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Abstract
At the High Luminosity Large Hadron Collider (HL-LHC), traditional track reconstruction techniques that are critical for
physics analysis will need to be upgraded to scale with track density. Quantum annealing has shown promise in its ability
to solve combinatorial optimization problems amidst an ongoing effort to establish evidence of a quantum speedup. As
a step towards exploiting such potential speedup, we investigate a track reconstruction approach by adapting the existing
geometric Denby-Peterson (Hopfield) network method to the quantum annealing framework for HL-LHC conditions. We
develop additional techniques to embed the problem onto existing and near-term quantum annealing hardware. Results
using simulated annealing and quantum annealing with the D-Wave 2X system on the TrackML open dataset are presented,
demonstrating the successful application of a quantum annealing algorithm to the track reconstruction challenge. We
find that combinatorial optimization problems can effectively reconstruct tracks, suggesting possible applications for fast
hardware-specific implementations at the HL-LHC while leaving open the possibility of a quantum speedup for tracking.

Keywords Quantum annealing · High energy physics · Optimization · Pattern recognition · Adiabatic quantum computing

1 Introduction

Track reconstruction is a critical and computationally
intensive step for data analysis at high energy particle
accelerator experiments (The HEP Software Foundation
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2019). The track of a charged particle within a magnetic
field is locally approximated by a helix; measurement of
the curvature of this helix enables the determination of the
components of the particle’s momentum that are transverse
to the magnetic field. Furthermore, in collider physics,
tracks are crucial for a variety of measurements such
as reconstruction of decay vertices (Collaboration 2014),
identification of jet flavor (Chatrchyan and et al 2013;
Sirunyan and et al 2018; Aad and et al 2016; Aaboud and
et al 2018), pileup mitigation (Tech. Rep. CMS-PAS-JME-
14-001 2014; Khachatryan and et al 2015; Sirunyan and et
al 2019) and are particularly important in complementing
calorimeter measurements at low energy.

The High-Luminosity LHC (HL-LHC) upgrade, which
is expected to be completed in 2026, will increase the
number of simultaneous collisions (pileup) per proton bunch
crossing from approxim40 to up to 200 (Apollinari et al.
2017). Under these conditions, conventional algorithms,
such as a Kalman filter, scale worse than quadratically
with respect to the number of hits and are expected to
require excessive computing resources (The HEP Software
Foundation 2019). A variety of alternatives to current
particle tracking methods are being pursued (Cerati et al.

/ Published online: 2 November 2021

Quantum Machine Intelligence (2021) 3: 27

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-021-00054-w&domain=pdf
http://orcid.org/0000-0002-4153-8646
mailto: azlokapa@caltech.edu


2018; Funke et al. 2014; Farrell and et al. 2018) to tackle the
enhanced combinatorics of tracking at the HL-LHC.

It is an open question as to whether quantum annealing
(QA) implementable in current hardware offers any scaling
speedupover classicalmethods.Nonetheless, for specific op-
timization problems, quantum annealing (Kadowaki and
Nishimori 1998) outperforms classical heuristics like sim-
ulated annealing (SA) (Farhi and Goldstone 2002; Albash
and Lidar 2018), and competitive performance has already
been demonstrated for certain machine learning tasks (Mott
et al. 2017; Li et al. 2018). It can present a promising avenue
for particle tracking if we represent it as an appropriate
optimization problem. In this work we describe a prototype
for a charged particle track reconstruction method using a
programmable quantum annealer.

2 Track reconstruction as a QUBO

2.1 Problem construction

The problem of track reconstruction can be formally
stated as follows: given a set of hits (data from detector-
particle interactions) with different spatial positions, the
goal is to cluster them into collections of hits that come
from the same particle. The current methods used for
tracking can be broadly classified into sequential and
global methods. Sequential methods construct tracks one
by one: for example, the road method (Strandlie and
Fruhwirth 2010) and the Kalman filter (Billoir 1984).
Global methods construct all tracks at once and are, at the
core, clustering algorithms in some feature space such as
for example the Hough transform (Hough 1959; Cheshkov
2006) and Hopfield network (also called the Denby-
Peterson network (Denby 1988; Peterson 1989; Stimpfl-
Abele and Garrido 1991)). Most of these methods scale
worse than quadratically with the number of tracks per
event. In particular, the scaling of the combinatorial track
finder algorithm as a function of the number of concurrent
proton-proton interaction per bunch crossing in the LHC
(referred to as “pileup”) would no longer be feasible at
higher track density (Cms tracking pog performance plots
for 2017 with phasei pixel detector 2017).

Using quantum annealing (QA), we can solve certain
combinatorial optimization problems (Farhi et al. 2000).
Any quadratic unconstrained binary optimization (QUBO)
problem can be naturally mapped to an Ising spin problem
and can be encoded into the machine Hamiltonian (Lucas
2014). QUBO problems can be formally expressed as:

min
X

E(X) =
N∑

i

hiXi +
N∑

i<j

JijXiXj , (1)

where Xi ∈ {0, 1} are the components of X, hi ∈ R

represents an external interaction, and Jij ∈ R represents
a two-body interaction. The objective is to find the
assignment of X that minimizes E. This becomes the
Hamiltonian of an Ising model after replacing each Xi by
1
2 (si + 1), where si ∈ {−1, 1}, and dropping the resulting
constant term 1

2

∑
i hi + 1

4

∑
i<j Jij .

We map the track reconstruction problem to a QUBO
problem through a procedure motivated by the Denby-
Peterson method (Denby 1988; Peterson 1989). However,
we make modifications to improve its performance for
the HL-LHC, adding specific terms to the QUBO that
correspond to LHC-type detector geometry and conditions.
Finally, we present classical pre-processing heuristics that
are computationally efficient, allowing us to evaluate the
track reconstruction problem on a programmable quantum
annealer and using simulated annealing (SA).

We use data from the TrackML Particle Tracking
Challenge on Kaggle (Calafiura and et al 2018), simulating
the HL-LHC. The open dataset consists of 8850 events
each consisting of approximately 105 hits which cluster to
about 104 tracks. Around 15% of the data is noise, with hits
corresponding to no tracks. We use the spatial data along
with the ground truth tracks to assess the performance and
accuracy of the algorithm.

2.2 Denby-Petersonmethod

The Denby-Peterson (DP) track reconstruction
method (Denby 1988; Peterson 1989) interprets the track
reconstruction problem as an track segment classifica-
tion problem. It has been earlier proposed and validated
for the ALEPH (Stimpfl-Abele and Garrido 1991),
ARES (Baginyan et al. 1994), and ALICE (Pulvirenti et al.
2004) experiments with promising results. More recently,
the method has been deployed in the LHCb experiment
muon system (Passaleva 2008).

The DP method optimizes an energy function that
resembles a QUBO. Before briefly describing the original
algorithm, we schematically show its intended results in
Fig. 1. We begin with edges between pre-selected pairs of
hits (top of Fig. 1). After optimizing the DP energy function,
we expect a value of 1 to be assigned to all correct edges
(bottom of Fig. 1) and a value of 0 to be assigned to all
incorrect edges.

Let the set S contain N binary variables sab representing
all unique edges between a hit a and a hit b, subject
to the constraint that hit a is closer to the center than
hit b (for uniqueness). If sab = 1 then the two
hits are assumed to have been generated by the same
particle.

Each term of the energy function is designed for
geometric rewards and penalties weighted by parameters α
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Fig. 1 Projection in the transverse plane of 50 tracks from one event
in the TrackML dataset. In the Denby-Peterson algorithm, all pre-
selected potential edges are considered (top), and only the relevant
ones remain after optimization (bottom)

and β, biasing the tracks to be composed of short track
segments that lie on a smooth curves with no bifurcations.
Given the Cartesian angle θabc between the two line
segments when they are transformed into cylindrical
coordinates (i.e., helical tracks appear as straight lines as
in the rz-plane), line segment lengths rab, rbc, and a λ to

distinguish similar angles, the total energy of any given set
S is given by:

E = −1

2

[ ∑

a,b,c

(
cosλθabc

rab + rbc

sabsbc

)

−α

⎛

⎝
∑

b �=c

sabsac +
∑

a �=c

sabscb

⎞

⎠ (2)

−β

⎛

⎝
∑

a,b

sab − N

⎞

⎠
2 ]

.

Although the DP method offers a good starting point
for tracking, several modifications can be made to the
QUBO to provide it with additional information describing
the HL-LHC configuration. In particular, we can encode
expectations of the particles’ trajectories and the detector
geometry to simplify the optimization problem, enabling
larger events to be successfully annealed.

2.3 Modified QUBO for HL-LHC

We begin with the same QUBO formulation:

E = −1

2

[ ∑

a,b

(
W reward

ab − W
penalty
ab

)
sab (3)

+
∑

a,b,c

(
U reward

abc − U
penalty
abc

)
sabsbc

]
.

We define the geometric reward to match the helical tracks
observed in the LHC. If segments sab and sbc share a point
b, the reward is given by (see Fig. 2):

cosλ(θabc) + ρ cosλ(φabc)

rab + rbc

, (4)

where φabc is the azimuthal angle between the line
segments in rectangular coordinates (i.e., helical tracks
appear helical as in Fig. 1). Since we wish to track charged
particles moving in a uniform magnetic field, we expect

a

b c

rab
rbc

abc

Fig. 2 Representation of three hits (a, b, c), the segments (rab , rbc)
and the opening angle in cylindrical coordinate θabc. The angle φabc

(not represented) is measured in the transverse plane
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them to trace helical paths. The θabc term models this
expectation, while the φabc term biases tracking towards
high-momentum particles with weight ρ. By dividing by
track length, we bias the tracking algorithm to favor a
chain of short track segments. Note that we standardize
the space in r, φ, z by dividing by characteristic lengths
1000, π and 1000 respectively so the tracking is not
biased in any particular coordinate direction. Furthermore,
we threshold the edge affinity term to encourage a
sparse graph for annealing, setting the reward weight to
0 if cosλ(θabc) < τ for a free parameter threshold
τ = 0.996.

As in the original DP method, we add a penalty for
bifurcation:

∑

b �=c

sabsac +
∑

a �=c

sabscb (5)

The two sums over b �= c and a �= c correspond to an
inhibition of sharing hits at the beginning and the end of the
segment respectively.

Furthermore, as particles are created in a small region
(5.5 mm in the TrackML open dataset; Calafiurs et al. 2018)
along the z axis close to the origin, segments are expected
to point towards the origin in the rz-plane. We model these
expectations of the z-intercept by extrapolating pairs of line
segments and applying a penalty if they do not intercept
near the origin. To extrapolate the connected pair of track
segments (for a more precise estimate of the z-intercept
than extrapolating a single pair of hits), we consider the
cross-term between sab and sac rather than a single track
segment.

∑

a,b,c

(
zc − zc − za

rc − ra
rc

)ζ

sabsbc. (6)

We propose a prior probability bias P(sab) of an edge
being true based on its orientation in the rz-plane, adjusted
by a constant inhibition term. Hence, we add a final term to
our QUBO:

∑

a,b

(βP (sab) − γ ) sab, (7)

where the prior probability P(sab) is calculated using a
Gaussian kernel density estimation (KDE) of training data,
described in more detail in Supplementary Information.

The final QUBO incorporating all terms is given by:

E = −
∑

a,b,c

(
cosλ(θabc) + ρ cosλ(φabc)

rab + rbc

)
sabsbc

+ η
∑

a,bc

(
zc − zc − za

rc − ra
rc

)ζ

sabsbc

+ α

⎛

⎝
∑

b �=c

sabsac +
∑

a �=c

sabscb

⎞

⎠ (8)

−
∑

a,b

(βP (sab) − γ ) sab.

The parameters are optimized by Bayesian optimization,
sampling regions of the parameter space that are expected
to provide the largest improvement in the objective function
according to Bayesian inference. The optimization was
run with 10 random starts to establish the initial prior
probabilities, and then a total of 100 parameter sets were
sampled on TrackML events with 500 particles/event to
maximize the F1 score (the harmonic mean between
purity and efficiency) using SA. The optimal values are
summarized in Table 1.

2.4 Heuristic pre-processing and problem
decompositionmethods

Single sensors are assembled with enough overlap to offer
an hermetic coverage within each layer. The high energy
produced particles might therefore generate multiple hits
per layer. Duplicate hits can be removed empirically with
geometrical considerations and minimal assumptions on the
track parameters; we do use the ground truth information
stored in the Monte Carlo event simulation to assist the
processing. The additional hits can be added at limited

Table 1 Parameters that enter the definition of the final QUBO (see
Eq. 8)

Parameter Value Description

λ 13.17 Track angle separator

ρ 5.00 High-momentum bias

η 14.41 Beam spot bias

ζ 1.79 Beam spot separator

α 86.20 Bifurcation penalty

β 20.91 Edge alignment penalty

γ 9.79 Total edge count penalty

The values are obtained using Bayesian optimization for best F1 score
optimizing the QUBO with SA. The description corresponds to what
term of the QUBO the parameters are driving
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extra cost during post-processing, so we consider this
simplification justified. Removing such closely spaced hits
effectively normalizes the distance between adjacent hits,
allowing a single set of parameters to be chosen in the
QUBO formulation.

Note that pattern recognition is performed in both the
barrel (central or low pseudorapidity region) and endcap
(edge or high pseudorapidity regions) detectors despite the
higher density of tracks. The detector geometry is more
complex in the barrel–endcap transition regions, in that
tracks no longer travel through layers sequentially, which
requires more complex heuristic methods.

To anneal an entire event at the HL-LHC, we would
require a fully connected quantum annealer with a qubit for
each candidate edge. Given 105 hits, this corresponds to a
total of 1010 qubits (edges). This is well beyond the size of
current and near-term quantum annealers, currently limited
to a few thousand qubits. Similar issues are frequently
encountered in other domains, and problem decomposition
methods are therefore an important and active area of study
in QA, based, e.g., on the belief propagation or divide-and-
conquer algorithms (Bian et al. 2016). Here, to address the
same need, we develop alternative heuristic methods with
time complexity O(h2) where h is the number of hits, to
reduce the number of edges and hence the number of qubits
required. This ultimately allows events with 103 to 104 hits
to be annealed on a quantum annealer with only 33 fully
connected logical qubits. Since iterating over the data to
construct a QUBO problem already runs in O(h4) time (we
must iterate over all pairs of edges), these additional pre-
processing heuristics do not significantly add computational
time as the event size increases. Importantly, the complexity
analysis is done without considering any possible speedup
from parallel computation.

To limit the possible number of edges, we divide the
event up into 32 overlapping sectors in the xy-plane, where
each sector is 1/16th of the full azimuthal angle and half-
overlaps with its neighboring sectors. In the TrackML
dataset, we find that > 99% of edges are within a single
sector, and thus accurately solving individual sectors would
guarantee correct reconstruction of over 99% of the event
in post-processing. We then apply the procedure consisting
of selecting candidate edges with Gaussian kernel density
estimation followed by subdividing the QUBO into smaller
optimization problems (see Fig. 3).

To provide a general method for detector geometries
beyond that of the TrackML dataset, we use Gaussian kernel
density estimation (KDE) to determine the prior probability
that a given edge between two hits is true using data samples
outside the test set. Since tracks typically originate from
the interaction point near the origin, we train the Gaussian
KDE on the z-intercept and the angle in the rz-plane of line
segments based on ground truth in the TrackML data.

Annealing 
Classical: O(exp(ch2))

Quantum: O(?)

Disjoint sub-graph 
flood-fill search 

O(h2)

QUBO construction 
O(h2)

Singlet selection 
with Gaussian KDE 

O(h2)

4

Fig. 3 Summary of the heuristic methodology for reconstruction.
Each step in classical pre-processing has complexity O

(
h2

)
due to

iterations over edges while QUBO construction has O(h4) scaling due
to iterating over pairs of edges, where h is the number of hits

We apply a cut on the Gaussian KDE to reduce the
size of the QUBO, yielding 93% of all the true edges
with approximately 1% purity. Given h hits, this has time
complexity O

(
h2

)
as we traverse over all edges. We may

then construct the QUBO outlined earlier, again traversing
all pairs of edges with complexity O

(
h4

)
.

Since we wish to anneal our problem using a small
number of qubits, we further subdivide the problem into
disjoint sub-graphs, separating individual communities of
hits connected by edges. To do so, we perform a flood-
fill search (Torbert 2016) to label each edge and prune
the candidate edges from each node to only include the 5
edges with the highest single-edge biases in the QUBO.
Thus, this sub-division procedure also runs in time O

(
h2

)
.

We proceed to anneal the multiple QUBO problems with
the number of problems scaling like the number of sub-
graphs, i.e., as O(h2) since the sub-graphs divide the event
into disjoint edge communities. The sub-graphing process
is further detailed in the Supplementary Information.

2.5 Annealing procedure

Due to the QUBO construction of assigning each possible
edge to a variable in the QUBO problem, we expect SA
with no pre-processing to solve the tracking problem in
exponential time with respect to the number of edges h2,
i.e., O

(
exp

(
ch2

))
for a constant c > 0. After our sub-

graphing procedure, we divide the event into K = O(h2)

sub-graphs, and we expect total annealing time to grow
as

∑K
i=1 exp (cmi) where mi is the number of edges in

sub-graph i. Hence, the overall scaling would depend on
the distribution of mi , as analyzed in the Supplementary
Information.

Since the sub-graphing procedure only reduces the
complexity of the annealing (by dividing the larger QUBO
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into smaller sub-QUBOs), the procedure’s complexity is
bounded from above by O

(
exp

(
ch2

))
. To verify this,

we use SA and measure the convergence time as a
function of the distribution of sub-graph sizes, as shown in
Supplementary Information.

Although QA is not thought to generally yield a ground
state solution to a QUBO problem in polynomial time, it
may reduce the size of the constant c in the time complexity∑K

i=1 exp (cmi), potentially offering a significant speedup
over classical methods (Boixo S. et al. 2014; Rønnow
et al. 2014). To assess the possibility of a quantum
speedup, we implement our procedure on a programmable
quantum annealer built by D-Wave Systems Inc. Bunyk
et al. (2014) and housed at the University of Southern
California’s Information Sciences Institute. The D-Wave 2X
architecture has 1,098 superconducting flux qubits arranged
in a Chimera graph, in which each qubit is coupled to at
most 6 others. To increase connectivity we perform a minor-
embedding operation by mapping each QUBO problem
onto ferromagnetic chains of qubits (Choi 2008, 2011;
Klymko et al. 2014; Cai et al. 2014); the result is a fully
connected graph of 33 logical qubits, each of which is used
to represent an edge.

We optimize the ratio between coupling within each
chain to the largest coupling in the Hamiltonian to equal a
factor of 3. We find that this prevents chains from breaking
(via noise from thermal excitations and domain walls) while
still allowing qubits to flip to ensure that the transverse
field Hamiltonian drives the dynamics (Venturelli et al.
2015). For each annealing run, we re-embed the problem
10 times with randomized cross-term signs (gauges) to
average out noise on local fields and couplers (Job and
Lidar 2018). For each gauge, we perform 10,000 annealing
runs before selecting the lowest-energy solution from all
the outputs. We note that as the inherent noise in the
annealing hardware improves in the future, fewer runs
and gauges would be required. To test the effect of the
annealing time (which in principle must be optimized in
order to extract the true time to solution (Albash and
Lidar 2018; Rønnow et al. 2014)), we compare runs from
5 to 800 μs.

3 Results

To evaluate the performance of the annealing algorithm,
we benchmark against random edge selection after pre-
processing. Random edge selection simply randomly selects
edges as true according to the expected fraction of true edge
segments in the pre-processed data. Comparison to random
edge selection demonstrates that the patterns of hits are
not found during pre-processing, but rather by solving the
QUBO.

After measuring the overall tracking performance of
our methodology, we present results on the scalability
of our algorithm for both SA and QA to evaluate
the possibility of a quantum speedup. We report error
bars representing the 1 standard deviation (σ ) spread of
sector-by-sector purity and efficiency for TrackML events,
indicating the robustness of the methodology. Particle
multiplicity and pileup are linearly dependent, where
2,000 particles per event corresponds to an average of
40 pileup.

3.1 Tracking efficiency and purity

To compare the QA and SA performance in terms of particle
multiplicity (see Fig. 4) and particle momentum (see Fig. 5),

Fig. 4 QA and SA benchmarked against random annealing after pre-
processing heuristics. All values are reported with 1σ error bars for
tracks with at least 3 hits indicating the spread of event sectors.
Additionally, the pre-processing places an upper bound of around 93%
efficiency (indicated by the dashed line)
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Fig. 5 Track purity and
efficiency for SA results for
events at 500 particles/event as a
function of transverse
momentum (top), track length
(middle) and azimuthal angle
(bottom)

we use two metrics:

Purity = Number of true tracks reconstructed

Number of tracks reconstructed
,

Efficiency = Number of true tracks reconstructed

Number of true tracks
.

Due to the limited size of the D-Wave machine (33
fully connected logical qubits), we can only fit up to 500
tracks on the quantum annealer. However, to show that
the performance of the algorithm does not significantly
deteriorate at higher multiplicity, we include further results
from SA.

As particle multiplicity increases, the random edge
selection track efficiency and purity approach zero, while
the SA and QA reconstructions maintain their performance.
This suggests that the majority of tracking is completed
in solving the QUBO rather than in our heuristic pre-
processing methods. While quantum annealing on D-
Wave hardware does not outperform SA, it consistently
obtains a solution of similar quality. The SA algorithm’s
slightly better performance may be attributable to a
lack of noise in embedding the Hamiltonian as well as
the ability to fully encode the problem without chains
of qubits that cause additional error in the readout
process.
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Fig. 6 Efficiency as a function of η for tracks with pT > 1 GeV. The
track distribution is typically constant in η

We present the performance in terms of track efficiency
and purity across several physical variables (see Figs. 6
and 5). For reference, 96% of true edge segments in the
TrackML dataset belong to tracks that are 8 to 18 hits in
length. Metrics are calculated for tracks at least 3 hits in
length. Only SA was used in the figures to improve the
statistical uncertainty with a larger number of events.

The tracking algorithm shows consistent performance
across the full range of pseudorapidity η = − log tan θ

2 ,
where θ is the polar angle between particle momentum
and the beam axis (see Fig. 6). Similarly, tracking
performance remains constant with azimuthal angle φ in
the xy-plane, indicating the consistency of the tracking
algorithm since events are typically homogeneous in φ.
Track reconstruction performance increases with transverse
momentum pT, recording higher-momentum particles with
both higher efficiency and purity since tracks are straighter
and thus better-suited to the QUBO formulation. The drop
in efficiency at high pT is observed in many solutions of the
TrackML challenge (Calafiura and et al 2018) and might be
an artifact of the dataset simulation.

3.2 Feasibility of quantum speedup

In general, it is unlikely that QA can achieve polynomial
time on this problem, but there is room for a potential
quantum speedup if QA can reduce the exponential scaling.
To fully test a quantum speedup (Rønnow et al. 2014),
a complete analysis of the problem scaling would require
identifying the optimal anneal time for each problem
size (Albash and Lidar 2018), which we did not attempt
other than a crude sampling of several annealing times
(see Fig. 7). Quantum annealing yields very similar results
with no clear trend using various annealing times (5, 20,
50, 100, 200 and 800 μs), suggesting that we lack data
at sufficiently small timescales to fully determine the time
scaling while using D-Wave since the QUBO problems
are satisfactorily solved by the shortest possible anneal
time allowed by the hardware (5 μs) even for the largest
events. Indeed, contrary to SA, the performance on D-Wave
deteriorates slightly with additional annealing time, most
probably due to the effects of 1/f noise, in which low
frequency components impact performance at long anneal
times (D-Wave White Paper: Improved coherence leads to
gains in quantum annealing performance 2019).

To fully assess the quantum speedup question would
require a larger programmable quantum annealer such that
a larger QUBO can be encoded, resulting in a minimum
as a function of problem size in the time to solution
when annealing. Moreover, the minimum annealing time
allowable by hardware may need to be reduced in order to
obtain an estimate of the necessary wall-clock annealing
time; Fig. 7 suggests that shorter annealing times can
reduce the time required by D-Wave without sacrificing
performance. Given the scaling of the QUBO size as O(h2)

and our limit of 500 tracks on the 33 fully connected logical
qubits of the D-Wave 2X, an event with 10,000 tracks
(corresponding to HL-LHC conditions) would have a factor
of 400 more edges and thus we expect that a programmable

Fig. 7 Comparison of the purity
and efficiency for different
annealing times (5 to 800 μs) on
the D-Wave 2X with respect to
the purity and efficiency for a
5 μs anneal time. The dashed
lines show 1σ error bars
calculated from the
sector-by-sector distribution of
differences between the purity
or efficiency for a given anneal
time and the 5 μs anneal time
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quantum annealer with a similar architecture to D-Wave
must have approximately 10,000 fully connected qubits to
fully process a sub-graphed event at the HL-LHC. This is
twice as many qubits as in the next generation D-Wave
processor based on the (increased connectivity but not fully
connected) Pegasus architecture (Boothby et al. 2019).

4 Related work

There is limited research on performing track reconstruction
using quantum annealing. Track reconstruction using
quantum annealing has been explored in Ref. Bapst et al.
(2019), using triplets of hits (as opposed to doublets
in our approach) which increases pre-processing time to
O(h6) as we iterate through all pairs of triplets for
constructing the QUBO. However, the solution proposed by
the authors is limited to tracking in a simpler detector sub-
region of simulated LHC data. It uses extensive classical
pre-processing using the ATLAS track-seeding code and
internal QUBO-solving methods in the D-Wave API that use
further classical pre-processing and have higher overhead.
In contrast, we require no track seeding and demonstrate
tracking in both the barrel and endcap regions, explicitly
controlling the annealing methodology in solving the
QUBO. This allows us to show that the annealing procedure
is computationally responsible for the majority of particle
tracking, not the pre-processing methods.

The application of quantum associative memory for track
pattern recognition and its circuit-based implementation
on current hardware has previously been theoretically
explored by members of the same team (Shapoval
and Calafiura 2019). Unlike our approach, the quantum
associative memory framework is completely supervised:
track candidates are tested by comparing them to simulated
track patterns, which must be stored in quantum memory.
Because we use a parameterized QUBO formulation of the
tracking problem, we do not need to store simulated track
data. On the contrary, our approach is based on physical
models where the weights of the QUBO are guided by both
physical expectations and simulated data.

Finally, quantum annealing has been proposed for a
different but closely related problem of vertex reconstruc-
tion (Das et al. 2019). This application is limited to events
with up to 15 particle tracks, and it does not aim at recon-
structing tracks, but rather aggregates them in a fixed
number of vertices.

5 Conclusion

We demonstrate one of the first big data applications of
quantum annealing, reducing a large-scale problem to be

successfully solved experimentally on D-Wave hardware
with high purity and efficiency in tracking performance.
Ultimately, we find that charged particle tracking can be
successfully interpreted as a segment classification problem
in a quadratic unconstrained binary optimization (QUBO)
framework, using efficient classical pre-processing fol-
lowed by quantum or simulated annealing. Although current
annealing hardware limitations impose stringent constraints
on the size of the optimization problem, we propose a
methodology to systematically reduce the size of the QUBO
sufficiently to achieve experimental implementation on cur-
rent quantum hardware. Our work indicates that tracking
problems at the High-Luminosity LHC may be studied with
competitive efficiency and purity results on programmable
quantum annealers in the future, while the question of a
quantum speedup in this context remains open.

Although currently available quantum hardware does
not allow shorter anneal times to be probed, the favorable
scaling observed thus far leaves open the possibility for
advantageous real-world applications of quantum annealers
in a scientific context. One of the key elements of data
acquisition at a hadron collider experiment is the trigger
system (Khachatryan et al. 2017) that selects, in almost
real time, the most interesting collision events from the
rudimentary high rate events, which number many orders
of magnitude more. The trigger system reduces the rate
of collisions under consideration from 40 MHz to 1–
2 kHz with fast algorithms, dedicated on-board on-chip
hardware and subsequent processing in software farms. In
this context, the reconstruction of the charged particles must
be done rapidly (on the order of μs at the hardware level)
and efficiently. The approach proposed in this work could
eventually provide a solution for fast tracking at the trigger
level.

Besides providing potential applications for quantum
annealing, our methodology establishes the utility of clas-
sical simulated annealing for modern tracking problems,
and may thus be run on high-performance Field Pro-
grammable Gate Array (FPGA) simulated annealing hard-
ware (Tsukamoto et al. 2017) with up to 8192 bits, as well
as the Coherent Ising Machine (Inagaki et al. 2016) with
2000 fully connected spins. As these are classical anneal-
ing approaches, they are expected to require exponential
time to solve the track reconstruction problem. However,
they are fully connected, overcoming embedding challenges
associated with the D-Wave annealer and enabling larger
problems to be encoded with fewer bits. By exploiting the
performance advantages of FPGAs and classical annealers,
one could perform preliminary tracking at the trigger level.
Furthermore, instead of tuning the QUBO parameters to
maximize the harmonic mean of track efficiency and purity,
the QUBO parameters may be tuned for either high track
efficiency (to reduce overall data size) or high track purity
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(to eliminate entire tracks from the dataset) before applying
traditional tracking methods (such as Kalman filters). The
approach presented in this paper could be used as a first
step of an iterative tracking procedure, otherwise already in
use in experiments like the Compact Muon Solenoid. As
quantum annealing technology continues to improve, future
work may evaluate wall-clock benchmarks against classi-
cal specialized hardware, assessing the viability of using
quantum hardware at high energy physics experiments.

We note that the spin states found by the D-Wave
annealer suggest that sufficiently good solutions to the
tracking problem QUBO may be found by programmable
quantum annealers without fully solving the QUBO for
its ground state. Thus, despite not directly identifying a
quantum speedup in this work, we conclude that there
remains practical potential of quantum annealing for
charged particle tracking. Moreover, as of the time of
writing, quantum annealing is the only quantum hardware
approach that can accommodate tracking problems large
enough to be of any practical interest.
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