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Abstract
Machine learning has recently emerged as a fruitful area for finding potential quantum computational advantage. Many of the
quantum-enhanced machine learning algorithms critically hinge upon the ability to efficiently produce states proportional
to high-dimensional data points stored in a quantum accessible memory. Even given query access to exponentially many
entries stored in a database, the construction of which is considered a one-off overhead, it has been argued that the cost of
preparing such amplitude-encoded states may offset any exponential quantum advantage. Here we prove using smoothed
analysis that if the data analysis algorithm is robust against small entry-wise input perturbation, state preparation can always
be achieved with constant queries. This criterion is typically satisfied in realistic machine learning applications, where input
data is subjective to moderate noise. Our results are equally applicable to the recent seminal progress in quantum-inspired
algorithms, where specially constructed databases suffice for polylogarithmic classical algorithm in low-rank cases. The
consequence of our finding is that for the purpose of practical machine learning, polylogarithmic processing time is possible
under a general and flexible input model with quantum algorithms or quantum-inspired classical algorithms in the low-rank
cases.

Keywords Data structure for quantum machine learning · Input encoding · Query complexities · Smoothed complexity

analysis

1 Introduction

In recent years, there has been substantial interest in algo-
rithms based on “quantum linear algebra”, where quantum
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states are used to represent vectors with exponentially large
dimensions, which are manipulated by large matrices rep-
resenting quantum operations (Zhao et al. 2019; Gilyén
et al. 2018). A particularly fruitful domain of applying such
methods is quantum machine learning, where quantum algo-
rithms promise for exponential or high-degree polynomial
improvements on computational bottlenecks, or enhance-
ment in model expressiveness due to the ability to construct
kernels using access to exponentially large Hilbert spaces
(Aı̈meur et al. 2006; Lloyd et al. 2013; 2014b; Schuld
et al. 2014; Zhao et al. 2019; Dunjko and Briegel 2018;
Zhao et al. 2019; Zhao et al. 2019; Schuld and Killoran
2019; Tiwari et al. 2020; Dehdashti et al. 2020; Kübler
et al. 2019; Havlı́ček et al. 2019). Many of these me-
thods leverage quantum algorithms for solving linear sys-
tems that trace back to the seminal result of Harrow, Has-
sidim and Lloyd (2009). This algorithm provides a way
to generate quantum states proportional to A−1x, in time
logarithmic in the dimension of the vector x which was sub-
sequently improved to achieve exponentially better preci-
sion (Childs et al. 2017). However, as Aaronson pointed out
(Aaronson 2015), these quantum-assisted machine learning
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approach comes with several caveats relating to the sparsity
and conditioning of the matrix involved, and the structure of
the input vector. Crucially, nearly all the algorithms assume
access to a quantum accessible database which can pro-
duce quantum states with amplitudes proportional to the
classical input entries, which is referred to as amplitude
encoding. This requirement persists even under the reason-
able assumption that the loading and construction of the
required databases constitute a one-off overhead, and does
not contribute to the computational complexity analysis of
data processing.

A breakthrough came with the seminal work by Kereni-
dis and Prakash who provided the first end-to-end quan-
tum machine learning algorithm with explicit description
of quantum accessible data structure for efficient input
preparation, which was applied to recommendation systems
(Kerenidis and Prakash 2017). The same data structure was
subsequently applied to improve the performance of the
quantum linear system algorithm in dense cases (Wossnig
et al. 2018). The Kerenidis-Prakash (KP) model explicitly
stores the amplitudes in a binary tree structure. As such
in addition to the ability of realising amplitude encoding
for the row vectors of a matrix, the KP structure further
allows for a stronger ability for preparing classical probabil-
ity distributions proportional to vectors of entries squared –
so-called �2-sampling. From a classical perspective, intrigu-
ingly, recent results of quantum-inspired machine learning
algorithms (Tang 2018a; Gilyén et al. 2018; Tang 2018b;
Chia et al. 2018) have shown that assuming such a data
structure capable of efficient �2-sampling leads to equally
efficient classical algorithms in the low-rank cases. The KP
structure allows for input preparation both in the quantum
and classical cases with a logarithmic storage overhead. The
entries in the KP structure, i.e. the partial sums, are fixed
beforehand and stored in the data structure. As a result, spe-
cific vectors for which the correct partial sums are stored
can be directly accessed as amplitude-encoded quantum
state without post-selection. However, practical situations
may arise where computation and re-computation of the par-
tial sums is inefficient. For instance, it could be desirable to
generate input vectors collecting entries from differing rows
of a matrix stored in the data structure in statistical resam-
pling techniques for cross-validation, or specific entry-wise
functions are required for different algorithms using the
same input data. In such situations, a more flexible and gen-
eral input query model would have significant relevance.
Alternatively, some quantum machine learning algorithms
operate on an input model in which data is stored as entries
in density matrices and subsequently read out by exponenti-
ating density matrices and simulating them as Hamiltonians
(Lloyd et al. 2014a; Rebentrost et al. 2014). This method
requires explicit encoding and storage of data as quantum
mixed states, and restricted by a similar rigidity as the KP
model.

2 Input Model and Amplitude Encoding

In this work, we examine the generic input model
where only entry-wise access is allowed, and prove using
smoothed analysis that both quantum amplitude encoding
and classical �2-sampling can be achieved with constant
queries in realistic machine learning application with
moderately noisy input data. In the quantum setting, entry-
wise access is equivalent to having access to an oracle Ox
that implements the unitary transformation,

∑

i,j

αij |i〉|j〉 Of(x)−−→
∑

i,j

αij |i〉|j + f (xi)〉. (1)

whereas in the classical setting, it is the standard random
access memory that provides the mapping, i → f (xi).
Without committing to an ad hoc data structure either in the
form of the KP model or density matrix access, primitive
input assumption reserves the flexibility of loading the
data as arbitrary entry-wise functions. We assume in the
sequel f (xi) = xi for simplicity. Generating the exact
amplitude-encoded states (or �2-samples) from the entry-
wise oracle, by the Grover (or unstructured) search lower
bound requires �(D1/2) (�(D), respectively) calls for
x ∈ R

D . This observation is a common critique on
early quantum machine proposals which did not explicitly
address the issue of initial state preparation, yet attempted
to argue for polylogarithmic runtimes. Here we show that,
in fact, for practical machine learning where the algorithm
is robust against moderate input noise represented by
entry-wise perturbations, quantum state preparation based
on amplitude encoding has high success probability with
only constant query cost. Furthermore, By an analogous
argument, we also show that low-rank quantum-inspired
algorithms operating under the same practical assumptions
do not require access to special data structures to attain
polylogarithmic runtime.

For quantum amplitude encoding, our objective is to
prepare the state

|x〉 = ‖x‖−1
2

D∑

i=1

xi |i〉 (2)

with amplitudes proportional to the entries xi of x ∈
R

D , given access to an oracle that realises the mapping
in Eq. 1. Quantum random access memory (QRAM)
provides one way to implementing such an operation. In
this case, x is stored classically and one is able to access
the corresponding memory cells in quantum superposition
(Giovannetti et al. 2008). In other cases, the oracle can
also be constructed if xi is efficiently computable given the
index i. To produce |x〉 probabilistically for any x, one can

start with the state D− 1
2
∑

i |i〉|0〉 as the query state for the
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operation in Eq. 1 to obtain D− 1
2
∑

i |i〉|xi〉. An ancillary
qubits is prepared in state |0〉 and then conditionally rotated
based on the second register to obtain

D− 1
2
∑

i

|i〉|xi〉
(√

1 − |xi |2|0〉 + xi |1〉
)

, (3)

where we have assumed for simplicity that x is normalised
such that |xi | ≤ 1. Performing a second oracle call to
uncompute the registers |xi〉, and post-selecting onto |1〉
results in the desired state |x〉.

A known barrier to state preparation in the oracle setting
is the probability of projecting onto the correct subspace in
the final step, which is given by D−1 ∑

i |xi |2. When the
entries of x are of similar magnitude, |x〉 can be prepared
using a constant number queries. However, in the case
where a few entries are much larger than the rest, the
lower bounds on unordered search (Boyer et al. 1996)

imply that the corresponding state requires �
(√

D
)

oracle

queries (Soklakov and Schack 2006). This argument can be
extended to the case where it is only necessary to prepare
any |x′〉 such that |x′ − x|2 is sufficiently small.

However, here we make the observation that if real-
valued data comes from a realistic source subjective to
noise, such as datasets of ocean temperatures (Interna-
tional Comprehensive Ocean-Atmosphere Data Set) and
geostatistics (Practical Geostatistics 2000 Data Sets), and
the algorithm is robust against such realistic input noise,
then quantum state preparation can be done efficiently with
constant oracle queries. Formally, our argument is based
on analysing the smoothed complexity for the amplitude
encoding procedure when the input vectors are subjective
to small perturbations. The smoothed complexity was intro-
duced by Spielman and Teng (2009), originally to explain
the efficient performance of the simplex algorithm for lin-
ear programming in typical real-world scenarios. The same
line of reasoning was subsequently applied to analyse the
practical efficiency of various important algorithms in math-
ematical programming, machine learning, numerical anal-
ysis discrete mathematics and combinatorics optimisation
(Spielman and Teng 2001).

3 Smoothed Analysis

The key intuition here is to analyse the performance of
the algorithms when the worst-case data input is subject to
noise, which is represented by a small Gaussian element-
wise perturbation. Following the convention of Spielman
and Teng (2009), we state the definition of smoothed
complexity and then prove that preparing amplitude-
encoded states has a constant smoothed complexity:

Definition 1 (Smoothed Complexity (Spielman and Teng
2009)) Given an algorithm A with an input domain �D =
R

D , the smoothed complexity of A with σ -Gaussian
perturbation is defined as

Smoothedσ
A(D) = max

x∈[−1,1]D
Eg[TA(x + g)], (4)

where g is a Gaussian random vector with variance σ 2, and
TA denotes the runtime of A.

Furthermore, A is said to have polynomial smoothed
complexity if there exist positive constants k1, k2, D0, σ0

and c such that for all D ≥ D0 and 0 ≤ σ ≤ σ0, it holds that

Smoothedσ
A(D) ≤ cσ−k2Dk1 . (5)

Theorem 1 Given oracle access, Ox to the entries of x ∈
R

D , the amplitude encoding of x into |x〉 has smoothed
complexity O(1/σ).

Proof Let A be the algorithm that maps D− 1
2
∑

i |i〉|xi〉
into |x〉 = ‖x‖−1

2

∑D
i=1 xi |i〉. After applying the controlled

rotation and uncomputing the second register, the optimal
success probability of projecting the state,

D− 1
2
∑

i

|i〉
(√

1 − |xi |2|0〉 + xi |1〉
)

(6)

onto the desired state |x〉 is given by PA = O(
‖x‖2√

D
) with

fixed-point amplitude amplification (Gilyén et al. 2018).
From the definition of smoothed complexity, Eq. 4, in the
worst case, we have

Smoothedσ
A(D) = maxx∈[−1,1]D Eg[TA(x + g)]

= (
minx∈[−1,1]D Eg[PA(x + g)])−1

, (7)

where the second line follows from the fact that the expected
runtime is inversely proportional to the expected success
probability. Note that since PA(x + g) = O(

‖x+g‖2√
D

) and

g is a zero-mean Gaussian random vector, the minimum of
expected success probability is obtained at x = 0. We thus
have

Smoothedσ
A(D) = (

Eg[PA(g)])−1

= D
1
2 (E[‖g‖2])−1 .

= O
(

1
σ

)
, (8)

where the last equality followed by noting that the random
variable, ‖g‖2, by definition follows a chi distribution with
mean,

E[‖g‖2] = √
2σ

�((D + 1)/2)

�(D/2)
= O(σ

√
D). (9)
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The result of Eq. 8 implies that when the input vector
is subjective to a certain level of noise represented by an
element-wise Gaussian perturbation, the query complexity
of preparing amplitude encoding is independent of the
dimensionality.

We have seen that the quantum state preparation based
on amplitude encoding has a constant runtime given that the
input is subjective to a finite variance Gaussian noise. An
analogous reasoning applies in the fully classical setting.
Classically, particularly in the context of quantum-inspired
ML algorithm, �2-sampling can be achieved by simple
rejection sampling: an entry is chosen uniformly at random,
and a value xj is read (we assume xj ≤ c, and c is a
known constant upper bound on the entries). Then a random
real is sampled from the interval (0, c), and if this value is
below |xj |2, the value j is output. Otherwise the process
is repeated. As desired, the acceptance probability of the
element j is given by P

accept
j = |xj |2, which leads to the

following average runtime for producing an �2-sample from
the correct distribution:

E[TR] =
⎛

⎝ 1

D

∑

j

P
accept
j

⎞

⎠
−1

= D

⎛

⎝
∑

j

|x|2j
⎞

⎠
−1

. (10)

We can make an analogous smoothed analysis for this
classical rejection sampling process. Denoting R as the
algorithm that performs rejection sampling, we have

Smoothedσ
R(D) = max

x∈[−1,1]D
Eg[TR(x + g)]

= D (E[‖g‖2])−2 .

= O
(

1

σ 2

)
. (11)

Thus the smoothed complexity of preparing quantum
amplitude encoding from QRAM queries and classical
�2-samplings from classical RAM are O( 1

σ
) and O( 1

σ 2 )

respectively given a σ 2-variance Gaussian perturbation
on the input. The quadratic quantum improvement in
the dependency on σ comes directly from amplitude
amplification.

4 Element-Wise Perturbation: A Closer Look

In practical settings, the effect of a noisy element-wise
perturbation on input data is well-studied in the machine
learning literature (Nettleton et al. 2010; Kalapanidas et al.
2003; Cesa-Bianchi et al. 2011). As a specific example,
in the domain of computer vision, Dodge and Karam
(2016) examined the effect of various synthetic noise effects
on the performance of popular deep learning computer
vision models such as Caffe, VGG16, VGG-CNN-S, and
GoogLeNet. Two relevant results from the work, the pixel-
wise Gaussian noise and a change in contrast to the image,

make a little effect on the performance. While adversarial
attacks aim to find the worst-case corruption which leads
to misclassification, Dodge and Karam (2016) empirically
show that random perturbations of a half pixel and small
shifts in the pixel values will likely have a negligible effect.
Furthermore, if the entry-wise perturbation represents a
systematic shift in the data points, it has no effect on a large
class of useful machine learning models. For examples,
kernel methods such as Gaussian processes, support vector
machines, determinantal point processes and Gaussian
Markov random fields, to name but a few, most commonly
use stationary kernels which are shift invariant (Genton
2001). More generally, any digital data processing with
floating-point arithmetic only makes sense if the overall
results of such a computation maintain their validity when
the features of the input vector had been perturbed below the
machine precision. This is also practically reasonable, since
real-world data come from measurements of finite precision.

An element-wise perturbation can be represented by
an off-set in the ∞-norm induced distance between the
original vector x and the perturbed vector x′. Assuming
that the data analysis process, along with the particular
instance of the input data, is robust against such small ∞-
norm perturbations, we can in fact choose to work with
the vector entries x′

i which are half-integer multiples of
the base precision ε. Such that x′ is chosen to be the
closest representable vector to x (as shown in Fig. 1), which
satisfies |x′ − x|∞ ≤ ε

2 and the distance from the true
value of the data is less than ε. This offset rounding can
be implemented in the oracle access stage, or effectively
realised at the controlled rotation stage, as discussed
earlier. The aforementioned robustness assumption in data
processing implies the analysis of results are insensitive
to such offset rounding. In the quantum setting, the key
benefit in using the offset rounding is that, since the exact
representation of 0 is not included in this offset rounding
convention, we have |xi | ≥ ε

2 and the probability of the final
projection step succeeding is at least

D−1
∑

i

|xi |2 ≥ ε2

4
, (12)

and hence independent of D. Inverting the lower bound
of success probability leads to an upper bound of number
of expected queries of O(1/ε2). The query complexity
can be improved to O(1/ε) using fixed-point quantum
amplitude amplification based on the methods presented in
Gilyén et al. (2018), which achieves the same optimal query
complexity as in Yoder et al. (2014), but without introducing
an additional phase that could be undesirable if multiple
vectors are required to be prepared in superposition. Note
that in some cases, a systematic perturbation of data-vectors,
by utilising, say, a positive sign offset (+ε/2) to data points
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Fig. 1 Numerical rounding conventions. In the standard rounding
convention scalar values are rounded to the nearest integer multiple
of precision ε. Alternatively, we can consider an offset rounding
convention, where the rounding is to the nearest half-integer multiple
of ε. As a result, this numbering convention does not contain an exact
representation of 0. In either scheme, the rounded value is always
within ε

2 of the true value

is undesirable. In these cases, one can opt for a near-
white noise offset using either a suitable pseudo-random
number generator seeded by the memory location being
queried or by adding random data wi , performing |i〉|xi〉 →
|i〉|xi + wi〉. Critically, however, the number of oracle
queries necessary to successfully prepare the state always
has an upper bound that is independent from the database
size.

It is worth cautioning that there exist scenarios,
especially in computational learning theory (Arunachalam
and de Wolf 2017), for which the robustness assumption
against entry-wise data perturbation does not generally
hold. For instance, if the input vector contains zeros with
special meanings such as indicating a canonical vector or
representing unknown values, the model may be sensitive
toward shifting the zeros to even a small value. For instance,
when loading a high-dimensional data point with constant
or polylogarithmic sparsity, a systematic shift on the zero
entries will produce a state vector converging to a uniform
superposition, hence losing necessary information about
the original input for meaningful analysis. Nevertheless,
the constraint that |x′ − x|∞ ≤ ε rather than requiring
closeness in the 2-norm is still meaningful to a large class
of practical machine learning tasks. We should also note
that the quantum state preparation discussed here is useful
to quantum algorithms which aim to improve the efficiency
of conventional classical algorithms but otherwise realise
the same input-output functionality, such that the quantum
algorithms inherit the desired robustness property of their
conventional counter-parts.

5 Conclusion

In summary, we have shown that any application which
is robust under small ∞-norm perturbations, as it is the
case in most practical machine learning, allows for efficient
input preparation, both in the sense of classical �2-sampling
and the coherent amplitude-encoded state preparation. In

the context of quantum machine learning, this suggests
that the caveat related to state preparation raised by
Aaronson (2015) can generally be overcome for a wide
range of practical use-cases, due to the natural robustness
assumption. In the context of quantum-inspired machine
learning, this finding removes the necessity of special data
structures that involve the storage of partial sums. Hence
we have provided a concrete argument for the feasibility of
input preparation for both quantum and quantum-inspired
algorithms for machine learning under the most general and
flexible entry-wise query access model, which we believe
will present both conceptual merit and practical utility to the
promising exploration between quantum information and
machine learning.
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