN problem.

larizing errors on the final state, and Section VI concludes.

II. LEARNING PARITY WITH NOISE

The goal of the parity learning problem is to find a hidden bit string s ∈ {0, 1}n by

making queries to an example oracle that returns a training data pair that consists of a

uniformly random input x ∈ {0, 1}n and an output of a Boolean function,

f(x) = x · s mod 2. (1)

A noisy oracle outputs (x, f(x)⊕ e), where e ∈ {0, 1} has the Bernoulli distribution with

parameter η, i.e., P (e = 1) = η, and η < 1/2 [3, 19, 20].

In the quantum LPN algorithm introduced in Ref. [2], a quantum oracle implements a

unitary transformation on the computational basis states and returns the equal superposition

of |x〉 |f(x)〉 for all possible inputs x. By applying Hadamard gates to all qubits at the query

output, the learner acquires an entangled state

1√
2

(
|0〉⊗n |0〉+ |s〉 |1〉

)
. (2)

Thus, whenever the label (last) qubit is 1 (occurs with probability 1/2), measuring data (first

n) qubits in their computational bases reveals s. Note that this algorithm is very similar

to the Bernstein-Vazirani (BV) algorithm [21], except that in the BV problem the learner

can choose an example in each query and the input state of the label qubit is prepared in

|−〉. In the quantum case, since all example data are queried in superposition, the ability to

choose an example is irrelevant. On the other hand, the quantum LPN algorithm requires

the extra post-selection step since the input of the label qubit is prepared in |0〉.
A noisy quantum oracle can be modeled with the local depolarizing channel Dη (ρ) =

(1− 2η) ρ + η1l acting independently on all qubits at the oracle’s output with a known

constant noise rate of η < 1/2. The quantum circuit for solving the LPN algorithm is

4

…

H

|0〉

|0〉
|0〉
|0〉{
|0〉

label

query
register …

H
H

H

H
H
H

H
H

Dη

Dη

Dη

Dη

Dη

FIG. 2. The quantum circuit for learning parity with noise introduced in Ref. [2]. Hadamard oper-

ations (H) prepare the equal superposition of all possible input states. The dotted box represents

the quantum oracle that encodes the hidden parity function, and is realized using controlled-NOT

gates between the query register (control) and label (target) qubits. The hidden bit string in this

example is s = 101 . . . 0. Before measurement, all qubits experience independent depolarizing noise

denoted by Dη with a noise rate η < 1/2.

depicted in Fig. 2. In this example, s is 101 . . . 0, and it is encoded via a series of controlled-

NOT (c-NOT) gates targeting the result qubit controlled by the data qubits. The shaded area

in the figure represents the quantum oracle whose structure is hidden from the learner.

Learning the hidden parity function from noiseless examples is efficient for both classical

and quantum oracles. However, in the presence of noise, the best-known classical algorithms

have superpolynomial complexities [3, 19, 20, 22], while the quantum learning based on the

bit-wise majority vote remains efficient [2]. The query and time complexities of the LPN

problem for classical and quantum oracles are summarized in Tab. I

Reference Oracle Queries (samples) Time

Angluin & Laird (AL) [19] Classical O(n) O (2n)

Blum, Kalai & Wasserman (BKW) [20] Classical 2
O
(

n
logn

)
2
O
(

n
logn

)

Lyubashevsky (L) [3] Classical O
(
n1+ε

)
2
O
(

n
log logn

)

Cross, Smith & Smolin (CSS) [2] Quantum O (log n) O(n)

TABLE I. Summary of the query (or sample) and time complexities of various LPN algorithms

reported in previous works.

The advantage of having a quantum oracle for solving an LPN problem was demonstrated

5

experimentally with superconducting qubits in Ref. [23]. Furthermore, a quantum advantage

can be demonstrated even when all query register qubits are fully depolarized by using

deterministic quantum computation with one qubit [24, 25].

In the following sections, we discuss quantum techniques to solve the LPN problem in

the absence of the quantum oracle. The general strategy considered in this work is to

prepare a specific quantum state based on M classical noisy training samples, and apply the

measurement scheme developed in Ref. [2]. The measurement outcome of the query qubits

in the computational basis, s̃M , yields the hypothesis function. The goal of our algorithms

is to minimize M with which the probability to guess the correct hidden bit string is greater

than 2/3, i.e.,

P(s̃M = s|M) = γ, γ > 2/3. (3)

Then by repeating the algorithm a constant number of times and taking a majority vote, s

can be found with high probability. Note that this is not a strictly necessary condition as the

majority vote can find the correct answer efficiently with high probability for γ ≥ 1/2 + 1/δ

as long as δ is at most poly(n), since the algorithm is to be repeated O(δ2) times. However,

Eq. (3) is a sufficient condition to solve the problem.

III. NAIVE APPLICATION OF QUANTUM ALGORITHM TO CLASSICAL

DATA

A. Learning from a sparse set of training samples

Given M < 2n examples of data, (xj, f(xj)), where j = 1, . . . ,M , a naive way to apply

the quantum LPN algorithm is to create a quantum state,

|Ψ〉 =
1√
M

M∑
j=1

|xj〉 |f ′(xj)〉 , (4)

and treat it as the output of the quantum oracle. Then, as in the quantum LPN algorithm,

single-qubit Hadamard gates are applied to all qubits and the label qubit is measured in the

computational basis. The measurement outcome of 1, which occurs with the probability of

1/2, is post-selected to leave the query register qubits in the state,

|ψ1〉 =
1√
M2n

M∑
j=1

[
(−1)ej |s〉+

∑
y 6=0n

(−1)xj ·y⊕ej |s⊕ y〉
]
. (5)

6

From the above state, the probability to guess s correctly is

P(s̃M = s) =
M(1− 2η)2

2n
. (6)

However, this result also implies that even when the quantum oracle outputs only a fraction

of all possible examples as an equal superposition state, and the noise does not act coherently

on all xj as in Refs. [2, 23], the LPN problem can still be solved. As a side note, since xj

is drawn uniformly at random, P(xj · y = 1|y 6= 0n) = P(xj · y = 0|y 6= 0n) = 1/2 and

E

[∑M
j (−1)xj ·y|y 6= 0n

]
= 0. Thus, the probability to measure an incorrect bit string s⊕ y

(see the second term in Eq. (5)) depends on the error distribution that determines ej. For

instance, the worst case occurs when the error bits ej coincides with xj · y ∀j. In this case,

the probability to obtain the incorrect answer is P(s̃M = s ⊕ y) = M/2n ≥ P(s̃M = s).

Thus, in the worst case scenario, the naive application of the quantum algorithm to a limited

number of classical samples cannot solve the LPN problem.

B. Data span

In order to reduce the number of queries, linearly independent data can be added to

generate an artificial data, which can be used in creating the state in the form of Eq. (4).

However, this not only requires the classical pre-processing, but also can increase the error

probability of the generated parity bit. For example, from two data pairs, (x1, f
′(x1)) and

(x2, f
′(x2)) with linearly independent inputs, a new data (x3 = x1 ⊕ x2, f(x3) = f ′(x1) ⊕

f ′(x2)) can be created. Since f ′(x1) ⊕ f ′(x2) = (x1 ⊕ x2) · s ⊕ (e1 ⊕ e2) mod 2, the error

probability of the artificial parity bit is

η′ = P(e1 ⊕ e2 = 1) = P(e1 = 1)P(e2 = 0) +P(e1 = 0)P(e2 = 1) = 2η(1− η). (7)

The above equation can be generalized for a new data generated from d linearly independent

data as follows:

η′ = P

(
d∑
i=1

ei mod 2 = 1

)
=
∑
j=odd

(
d

j

)
ηj(1− η)d−j =

1− (1− 2η)d

2
. (8)

For d > 1 and η > 1/2,
(
1− (1− 2η)d

)
/2 > η. Therefore, data span always increases

the error rate in addition to increasing the time complexity for pre-processing the data.

However, when η is sufficiently small so that η′ also remains reasonably small, one may

consider using the data span trick in order to reduce the sample complexity.

7

C. Generation of artificial data with a parity guess function

The next strategy we consider is to generate missing data by guessing the parity function

and design an iterative algorithm to improve the accuracy of the guess. In this approach,

the rate of accuracy improvement with respect to the number of queries determines the

efficiency of the algorithm.

A brief description of the iterative LPN (I-LPN) algorithm is as follows. First, all 2n

examples are provided as an equal quantum superposition state using M real data and

2n − M artificial data generated by a parity guess function. The quantum state can be

prepared by guessing the quantum oracle of the quantum LPN algorithm, and inserting the

output state of the oracle as an input to quantum random access memory (QRAM) [26–30]

to update its entries according to real data. The circuit-based QRAM introduced in Ref. [30]

can use flip-register-flop processes to update an output of a guessed quantum oracle with real

data using the number of steps that increases at least linearly with the number of samples.

Then the usual quantum LPN protocol that consists of applying Hadamard gates, projective

measurements, and the post-selection outputs an n bit string in the register qubits. This

string is used to construct a new parity guess function in the next iteration for which a new

sample is also acquired. The learner can also repeat the measurement procedure for guessing

a new parity function without querying a new sample. This iteration is referred to as epoch.

More detailed description of the algorithm is given in steps below.

8

Algorithm 1 Iterative LPN (I-LPN)

1: Make an initial guess of s as s̃0 = 0n

2: for m = 1 to M do

3: Collect (xm, f(xm))

4: if xm = 0n then

5: Set f(xm) = 0

6: for i = 1 to number of epoch do

7: Use s̃m−1 to implement a quantum oracle and prepare 1√
2n

∑2n

j |xj〉 |g(xj)〉, where

g(xj) = xj · s̃m−1 mod 2

8: Update the above state as |Ψ〉 = 1√
2n

(∑m
j=1 |xj〉 |f ′(xj)〉+

∑2n

j=m+1 |xj〉 |g(xj)〉
)

9: Apply Hadamard gates on all qubits

10: Measure the label qubit in the computational basis and post-select the state with the

measurement outcome of |1〉
11: Measure the query registers of the post-selected state in the computational basis

12: Set s̃m−1 to the measured bit string

13: Set s̃m = s̃m−1

Now we analyze the performance of I-LPN. In the iterative algorithm, the time complex-

ity is dominated by the state preparation step. Since the quantum oracle implementation

and the QRAM process given M training samples requires O(n) and O(M) run times, re-

spectively, we focus on the estimation of the sample complexity. The I-LPN algorithm uses

aforementioned procedure to prepare a quantum state

|Ψ〉 =
1√
2n

2n∑
j=1

|xj〉 |h(xj)〉 , (9)

where

h(xj) =

f
′(xj) = xj · s⊕ ej mod 2 if j ≤M,

g(xj) = xj · s̃M−1 mod 2 if j > M,
(10)

and s̃M−1 is the parity guess function from the previous round. Now let εj be a Bernoulli

random variable that is 0 if h(xj) = f(xj) and 1 otherwise. In other words, the weight

of a string defined as ε := ε1ε2 . . . ε2n , denoted by w(ε), is the number of different bits

between h1:2n and f1:2n , where �i:j denotes a binary string �(xi)�(xi+1) . . .�(xj). With

9

this definition, we can write

h(xj) = xj · s⊕ εj, (11)

where

εj =

ej if j ≤M,

xj · (s⊕ s̃M−1) if j > M.
(12)

The post-selected state is

|ψ1〉 =
1

2n

2n∑
j

(
(−1)εj |s〉+

∑
y 6=0n

(−1)xj ·y⊕εj |s⊕ y〉
)
, (13)

The probability to obtain s from the projective measurement in the computational basis is

PM := P(s̃M = s) = (1− 2r(M))2, (14)

where r(M) = w(ε)/2n is the error probability in estimating f from h given M noisy data.

From Eq. (12), one can see that if s̃M−1 = s, then εj = 0 ∀j > M , and only the errors in

the real samples yield non-zero values in ε. However, if s̃M−1 6= s, then since xj is chosen

uniformly at random, εj = 0 for 1/2 of the set of input xj for j > M on average. With this,

the expectation value of the weight of ε can be calculated as

E (w(ε)) =

Mη if s̃M−1 = s,

Mη + (2n −M)/2 if s̃M−1 6= s.
(15)

We start the algorithm with an initial sample (x1, f(x1)), and the initial guess s̃0 = 0n.

Then the initial error probability is

r(1) =
1

2n
η

2n
+

(
1− 1

2n

)
η + (2n − 1)/2

2n
. (16)

The first term takes into consideration that s̃0 = 0n is the right answer with the probability

1/2n. In this case, only the real data can carry incorrect parity bits with a probability η.

The second term indicates that when s̃0 is incorrect, 1/2 of the 2n−1 guessed parity bits are

wrong on average. Using above equations, the error probability in the subsequent rounds

up to M samples can be written recursively as

r(2) = P1 ·
2η

2n
+ (1−P1) ·

2η + (2n − 2)/2

2n
,

r(3) = P2 ·
3η

2n
+ (1−P2) ·

3η + (2n − 3)/2

2n
,

...

r(M) = PM−1 ·
Mη

2n
+ (1−PM−1) ·

Mη + (2n −M)/2

2n
. (17)

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

n=5, =0
n=10, =0
n=25, =0
n=25, =0.05
n=25, =0.1
2/3

n increases

FIG. 3. Success probability of the iterative LPN algorithm with respect to the number of samples

in which the parity guess function is obtained from the quantum LPN circuit and used in the

subsequent round.

For brevity, we denote η̃0 = Mη/2n and η̃1 = (Mη + (2n −M)/2) /2n throughout the

manuscript. We plot the success probability as a function of the number of sample for

various values of n and η in Fig. 3. If one increases epoch, the fidelity curve simply con-

verges faster to the one for n→∞. Thus, the number of samples needed to achieve desired

success probability is exponential in n.

In the following section, we show that an introduction of a simple policy for updating the

parity guess function, as done in reinforcement learning, significantly enhances the learning

performance.

IV. REINFORCEMENT LEARNING

A. Greedy algorithm

To improve the performance of the iterative algorithm introduced in the previous section,

we use the concepts of reinforcement learning, such as state, reward, policy and action. The

key addition to the previous iterative algorithm is the use of a greedy algorithm, which

always exploits current knowledge to maximize immediate reward, as the policy to make an

11

action. We refer to this algorithm as reinforcement-learning parity with noise (R-LPN).

The underlying idea of R-LPN can be described as follows. The state in each iteration

is the guessed bit string after performing the usual quantum LPN algorithm. The reward

is determined by the Hamming distance between the parity bits generated by the guess and

the parity bits of the real data. At Mth query, the learner obtains M guessed bit strings

as well as M reward values. The greedy algorithm then selects the guessed bit string that

maximizes the reward, and use it to construct the guessed quantum oracle. Our algorithm

can be viewed as a variational quantum algorithm as the guessed quantum oracle can be

parameterized with controlled-not gates and is updated in each iteration. The detailed

description of the R-LPN algorithm is provided below, and a schematic representation of

the algorithm is shown in Fig. 4.

Algorithm 2 Reinforcement LPN (R-LPN)

1: Make an initial guess of s as s̃0 = 0n

2: for m = 1 to M do

3: Collect (xm, f(xm))

4: if xm = 0n then

5: Set f(xm) = 0

6: for i = 1 to number of epoch do

7: Use s̃m−1 to implement the oracle in the quantum LPN algorithm and prepare

1√
2n

∑2n

j |xj〉 |g(xj)〉, where g(xj) = xj · s̃m−1 mod 2

8: Create a state |Ψ〉 = 1√
2n

(∑m
j=1 |xj〉 |f ′(xj)〉+

∑2n

j=m+1 |xj〉 |g(xj)〉
)

9: Apply Hadamard gates on all qubits

10: Measure the label qubit in the computational basis and post-select the state with the

measurement outcome of |1〉

11: Measure the query registers of the post-selected state in the computational basis

12: Set s̃m to the measured bit string

13: Generate m sets of guessed parity bits g
(j)
1:m, 1 ≤ j ≤ m using s̃1,. . . , s̃m

14: Calculate the Hamming distance, dH(g
(j)
1:m, f

′
1:m) ∀ 1 ≤ j ≤ m

15: Set s̃m−1 = arg min1≤j≤m dH(g
(j)
1:m, f

′
1:m)

16: Set s̃m = s̃m−1

12

1
2n

M

∑
j= 1

|xj⟩ | f′�(xj)⟩ +
2n

∑
j′�= M+ 1

|xj′�⟩ | g M(xj′�)⟩

}
Classical-Quantum (in RL language)

State
Preparation

H
H
H

… } s̃M

Reward

State

Policy π : s̃M = arg max
1≤ j≤ M

r (j)

Post-select 1Artificial data

{

True data
{

Action: Update �Ug

True parity

Generated parity

r(j) = 1 − dH(g (j)
1:M , f′�1:M)

H
H

…
H

|0⟩
|0⟩
|0⟩
|0⟩

�Ug
1
2 ∑

x∈ {0,1}n

|x⟩ | g M(x)⟩

(xM , f′�(xM))

FIG. 4. Schematic of the quantum-classical hybrid algorithm for solving the learning parity with

noise problem, explained by using the terminologies in reinforcement learning.

B. Numerical analysis

We analyze the performance of R-LPN by numerically calculating the error probability,

the probability to measure s̃M 6= s in the round with M samples, similar to the recursive

calculation shown in Sec. III C. The algorithm uses parity guess functions from all mea-

surements up to the present round, i.e., s̃1, . . . , s̃M . To construct the recursive formula, we

consider two situations. First, the set of parity guess functions does not contain the answer,

i.e., s /∈ {s̃1, . . . , s̃M}. This occurs with the probability pM =
∏M−1

j (1− (1− 2r(j))2),

where r(j) is the error probability at the jth round, and (1 − 2r(j))2 corresponds to the

probability to obtain s (see Eq. (14)). When the parity guess function is wrong, the prob-

ability to measure the wrong hidden bit string in the given round is η̃1 as explained in the

previous section.

When s ∈ {s̃1, . . . , s̃M}, we further consider two situations. First, M parity bits in

the training examples are error-free, which occurs with a probability of (1 − η)M . In this

case, given M linearly independent examples, which can be produced with the probability∏M−1
k=0 (1 − 2k−M) > 1/4 for any M > 1, there are d2n−Me choices out of all possible parity

guess functions s̃M ∈ {0, 1}n that can generate the same parity bit string as f1:M . Note

that when xj is uniformly zero, then f(xj) = 0 for any s. Thus, we exclude this example

when calculating the Hamming distance between the guessed parity bits and the true parity

bits. We define cM = (d2n−Me − 1)/(2n − 1) as the probability to pick a wrong parity

13

guess function that produces the same parity bits as s among 2n − 1 possible bit strings.

Since there are only M parity guess functions, the probability to obtain an incorrect parity

function is actually less than cM . However, we use cM to make a reasonable estimation. The

incorrectly guessed parity function produces (2n −M)/2 errors in the artificial parity bits

when averaged over uniformly random input.

If the true M -bit parity string, f ′1:M , contains errors, then the probability to obtain a

wrong parity guess function can be estimated as βM =
∑bMηe

k=1

(
M
k

)
cM . This means that for

simplicity, there are up to bMηe (nearest integer to Mη) errors in the true parity bit string.

Combining all cases considered above, the error probability – the probability to obtain an

incorrect parity guess function in the round with M examples – can be estimated as

r(M) =(1− pM−1)
[

(1− η)M cM ((2n −M)/2) /2n

+
(
1− (1− η)M

)
(η̃0(1− βM) + η̃1βM)

]
+ pM−1η̃1, (18)

where the initial error probability, r(1), is given in Eq. (16).

In the R-LPN algorithm, the time complexity is again dominated by state preparation,

for which the number of steps increases at least linearly with the number of samples as

mentioned in the previous section. The computation time for calculating the Hamming

distance between M guessed parity bit strings and the actual parity bit string is O(nM2).

Since these computation times depend on M , we focus on estimating the sample cost. Using

the above equation, the number of samples required for achieving P(s̃M = s) > 2/3, denoted

by M2/3, can be calculated numerically. Figure 5 shows M2/3 as a function of n for several

values of the error probability, η = {0, 0.1, 0.2}. For each error rate, the number of epoch

is given as 1, n, and n2. When n = 40, there are 240 ≈ 1012 possibilities for s. But even in

the presence of a relatively high error probability of 20%, having only about 104 examples

suffices to solve the problem. Figure 5 also suggests that the number of samples can be

further reduced by increasing epoch.

We compare M2/3 of I-LPN and R-LPN as a function of n for several values of the error

probability, η = {0, 0.1, 0.2}, in Fig. 6. In this comparison, the number of epoch is n2. The

result shows that R-LPN reduces the sample complexity by several orders of magnitude for

when n is only 15 or so, and this improvement continues to increase as n increases. When n is

about 15 to 30, the curves qualitatively suggests that R-LPN enhances the sample complexity

14

5 10 15 20 25 30 35 40

102

104

106 epoch = 1, = 0
epoch = 1, = 0.1
epoch = 1, = 0.2
epoch = n, = 0
epoch = n, = 0.1
epoch = n, = 0.2

epoch = n 2, = 0

epoch = n 2, = 0.1

epoch = n 2, = 0.2

FIG. 5. Number of samples required for achieving P(s̃M = s) > 2/3, denoted by M2/3 as a function

of the length of the hidden bit string, n, for various error rates, η = {0, 0.1, 0.2}. For each error

rate, the number of epoch is also varied among 1, n, and n2. The number of samples needed

increases (decreases) as the error rate (number of epoch) increases.

exponentially in n. However, our analysis does not provide a definitive conclusion about the

rate of improvement in the asymptotic limit.

C. Simulation

We use simulations to verify the performance of the R-LPN algorithm, and to compare

to known classical methods that are listed in Tab. I. Each iteration starts with the quantum

state of the form shown in step 7 of Alg. 2, using classical data that are provided uniformly

at random. The simulation then proceeds by following the subsequent steps in Alg. 2. For

a fixed value of s, all simulations are repeated 200 times to average over the set of examples

drawn uniformly at random.

15

5 10 15 20 25 30
100

102

104

106
 = 0
 = 0.1
 = 0.2

Epoch = n2

FIG. 6. Ratio between the numbers of samples required for achieving P(s̃M = s) > 2/3 in I-LPN,

denoted by M I
2/3, and in R-LPN, denoted by MR

2/3 as a function of the length of the hidden bit

string, n, for various error rates, η = {0, 0.1, 0.2}. For all calculations, the number of epoch is n2.

1. Data filtering

All simulations used an additional pre-processing step, which we refer to as data filtering,

as an optional attempt to filter out erroneous examples and improve the success probability.

Data filtering counts the number of occurrence of example pairs, (xj, f
′(xj)), denoted by oj.

Then, an example with a label k that appears less than some fraction of maxj(oj) times (i.e.,

ok < wmaxj(oj)/2) is discard. An intuitive motivation behind this procedure is that since

examples are randomly drawn from a uniform distribution, the same data can be drawn

multiple times and erroneous samples are less frequently queried than correct samples for

η < 1/2. The optimal choice of the filtering coefficient, w, depends on the error rate. For

example, when η = 0, such data filtering is not desired since all data are error-free. However,

in our simulations, we assume that η is unknown, and we used w = 0.4
√
dH(gM1:M , f

′
1:M)+0.8,

which was empirically found to perform well in overall for various values of η. This choice

means that the level of data filtering increases as the number of samples, and hence the

success probability, increases.

16

2. Results

We first simulate an R-LPN algorithm with a slight modification, which is intended to

save the memory and time cost for storing all M sets of guessed parity bits to calculate

their Hamming distances with respect to the real parity bits. Namely, only the guessed

parity bits from the previous iteration is kept in the memory, and the greedy algorithm

updates the parity guess function for the next round by only comparing the rewards given

by the present and the previous guesses. We compare the performance of this modified

algorithm to the originally proposed R-LPN by analyzing the success probability with respect

to the number of samples via simulations. The simulation results are depicted in Fig. 7 for

n = 6, 7, and 8 as an example, and show that the modified R-LPN does not introduce any

considerable change in the sample complexity, especially around the region for P(s̃M = s) =

2/3. Since the modified R-LPN algorithm uses only the current state for making an action

in the subsequent round, the simulation results of this algorithm are denoted by Markov in

the figure legend. Hereinafter, all simulations use the modified R-LPN, since it performs

similarly to the original version in terms of the sample complexity while the memory and

time cost for calculating the rewards does not increase with M .

Figure 8 shows the simulation results of the number of training samples required for

succeeding various LPN algorithms as a function of n for several values of the error rate,

η. The number of epoch is n2 in all simulations in this figure. The simulation results show

that the R-LPN algorithm performs better than the known classical algorithms, AL [19]

and BKW [20] (see Tab. I), in the regime of n ≤ 12. In this regime, the algorithm by

Lyubashevsky (denoted by L) [3] consumes the least amount of samples among the classical

methods. When η = 0, R-LPN appears to perform slightly worse than L. However, R-LPN

becomes advantageous for learning in the presence of the noise, especially as n increases.

As summarized in Tab. I, the run time of L is subexponentially greater than its sample

complexity. Moreover, the run time of BKW is comparable to its sample complexity and

the run time of AL increases exponentially with respect to n. However, the run time of

R-LPN is expected to be comparable to its sample complexity. Thus, we expect the R-LPN

algorithm to provide faster learning compared to the classical algorithms.

The R-LPN algorithm is also more resilient to noise as demonstrated in Fig. 9. The

simulation results show that the number of samples needed for succeeding aforementioned

17

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

n=6
n=6, Markov
n=7
n=7, Markov
n=8
n=8, Markov

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

n=6
n=6, Markov
n=7
n=7, Markov
n=8
n=8, Markov

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

n=6
n=6, Markov
n=7
n=7, Markov
n=8
n=8, Markov

FIG. 7. The plots show the probability to find a hidden bit string s in R-LPN algorithms as a

function of the normalized number of samples, M/2n. Dotted lines represent the simulation results

of the R-LPN algorithm described in Alg. 2, and solid lines represent the simulation results of the

modified R-LPN algorithm that keeps only the parity guess function from the previous round, and

labelled as Markov in the legend. Simulations are performed for (a) η = 0, (b) η = 0.1, and (c)

η = 0.2, and for n = 6, 7, and 8. The number of epoch is 30 in all simulations in this figure.

LPN algorithms as a function of the error rate, η, for various n. The number of epoch in all

simulations in this figure is n2. The R-LPN algorithm requires less number of samples than

AL and BKW in all instances in simulations. R-LPN and L algorithms perform similarly

for small n, but one can see that R-LPN prevails as n increases to 10. From this trend,

we speculate that the advantage of R-LPN over the classical algorithms in terms of the

robustness to classical noise can become greater as the problem size increases.

Note that by increasing the number of epoch, the number of required samples can be

further reduced, at the cost of increasing the run time.

3. ε-greedy Algorithm

We also tested an ε-greedy algorithm as the policy for making an action via simulation

with n ≤ 12. Here, s̃M that maximizes the reward is used to guess the quantum oracle

with a probability of 1 − ε, and a randomly guessed n-bit string is chosen as s̃M with a

18

2 4 6 8 10 12
0

50

100

150

200

of
 s

am
pl

es

R-LPN
AL
BKW
L

2 4 6 8 10 12
0

50

100

150

200

250

300

350

of

 s
am

pl
es

R-LPN
AL
BKW
L

2 4 6 8 10 12
0

100

200

300

400

500

of

 s
am

pl
es

R-LPN
AL
BKW
L

FIG. 8. Simulation results for the number of samples required for succeeding an LPN algorithm

as a function of n for (a) η = 0, (b) η = 0.1, and (c) η = 0.2. Curves without symbols represent

the simulation results for the R-LPN algorithm of this work. Simulation results of known classical

methods listed in Table I are also plotted and indicated by squares for AL, triangles for BKW, and

circles for L. The number of epoch is n2 in all simulations in this figure.

probability of ε. The simulation shows that the ε-greedy algorithm does not provide any

noticeable improvement.

V. ROBUSTNESS TO PAULI ERRORS

Without loss of generality, we assume that the eigenstates of the σz operator constitute

the computational basis. Then since the R-LPN algorithm performs the measurement in the

σz basis, it is not affected by any error that effectively appears as unwanted phase rotations

at the end of the quantum circuit.

According to Ref. [2], when independent bit-flip errors occur on the final state with a

probability ηx, a bit-wise majority vote on k post-selected bit strings gives an estimate ŝ

such that the error can be bounded as P(ŝ 6= s) < 4n exp(−kO(poly(1/2− ηx))). When

the R-LPN algorithm is completed, it outputs the same final state as in Ref. [2] with high

probability. Hence the above result can be directly applied to our algorithm for bit-flip

errors on the final state. In this case, the algorithm needs to perform the bit-wise majority

19

0 0.1 0.2 0.3
0

100

200

300

400

500

of
 s

am
pl

es

R-LPN
AL
BKW
L

0 0.1 0.2 0.3
0

100

200

300

400

500

600

of

 s
am

pl
es

R-LPN
AL
BKW
L

0 0.1 0.2 0.3
0

200

400

600

800

of

 s
am

pl
es

R-LPN
AL
BKW
L

FIG. 9. Simulation results for the number of samples required for succeeding an LPN algorithm

as a function of η for (a) n = 6, (b) n = 8, and (c) n = 10. Curves without symbols represent the

simulation results for the R-LPN algorithm. Simulation results of known classical methods listed

in Tab. I are also plotted and indicated by squares for AL, triangles for BKW, and circles for L.

The number of epoch is n2 in all simulations in this figure.

vote at each cycle of querying a sample, increasing the total run time. Therefore, quantum

noise in the R-LPN algorithm that effectively accumulates on the final state as bit-flip

errors with an error rate of ηx < 1/2 only increases the time complexity by a factor of

O(log(n)poly(1/(1/2− ηx))), while the sample complexity remains the same.

VI. CONCLUSION

The quantum speed-up in the learning parity with noise problem diminishes in the absence

of the quantum oracle that provides a quantum state that encodes all possible examples in

superposition upon a query. We developed a quantum-classical hybrid algorithm for solving

the LPN problem with classical examples. The LPN problem is particularly challenging as

it requires the exact solution to be found. Our work demonstrates that the concept of vari-

ational quantum algorithms can be extended for solving such problems. The reinforcement

learning significantly reduces both the sample and the time cost of the quantum LPN algo-

rithm in the absence of the quantum oracle. Simulations in the regime of small problem size,

20

i.e., n ≤ 12, show that our algorithm performs comparably or better than the classical algo-

rithm that performs the best in this regime in terms of the sample complexity. The sample

cost can be further reduced by increasing the number of epoch, at the cost of increasing the

run time. In terms of the vulnerability to noise, our algorithm performs better than classical

algorithms in this regime. Furthermore, time complexity can be reduced substantially, if an

efficient procedure for updating the quantum state is available.

The ability to utilize quantum mechanical properties to enhance existing classical methods

for learning from classical data is a significant milestone towards practical quantum learning.

In particular, whether the known advantage of oracle-based quantum algorithms can be

retained in the absence of the quantum oracle is an interesting open problem. We showed

that for the LPN problem, quantum advantage can be achieved with the integration of

classical reinforcement learning.

Our results motivate future works to employ similar strategies to known oracle-based

quantum algorithms in order to extend their applicability to classical data. For example,

extending the idea of the quantum-classical reinforcement learning to the learning with errors

problem [31] would be an interesting future work. This work only considered classical noise

and a simple quantum noise model, and detailed studies on the effects of actual experimental

quantum errors remains as the future work.

ACKNOWLEDGMENTS

We thank Suhwang Jeong and Jeongseok Ha for stimulating discussions. This work was

supported by the Ministry of Science and ICT, Korea, under an ITRC Program, IITP-2019-

2018-0-01402, and by National Research Foundation of Korea (NRF-2019R1I1A1A01050161).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

[1] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov 1984.

21

[2] Andrew W. Cross, Graeme Smith, and John A. Smolin. Quantum learning robust against

noise. Phys. Rev. A, 92:012327, Jul 2015.

[3] Vadim Lyubashevsky. The Parity Problem in the Presence of Noise, Decoding Random Linear

Codes, and the Subset Sum Problem, volume 3624 of Lecture Notes in Computer Science, pages

378–389. Springer, Berlin, Heidelberg, 2005.

[4] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In

Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC

’05, pages 84–93, New York, NY, USA, 2005. ACM.

[5] Krzysztof Pietrzak. Cryptography from learning parity with noise. In Mária Bieliková, Ger-

hard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György Turán, editors, SOFSEM

2012: Theory and Practice of Computer Science, pages 99–114, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[6] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.

Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a pho-

tonic quantum processor. Nature Communications, 5:4213, 07 2014.

[7] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of

variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, Feb

2016.

[8] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quantum autoencoders for

efficient compression of quantum data. Quantum Science and Technology, 2(4):045001, Aug

2017.

[9] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,

Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver

for small molecules and quantum magnets. Nature, 549:242, 09 2017.

[10] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J

Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala,

Antonio Mezzacapo, Peter Mller, Walter Riess, Gian Salis, John Smolin, Ivano Tavernelli, and

Kristan Temme. Quantum optimization using variational algorithms on near-term quantum

devices. Quantum Science and Technology, 3(3):030503, Jun 2018.

[11] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell,

N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C.

22

Peterson, G. Prawiroatmodjo, N. Rubin, Colm A. Ryan, D. Scarabelli, M. Scheer, E. A.

Sete, P. Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R.

Johnson, M. Reagor, M. P. da Silva, and C. Rigetti. Unsupervised Machine Learning on a

Hybrid Quantum Computer. arXiv:1712.05771, Dec 2017.

[12] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A,

98:032309, Sep 2018.

[13] Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-centric quantum

classifiers. arXiv:1804.00633, Apr 2018.

[14] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks.

Phys. Rev. A, 98:012324, Jul 2018.

[15] Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt. Reinforcement

learning with neural networks for quantum feedback. Phys. Rev. X, 8:031084, Sep 2018.

[16] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum Generative Adversarial Net-

works for Learning and Loading Random Distributions. arXiv:1904.00043, Mar 2019.

[17] Jonathan Romero and Alan Aspuru-Guzik. Variational quantum generators: Generative ad-

versarial quantum machine learning for continuous distributions. arXiv:1901.00848, Jan 2019.

[18] Jun Li, Xiaodong Yang, Xinhua Peng, and Chang-Pu Sun. Hybrid quantum-classical approach

to quantum optimal control. Phys. Rev. Lett., 118:150503, Apr 2017.

[19] Dana Angluin and Philip Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370,

Apr 1988.

[20] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,

and the statistical query model. J. ACM, 50(4):506–519, Jul 2003.

[21] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM J. Comput.,

26(5):1411–1473, Oct 1997.

[22] Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm, volume 4116 of Lecture

Notes in Computer Science, pages 348–359. Springer, Berlin, Heidelberg, 2006.

[23] Diego Ristè, Marcus P. da Silva, Colm A. Ryan, Andrew W. Cross, Antonio D. Córcoles,

John A. Smolin, Jay M. Gambetta, Jerry M. Chow, and Blake R. Johnson. Demonstration of

quantum advantage in machine learning. npj Quantum Info., 3(1):16, 2017.

[24] E. Knill and R. Laflamme. Power of one bit of quantum information. Phys. Rev. Lett.,

81:5672–5675, Dec 1998.

23

http://arxiv.org/abs/1712.05771
http://arxiv.org/abs/1804.00633
http://arxiv.org/abs/1904.00043
http://arxiv.org/abs/1901.00848

[25] Daniel K. Park, June-Koo K. Rhee, and Soonchil Lee. Noise-tolerant parity learning with one

quantum bit. Phys. Rev. A, 97:032327, Mar 2018.

[26] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory.

Phys. Rev. Lett., 100:160501, Apr 2008.

[27] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum random

access memory. Phys. Rev. A, 78:052310, Nov 2008.

[28] Fang-Yu Hong, Yang Xiang, Zhi-Yan Zhu, Li-zhen Jiang, and Liang-neng Wu. Robust quan-

tum random access memory. Phys. Rev. A, 86:010306, Jul 2012.

[29] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-OConnor, Michele Mosca, and

Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum RAM. New

Journal of Physics, 17(12):123010, 2015.

[30] Daniel K. Park, Francesco Petruccione, and June-Koo Kevin Rhee. Circuit-based quantum

random access memory for classical data. Scientific Reports, 9(1):3949, 2019.

[31] Alex B. Grilo, Iordanis Kerenidis, and Timo Zijlstra. Learning-with-errors problem is easy

with quantum samples. Phys. Rev. A, 99:032314, Mar 2019.

24

	Quantum-classical reinforcement learning for decoding noisy classical parity information
	Abstract
	I Introduction
	II Learning parity with noise
	III Naive application of quantum algorithm to classical data
	A Learning from a sparse set of training samples
	B Data span
	C Generation of artificial data with a parity guess function

	IV Reinforcement learning
	A Greedy algorithm
	B Numerical analysis
	C Simulation
	1 Data filtering
	2 Results
	3 -greedy Algorithm

	V Robustness to Pauli Errors
	VI Conclusion
	 Acknowledgments
	 Conflict of interest
	 References

