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Abstract
One of the areas with the potential to be explored in quantum computing (QC) is machine learning (ML), giving rise to
quantum machine learning (QML). In an era when there is so much data, ML may benefit from either speed, complexity or
smaller amounts of storage. In this work, we explore a quantum approach to a machine learning problem. Based on the work
of Mari et al., we train a set of hybrid classical-quantum neural networks using transfer learning (TL). Our task was to solve
the problem of classifying full-image mammograms into malignant and benign, provided by BCDR. Throughout the course
of our work, heatmaps were used to highlight the parts of the mammograms that were being targeted by the networks while
evaluating different performance metrics. Our work shows that this method may hold benefits regarding the generalization
of complex data; however, further tests are needed. We also show that, depending on the task, some architectures perform
better than others. Nonetheless, our results were superior to those reported in the state-of-the-art (accuracy of 84% against
76.9%, respectively). In addition, experiments were conducted in a real quantum device, and results were compared with the
classical and simulator.

Keywords Quantum machine learning · Transfer learning · Quantum neural networks · Applications · Breast cancer

1 Introduction

It was in 1981 when Feynman (1982) first proposed a basic
model for a quantum computer, tackling the inability of
classical computers to simulate the physical world. In 1985,
David Deutsch proposed the quantum Turing machine,
thus formalizing a universal quantum computer (Deutsch
1985). The potential of quantum computers was later proven
by Shor (1999) in 1994. Shor developed an algorithm that
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solves in polynomial time prime factorization and discrete
logarithms, an exponential advantage over known classical
algorithms. Shortly after, in 1996, another major step was
taken by Grover (1996), by developing an algorithm that
finds a given value in an array in O(

√
N) steps, where N is

the array size. Classical algorithms will take a minimum of
N/2 steps.

Since then, a lot of progress has been made, particularly
in the past decade. Nowadays, there is an ongoing
investment by technology companies such as Google,
Microsoft, IBM, or D-Wave, making it possible to access
cloud-based quantum computers. One of the most promising
applications of quantum computing is in ML. Depending on
the model, computational complexity may be an obstacle.
Recent studies, such as the one performed by IBM
and MIT (Havlı́ček et al. 2019) or the one published
by Biamonte et al. (2017), conclude that ML could benefit
from the exponentially large quantum state space through
controllable entanglement and interference, bringing speed
and efficiency to the process.

In ML, different types of neural networks models
have been broadly explored, such as convolutional neural
networks (CNN) or recurrent neural networks (RNN). A
good example of such models for QML are CNNs. CNNs
are one of the best algorithms in regard to image content
identification and have shown exemplary performance in
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several tasks (Huang et al. 2017). However, one of its known
disadvantages is its complexity. The further we go into a
neural network, the more complex are the features it can
recognize since they end up aggregating and recombining.
Improving the speed of these networks can have a huge
impact when training models that require detailed images as
input, such as mammograms.

Breast cancer is the type of cancer with the most
incidence in women worldwide, with about 1.7 million new
cases diagnosed in 2012, representing roughly 25 percent of
all cancers in women. It is also the second most frequent
cause of cancer death in women, after lung cancer (Fund
2020). In this research, we present an approach where we
make use of a quantum method in the aid of breast cancer
screening. Our proposal is inspired by the work of Mari
et al. (2019) on TL in hybrid classical-quantum neural
networks. Our task was to classify full-image mammograms
using pretrained classical neural networks resourcing to a
quantum enhanced TL method. The advantage of the TL
method, is that, it can be applied to a task where a model
can be reused as the starting point on another task. In
contrast to the work of Mari et al. (2019), we evaluate large
images, compare our results across different architectures,
and, using the top performer, we apply a series of tests
to evaluate the model against its classical counterparts,
using different performance metrics. We conduct classical
experiments without and with TL where we can noticed the
advantage of resorting to TL, for example, through accuracy
67% versus 84%, respectively. In addition, we resort to
a quantum simulator varying the circuit depth from 1 to
4 where we also observe an accuracy of 84% for depth
equals 1 and 4. Finally, we use a real quantum device
where we observe an accuracy of 81%. These results are
very promising, since we are in the noisy intermediate-
scale quantum (NISQ) era (Preskill 2018), where quantum
devices are associated with the need for error correction and
still are in their early stage. Moreover, the quantum models
version showed a faster training comparing to the classical
version which is also quite interesting.

The research work is structured as follows: in Section 2
we show the related work in the field, in Section 3 we
introduce the details on the QML topic. Section 4 describes
the experimental setup. The summarizing of the data used,
test of the proposed model, and results are in Section 5.
Finally, in Section 6, we outline the resulting contribution
and present some future work.

2 Related work

In this section we summarize the research work on imaging
on the topics QML, TL from a clinical perspective, and
also, breast cancer screening using deep learning (DL). In

order to compare the quality of the classifiers, we will
be using common metrics to assess classification models.
In what follows, we consider binary classification, where
true positive (TP) corresponds to the number of positive
examples that are predicted as being positive, true negative
(TN) corresponds to negative examples that are predicted
as negative, false positive (FP) corresponds to a negative
example that was predicted as a positive, and false negative
(FN) corresponds to a positive example that was predicted
as a negative (Krishna et al. 2018). Based on these counters,
the following metrics are defined:

– Sensitivity, recall or true positive rate (TPR): measures
the rate of actual positives that are acknowledged as
positives by the classifier.

T P

T P + FN

– Specificity or true negative rate (TNR): measures the
classifier’s capacity to isolate negative results.

T N

T N + FP

– Precision: measures the rate of correctly classified
instances for one class.

T P

T P + FP

– Accuracy: measures the amount of correctly classified
instances of any class.

T P + T N

T P + T N + FP + FN

– F1-score: is the harmonic mean of precision and recall,
with equal weights for both.

2 ∗ precision ∗ recall

precision + recall

– Area under the curve (AUC): AUC represents the
degree of separability between classes. It makes use of
receiver operating characteristics (ROC) curve, which
measures TPR, in the y-axis, against FPR (1-TPR), in
the x-axis. AUC is a very common indicator of quality
performance used in image classification.

2.1 Imaging in quantummachine learning

In an initial search on image processing algorithms
for circuit-based quantum models, it is clear that there
are several interesting papers solving tasks such as the
algorithm proposed by Duan et al. (2019) for dimensionality
reduction, the quantum feature extraction framework
proposed by Zhang et al. (2015), the quantum representation
of color digital images presented by Sang et al. (2017) or the
quantum image edge extraction algorithm proposed by Gao
et al. (2010) based on improved Sobel operator.
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In regard to circuit-based quantum neural networks, Hen-
derson et al. (2020) empirically evaluated the potential
benefit of quanvolutional layers by comparing three types of
models built on the MNIST dataset: CNNs, QNN (quantum
neural networks), and CNN with additional non-linearities
introduced, concluding that QNN models showed a faster
training. Grant et al. (2018) used MNIST, Iris, and a syn-
thetic dataset of quantum states to compare the performance
for several different parameterizations. Tang and Shu (2014)
used rough sets (RS) and QNN in order to recognize elec-
trocardiogram (ECG) signals. Zhang et al. (2020) proved
that when compared to the random structure QNN, QNN
with tree tensor (TT-QNN) architectures have gradients that
vanish polynomially with the qubit number showing better
trainability and accuracy for binary classification.

Skolik et al. (2020) focus on solving the problem of
barren plateaus of the error surface caused by the low
depth of circuits by incrementally growing circuit depth
during optimization and updating subsets of parameters
in each training step. Kerenidis et al. (2019) proposed
a quantum algorithm for evaluating and training deep
convolutional neural networks for both the forward and
backward passes, providing practical evidence for its
efficiency using the MNIST dataset. Kaur et al. (2018)
presented a novel ensemble-based quantum neural network
in order to overcome the over-fitting issues present in
speaker recognition techniques.

2.2 Transfer learning in clinical imaging

Several studies (Chen et al. 2019; Kim et al. 2017; Shie et al.
2015) support the use of TL using CNN for the analysis
of medical images. Certain methods are more frequently
employed according to the clinical object of study (e.g.,
brain, breast, eye), the image acquisition method (e.g., X-
rays, ultrasound, or magnetic resonance), the depth of the
sample, and the size of the dataset.

Although there is no validated proof of which method
works best for a given clinical problem, Morid et al.
(2020) suggest that AlexNET is the most commonly CNN
model used for brain magnetic resonance images (Lu et al.
2019; Wang et al. 2019) and breast X-rays (Lévy and Jain
2016; Omonigho et al. 2020), while DenseNet for lung X-
rays (Liu et al. 2019; Yan et al. 2019) and shallow CNN
models for skin and dental X-rays (Nunnari et al. 2020;
Zhang et al. 2019). In addition, with smaller datasets, the
most frequently applied TL approach is feature extracting,
while fine-tuning is more used with larger datasets;
additionally, data augmentation (e.g., translation, rotation
of images), as a mean to feed more artificially generated
samples to the CNN model in exchange of computational
stress, is most frequently employed along with fine-
tuning TL approach. Furthermore, studies using fine-tuning

TL approaches use fully connected layers (contrary to
traditional classifiers) more often than studies employing
feature extracting TL approaches, which is due to the fact
that training fully connected layers usually requires larger
datasets when compared to training traditional classifiers.

In brief, the majority of studies do not benchmark
their CNN model against any other model, and the few
that actually do, compare against only one model (Morid
et al. 2020). Quantum transfer learning introduces low-
depth quantum circuits as a subroutine for a classical model.
In this context, Mari et al. (2019) propose a method that
focuses on the paradigm in which a pretrained classical
network is modified and amplified by a final variational
quantum circuit.

Moreover, Acar and Yilmaz (2020) applied the quantum
transfer learning method, in different quantum real proces-
sors of IBM as well as in different simulators, in order to aid
Coronavirus 2019 (COVID-19) detection by using a small
number of computed tomography (CT) images as a diag-
nostic tool. Gokhale et al. (2020) present an extension to
the quantum transfer learning approach formerly applied
to image classification in order to solve the image splic-
ing detection problem. Zen et al. (2020) proposed a method
that evaluates the potential of transfer learning in order to
improve the scalability of neural network quantum states. In
the current era of intermediate-scale quantum technology,
Mari’s method (Mari et al. 2019) is the most appealing as
it allows optimal pre-processing of images with any state-
of-the-art classical network and to process the most relevant
features into a quantum computer.

2.3 Breast cancer screening using deep learning

The most popular datasets are the Mammography Image
Analysis Society (MIAS) database with 322 image samples,
the Digital Database for Screening Mammography (DDSM)
containing 2500, and the Breast US Image with 250.
Datasets can be used to extract regions of interest
(ROIs) to perform detection and segmentation and ResNet
variations as well as Inception, AlexNet, GoogleNet, and
CaffeNet models have been used in breast cancer image
analysis (Debelee et al. 2020).

In the survey by Debelee et al. (2020), we are
presented with the available imaging modalities: screen-
film mammography (SFM), digital mammography (DM),
ultrasound (US), magnetic resonance imaging (MRI),
digital breast tomosynthesis (DBT) or a combination
of modalities. The digital image category has been
the most effective and commonly used breast imaging
modality despite having some limitations which include low
specificity, leading to unnecessary biopsies.

An interesting work by Shen (2017) consists of an end-
to-end training algorithm for whole-image mammograms
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projected to reduce the reliance on lesion annotations.
Initially, it requires annotations to train the patch classifier
consisting of ROI images, then a whole image classifier
can be trained using only image-level labels. INbreast and
DDSM datasets were used, showing that a whole image
model trained on DDSM can be easily transferred to
INbreast without using its lesion annotations and using a
smaller amount of training data.

Studies, where transfer learning is used in breast
cancer image analysis, can also be found; Mehra and
et al (2018) compared the results of three networks
(VGG16, VGG19, and ResNet50) using BreakHis dataset,
a dataset of histological breast cancer images, and applied
data augmentation, using AUC, accuracy, and accuracy-
precision score (APS) as performance measures. The
pretrained networks were used as feature extractors and
the extracted features were used to train logistic regression
classifiers. A similar work was presented by Kassani et al.
(2019). Also with a histological dataset, de Matos et al.
(2019) used Inception-v3 as a feature extractor and a
SVM classifier trained on a tissue labeled colorectal cancer
dataset aiming to remove irrelevant patches. By doing so
before training a second SVM classifier, this study shows
that the accuracy improves when classifying malignant and
benign tumors. Huynh et al. (2016) used data obtained
from the University of Chicago Medical Center, consisting
of 219 lesions on full-field digital mammography images
and 607 ROIs about each lesion. By comparing SVM
classifiers based on the CNN-extracted image features
and their computer-extracted tumor features in the task of
distinguishing between benign and malignant breast lesions
this study concluded TL is a great tool when there are
no large datasets. It is worth mentioning that Li et al.
(2020) proposed a very interesting work building a fuzzy
rule-based computer-aided diagnosis for mass classification
of mammographic images using the Breast Cancer Data
Repository (BCDR) dataset (Lopez et al. 2012).

In brief, the specificity and sensitivity of screening
mammography are reported to be 89–97% and 77–87%,
respectively. These metrics describe the performance of the
models with reported false positive rates between 1 and 29%
and sensitivities between 29 and 97% (Ribli et al. 2018).
Regarding BCDR — specifically BCDR-D01 and BCDR-
D02, the digital image datasets — using a CNN structure
and by undersampling the dataset in order to balance both
classes, Hepsaġ et al. (2017) obtained 62% accuracy, 75%
training accuracy, 46% precision, 53% recall, and 51%
F1-score. However, different results were achieved when
selecting:

– Masses: 88% test accuracy, 98% training accuracy, 86%
precision, 90% recall, and F1-score of 88%,

– Calcifications: 84%, training accuracy of 98%, preci-
sion of 91%, recall of 76%, and F1-score of 83%.

Cardoso et al. (2017) use BCDR in a different context, using
ROI to perform a cross-sensor evaluation of mass segmenta-
tion methods. Diz et al. (2016) applied KNN, LibSVM,
decision trees, random forest and naive Bayes to BCDR and
achieved 89.3 to 64.7% for classifying each class benign/
malignant; 75.8 to 78.3% for classifying dense/fatty tissue
and 71.0 to 83.1% for identification of a finding. Fontes
et al. (2019) achieved the maximum accuracy of 76.9%,
AUC of 74.9%, sensitivity of 84.88%, and specificity of
64.91% by applying a customized variant of Google’s
InceptionV3 with the use of a Softmax classification layer
as the output to perform the classification task.

However, there seems to be no studies where classical-
quantum hybrid models are used to identify breast cancer in
mammograms.

2.4 Transfer learning

Conventionally, deep neural networks need large amounts
of labeled datasets and very powerful computing resources
to solve challenging computer vision problems, e.g., feature
extraction and classification. TL can be described as the
improvement of learning a new task through the transfer of
knowledge from a related (learned) task (Olivas 2009). This
technique only works if the model features learned from
the first task are general. It can be done using labeled or
unlabeled data (Raina et al. 2007). From a pretrained model
we can perform two types of tasks: (a) fine-tuning and (b)
feature extraction.

In fine-tuning, we essentially retrain the model, updating
most or all of the parameters having the pretrained weights
as a basis. In feature extraction, we use the encoded features of
the pretrained model to train the final layer’s weights (classifier)
from which we derive predictions and reshape it to have
the same number of outputs as the number of classes in the
new dataset and freeze all the other layers, meaning that the
pretrained CNN model works as a fixed feature extractor.

Transfer learning from natural image datasets, such as
ImageNet, whose library is comprised of roughly one thousand
classes (e.g., dog, car, or human), to medical imaging, such
as chest pathology x-rays with about 5–14 classes (e.g.,
edema, pleural effusion, or cardiomegaly), is often used to
avoid training the whole model (Morid et al. 2020).

3 Quantummachine learning

In quantum computing (QC), instead of working with
binary digits (bits) we work with quantum bits, where 0
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and 1 can overlap in time. The qubit (unit of quantum
information) has two possible states |0〉 and |1〉. In the
context of QC, the Hilbert space represents an abstract
vector space which allows, e.g., a quantum superposition

meaning that a physical system can be in more than
one state simultaneously. The last few decades have seen
significant advances in the fields of deep learning and
quantum computing. As of today, huge amounts of data
are being generated, pushing the interest surrounding the
research at the junction of the two fields, leading to
the development of quantum deep learning and quantum-
inspired deep learning techniques. The upcoming topic is
based on Schuld’s description (Schuld 2018).

3.1 Angle embedding

Angle embedding is an interesting approach in the context
of neural networks. Assume a neural network and the
network input θ = w0 + w1 ∗ x1 + ... + wN ∗ xN is written
into the angle of an ancilla or net input qubit, which will be
entangled with an output qubit in some arbitrary state |ψ〉,
Ry(2v)|0〉 ⊗ |ψ〉out , where v corresponds to an angle and
Ry corresponds to the rotation around the y-axis, shown in
Eq. 1:

Ry(2v) =
[

cos v − sin v

sin v cos v

]
(1)

Knowing this, we have what is also known as a quron in
the context of quantum neural networks:

Ry(2v)|0〉 = cos v|0〉 + sin v|1〉 (2)

The next step is to prepare the output qubit Ry(2ϕ(v))|ψ〉,
we can do this using a non-linear activation ϕ dependent on
v that will rotate it.

3.2 QNN and variational circuits

A QNN is a machine learning model or algorithm that
combines elements from quantum computing and artificial
neural networks. Over the past decades, the term has been
used to describe different ideas, ranging from quantum
computers simulating the exact computations of neural
nets, to general trainable quantum circuits that carry only
little resemblance with the multi-layer perceptron structure.
We will be focusing mainly on variational circuits since
it is the one we will be using in this work, basing its
description on the work of Mari et al. (2019). Increasingly,
the term “quantum neural network” has been used to refer
to variational or parameterized quantum circuits. Despite
being mathematically different from the inner workings of
neural networks, the term highlights the “modular” feature
of quantum gates in a circuit, along with the use of tricks

from training neural networks used in the optimization of
quantum algorithms (Farhi and Neven 2018).

Classical-quantum hybrid approaches consisting of rela-
tively low-depth quantum circuits called “variational algo-
rithms” are the near term solution (Bharti et al. 2021; Cerezo
et al. 2021; Mangini et al. 2021; Schuld et al. 2018). We
can define a quantum layer as a unitary operation that can
be processed by a low-depth variational circuit, producing
the output state |y〉, by acting on the input state |x〉 of
nq quantum subsystems (e.g., qubits or continuous variable
modes).

L : |x〉 −→ |y〉 = U(w)|x〉
where w is an array of classical variational parameters. A
quantum layer could be, for example, a sequence of single-
qubit rotations followed by a fixed sequence of entangling
gates. Notice that, unlike a classical layer, a quantum layer
retains the Hilbert space dimension of the input states. This
fact is due to the fundamental unitary nature of quantum
mechanics and should be taken into account when designing
quantum networks.

A variational quantum circuit is a concatenation of q

quantum layers, equivalent to the product of many unitaries
parametrized by different weights:

Q = Lq ◦ ... ◦ L2 ◦ L1

A real vector x needs to be embedded into a quantum state
|x〉 in order to enter a quantum network, this can also be
done, depending on x, by a variational embedding layer and
applied to some reference state (e.g., ground state).

E : x −→ |x〉 = E(x)|0〉
The following step is to apply single-qubit rotations to x.
The embedding layer E , unlike L, maps from a classical
vector space to a quantum Hilbert space. Conversely, the
extraction of a classical output vector y from the quantum
circuit can be obtained by measuring the expectation values
of nq local observables ŷ = [ŷ1, ŷ2, ..., ŷnq ]. This process
can be defined as a measurement layer, that maps a quantum
state to a classical vector:

M : |x〉 −→ y = 〈x|ŷ|x〉
The full quantum network, including the initial embedding
layer and the final measurement can be written as:

F = M ◦ Q ◦ E
The full network maps a classical vector space to a classical
vector space depending on classical weights. Despite
containing a quantum computation hidden in the quantum
circuit, F is simply a black-box analogous to a classical
deep network. However, there are technical limitations and
physical constraints that should be taken into account: in
a quantum network we do not have complete freedom
when choosing the number of features in each layer, these
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numbers are often linked to the size of the physical system.
Typically, embedding layers encode each classical element
of x into a single subsystem where:

#inputs = #subsystems = #outputs

This can be overcome by:

1. Adding ancillary subsystems and discarding or measur-
ing some in the middle of the circuit,

2. Engineering more complex embedding and measuring
layers,

3. Adding pre-processing and post-processing classical
layers.

4 Experimental setup

Our method consists of a classical-to-quantum TL scheme,
based on the one proposed by Mari et al. (2019) where we
assume two networks, A and B (Fig. 1):

where A′ is the result of removing some of the final layers
from network A, trained on dataset DA to perform task TA.
A′ will be used as a feature extractor for B. B is the network
that we want to train using the new dataset DB for some new
task TB . In our problem, this can be translated to:

– DA: ImageNet, image dataset with 1000 classes.
– A: a pretrained ResNet18.
– TA: classification, 1000 labels.
– A′: a pretrained ResNet18 without the final linear layer,

serving as an extractor of 512 features.
– DB : BCDR, mammogram image dataset with 2 classes.
– B: DressedQuantumNet, a dressed quantum circuit with

512 input features and 2 real outputs, proposed by Mari
et al. (Mari et al. 2019).

– TB : classification, 2 labels.

Fig. 1 General representation of the transfer learning method (Mari
et al. 2019)

We decided it would be interesting to perform an ini-
tial comparison between different convolutional network
architectures to verify which one best fits our data. There-
fore, we chose some of the most widely used architectures
in the literature. Using the previous scheme as refer-
ence, network A will be replaced by AlexNet (Krizhevsky
et al. 2017), VGG19 (Simonyan and Zisserman 2014),
DenseNet161 (Huang et al. 2017), and ResNeXt50 (Xie
et al. 2017) for the experiments. Further experiments will be
done using the one with the best performance.

4.1 Dressed quantum circuit

The dressed quantum circuit (DressedQuantumNet) consists
of the classifier that will attach to the final linear layer of
the pretrained model.

Assuming a Resnet18 is the pretrained model, the
classifier will receive 512 real values as input to the circuit
and will output 2 real values. The only trainable part of the
network is the quantum classifier. Therefore, the number
of trainable parameters can be calculated using the circuit’s
input size, its depth, and output size: 512 ∗ n qubits +
n qubits ∗ depth + output size. Trainable parameters’
count will be presented along our results. The following
represents the dressed quantum circuit:

Q̂ = L4−→2 ◦ Q ◦ L512−→4

where L512−→4 is a pre-processing layer that consists of
an affine operation followed by a non-linear function ϕ =
tanh applied element-wise, Q is the variational circuit and
L4−→2 is a linear classical layer without activation (i.e.,
ϕ(y) = y).

The 4 real variables obtained from L512−→4 are then
embedded in the quantum circuit by applying a Hadamard
gate (H ) and performing a rotation around the y-axis of the
Bloch sphere parametrized by a classical vector x:

E(x) =
4⊗

k=1

Ry(xk

π

2
)H |0〉

The trainable circuit is composed of q variational layers
Q = Lq ◦ ... ◦ L2 ◦ L1 where:

L(w) : |x〉 −→ |y〉 = K

4⊗
k=1

Ry(wk)|xk〉

where K is an entangling unitary operation made of three
controlled NOT gates.

Finally, the 4 output states are measured on the classical
register using the Pauli-Z matrix and passed to the linear
classical layer, producing 2 output states. The classification
is done according to argmax(y), where y = (y1, y2) is the
output of the dressed quantum circuit. An illustration of the
circuit is shown in Fig. 2.
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Fig. 2 Dressed quantum circuit

4.2 Overview

The implementation for this research was based on the
one provided by Mari et al. (2019). Concerning the data,
it was loaded using our own dataloader (BCDR), and
transformed using random horizontal and vertical flips for
data augmentation. The input channels are also normalized
using mean values and standard deviations of ImageNet. In
order to get reproducible results, a manual seed was set for
the dataloader.

Hybrid classical-quantummodel We start by loading a pre-
trained model and managed the following considerations:

1. Since we want to use the pretrained network as a
feature extractor, we need to freeze every layer so that
the weights are not updated during training, the only
weights we will be updating are the classifiers.

2. We determine the size of the vector that will be entering
DressedQuantumNet and set DressedQuantumNet as
the model’s classifier layer.

3. Cross-entropy was used as a loss function, Adam
optimizer was selected to update the weights of the
model at each training step, and a scheduler was set to
decay the learning rate by gamma every step size.

4. Finally, we train the model.

5Materials, tests and results

Model comparison tests were performed, classical without
and with TL, also comparison using a quantum simulator
and resorting to a quantum device available at IBM
Quantum (https://quantum-computing.ibm.com/).

In this section we give a description of the data used
and how it was handled, followed by testing, analysis and
discussion of the obtained results. Tests were run on Intel
Core i7-10510U CPU @ 1.80GHz×8 with 16GB RAM.
The quantum experiments were conducted using the IBM
Quantum device ibm lagos which is detailed later.

5.1 Materials, data description and processing

In this section we briefly describe the data and the needed
processing for the data preparation in order to attain the
achieved results. We used RStudio in this portion of our
work. The data used was provided by BCDR (Lopez et al.
2012). According to their website (Guevara 2020), “the

creation of BCDR was supported by the IMED Project (for
Development of Algorithms for Medical Image Analysis)
aimed at creating medical image repositories and massive
exploration of Computer-Aided Diagnosis (CADx) methods
on GRID computing resources. The IMED project was
carried out by INEGI, FMUP-CHSJ – University of Porto,
Portugal and CETA-CIEMAT, Spain between March 2009
and March 2013. Recently, in October of 2013, the IMED
project was renewed and Aveiro University began to be part
of this consortium. Now, the four institutions continue to
actively augment and develop the BCDR.”

The data is composed of two folders (BCDR D01 and
BCDR D02) divided by study and patient, each containing
several files corresponding to cranio-caudal (CC) and
medium-lateral oblique (O) views of one or both sides —
left (L) and right (R) — of a breast. The data also includes
information, such as, the biopsy result. This new dataframe
is composed of 49 columns and 2696 rows. From image

f ilename we cropped out image view and side and created
a new column view. The new column view was filled
according to the following: LCC = 1, LO = 2, RCC = 3
and RO = 4.

When looking for columns with at least 30% of NA
values, we also made sure to trim every value since there
were some white spaces in the dataset. Variables with a
single class were also eliminated. Columns with 2 to 10
different values were converted to factor. We did the same
for rows, eliminating those with at least 30% of NA values,
no rows were found. Column classif ication had a row
with value 2, this row was eliminated. Finally, we changed
classif ication class Malignant to 1 and Benign to 0
and applied the unique function. The resulting dataframe
contains 909 rows and 10 columns. Note that the same
mammogram can contain the description of several different
masses/calcifications. Knowing this, 269 mammograms
contain nodules, 688 contain calcifications, 82 contain
microcalcifications, 8 contain architectural distortions and
51 contain stroma distortions. Since we will be analyzing
unique images, we eliminate duplicated image f ilename

from the dataset, and end up with 825 rows.
To check if the images are well represented, we analyzed

features age, view, density and classif ication. Figure 3
shows data distribution of the features age, view, density

and classif ication.
As we can see, classif ication is unbalanced. Class 1

has 141 samples and class 0 has 684. We fixed this by
oversampling class 1 by adding 2 copies of every sample
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Fig. 3 Data distribution of the features age, view, density and classif ication

with classif ication = 1 and cropping the excess samples
with classif ication = 0. Each set of copies will be
associated with the angle by which it will be rotated. We
chose angle 60 for the first set of copies, and angle 45 for
the second set. Since every image is subjected to random
horizontal and vertical flips during train and test phases, we

kept the angles to the first quadrant such that they do not
result in the same images. The distribution, after balancing
classif ication, can be seen below.

Figure 4 shows data distribution of the features age,
view, density and classif ication after balancing the
feature classif ication.

Fig. 4 Data distribution of the features age, view, density and classif ication after balancing classif ication
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Table 1 Parameters set for
each experimental approach step # epochs # batch size gamma lr scheduler step size

Model comparison 0.4 30 32 0.1 5

Classical 0.0004 42 32 0.1 15

Quantum simulator 0.0004 42 32 0.1 15

5.2 Tests and results

In this chapter, we present:

– An initial model comparison using a classical approach
in order to determine which of the models has the best
performance. We also determine the proper learning
rate for each of the models that will be further tested;

– Tests and results using our QuantumDressedNetwork as
a classifier resourcing to a quantum simulator in order
to pick which hybrid classical-quantum model will be
further tested;

– Tests and results using a classical model without and with
TL to benchmark against our hybrid model. Then a com-
parison between results obtained from these models;

– Tests and results using our QuantumDressedNetwork as
a classifier resourcing to a real quantum device.

Python and PennyLane platform were used in this portion
of our work. Heatmaps which explicitly model the
contributions of each pixel in the feature maps of a CNN
to the final output were used to aid result comparison.
These heatmaps result from using GradCAM (Selvaraju
et al. 2017), an earlier gradient-based visual explanation
method, and GradCAM++ (Chattopadhay et al. 2018).
Note that these networks have different architectures and,
therefore, the final convolutional layer, the one evaluated
by GradCAM and GradCAM++, is different. Some of
the functions were deprecated and were therefore changed
manually.

We defined class 0 as the negative class as it represents
a benign mammogram, and class 1 as a positive class as it
represents a malignant mammogram.

In Table 1 we can observe the values of the parameters
for the different approaches, where, step is the step of the
learning rate, # epochs is the number of training epochs,
# batch size is the number of samples for each training
step, gamma lr scheduler is the learning rate reduction
applied every 10 epochs and step size concerns the learning
rate updates every step size epochs. Model comparison
corresponds to the initial comparison of all the models and
Classical to the parameters set in the classical without and
with TL.

Model comparison A positive case and a negative case were
tested against AlexNet, VGG19, DenseNet161, ResNet18,
and ResNeXt50 32x4d respectively. For simplicity, we used
a simple linear transformation as classifier.

In Fig. 5, the warmer the color, the more the network
is targeting the area. Knowing this, DenseNet, Resnet, and
ResNeXt seem to do a pretty good job at targeting the main
areas where masses/calcifications are present.

Now we need to have an idea of which learning rate to
use. The starting learning rate is 0.4 and will be adjusted by
the model by 10-1 every 5 epochs. The goal is to find the
optimal learning rate through the graphic, by choosing the
global minimum, as suggested in the paper by Smith (2017)
so we can give every model a fair chance to converge.

Fig. 5 The rows in (a) and (b)
show the results from AlexNet,
VGG19, DenseNet161,
ResNet18, and
ResNeXt50 32x4d, respectively.
The first column corresponds to
the original image, the following
two result from GradCAM
(without image overlap and with
image overlap) and the last two
result from GradCAM++
(without image overlap and with
image overlap)
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Table 2 Training results for DenseNet, ResNet and ResNeXt. The
interval corresponds to the minimum/maximum loss values obtained
during testing phase

Model DenseNet ResNet ResNeXt

Loss [4.52,30.15] [3.21,21.89] [5.99,52.32]

Total parameters 26476418 11177538 22984002

Parameters trained 4418 1026 4098

Time (min) 87 16 55

Table 2 shows the training results for DenseNet, ResNet
and ResNeXt.

The best learning rate should be the value that is
approximately in the middle of the sharpest downward
slope. Therefore, we have that DenseNet’s, ResNet’s, and
ResNeXt’s optimal learning rate is around 0.0004. We will
keep step size = 10 because TL requires small learning
rates regardless.

Quantum simulator Using the best parameters mentioned
we trained and tested DenseNet, ResNet and ResNext in
a quantum simulator, with the QuantumDressedNetwork as
a classifier for Resnet. We also tune the last parameter
needed; the circuit’s depth. According to Mari et al. (2019),
a characteristic of the TL approach is the existence of an
intermediate optimal value for the quantum depth.

Table 3 shows the performance metrics results for
DenseNet, ResNet and ResNeXt, in the quantum simulator.
Results are very similar for all three models. However,
ResNet achieved a considerably higher recall and AUC.
Based on this, we will choose ResNet. Additionally, it is
faster in comparison. Figure 6 shows results varying the
circuit depth from 1 to 4.

Table 3 Performance metrics results for DenseNet, ResNet and
ResNeXt, for the quantum simulator. The interval corresponds to the
minimum/maximum values obtained during testing phase

Model DenseNet ResNet ResNeXt

Loss [0.46,0.64] [0.47,0.67] [0.53,0.66]

Accuracy [0.71,0.84] [0.54,0.83] [0.58 0.83]

Precision [0.77,0.98] [0.53,0.99] [0.90,0.99]

Recall [0.61,0.75] [0.57,0.91] [0.20,0.69]

F1-score [0.68,0.81] [0.67,0.81] [0.33,0.80]

Specificity [0.78,0.98] [0.18,0.97] [0.94,0.99]

AUC 0.69 0.75 0.59

Total parameters 26480854 11178582 22988118

Trainable parameters 8854 2070 8214

Time (min) 104 38 74

Classical (without and with) TL Figure 7a shows classical
results without TL obtained from a ResNet, meaning that the
network was trained from scratch. Figure 7b shows classical
results with TL obtained from a ResNet, meaning that the
only trained layers were the classifier’s. These will be used
as benchmarks to our model. For simplicity, we used a
simple linear transformation as classifier.

Let’s consider the models:

– C: the classical ResNet.
– C+TL: the classical ResNet using transfer learning.
– CQ1, CQ2, CQ3 and CQ4: the hybrid classical-

quantum ResNet models using transfer learning, whose
variational quantum circuits have a depth of 1, 2, 3, and
4, respectively (using the simulator).

As mentioned before, performance metrics are calculated
considering that the class malignant is the positive class
(Table 4).

CQ1 has the higher overall results between training and
test, namely precision, specificity and AUC score. It also
has the lowest loss value. No further testing was needed on
depth as the AUC value started to degrade. The resulting
model is used on an IBM Quantum device for testing.

Quantum device Due to the waiting times, IBM Quantum
experiments were done using the best model state that
resulted from training in the simulator. This means that
only the test part was done in the quantum machine. We
ran the file containing our network (that resulted from the
dressed quantum circuit with depth = 1 — CQ1 — in the
state where the best F1-score was measured), on an IBM
Quantum device.

Figure 8 shows the quantum results achieved for
the metrics under consideration resorting to the device
ibm lagos, for 20 repetitions of the testing in the same
testset. As, in this experiment, we use data augmentation for
each run, results are not the same at each repetition, but the
model seems to be stable.

In Table 5 we show the metrics results for the best
classification given by the quantum device among the 20
repetitions.

At first, we believed that the testing results variation
seen in Fig. 8a originated from the quantum machine
error rates. The configuration of the qubits connectivity
showing associated errors of the quantum device we use,
ibm lagos, is shown in Fig. 9. The main characteristics of
this device are as follows: 7 qubits, 32 of quantum volume, a
Falcon r5.11H processor type, version 1.0.1, the basis gates
(CX, ID, RZ, SX, X), 6.595e-3 of average CNOT error,
1.466e-2 of average readout error, 106.39 us average T1
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Fig. 6 The rows in (a), (b), (c), and (d) show the results for a positive
and for a negative sample, respectively, using Resnet. The first col-
umn corresponds to the original image, the following two result from

GradCAM (without image overlap and with image overlap) and the last
two result from GradCAM++ (without image overlap and with image
overlap)

and 79.45 us average T2. The readout error of each qubit is
shown on the left hand side. Errors can be as high as 2.53%.
The average error for Hadamard and CNOT gates are also
shown. As the errors are not too high to justify changes in
performance results, we performed an experiment without
data augmentation.

Using the resulting model from CQ1 as a base, and
without performing any data augmentation techniques, we
tested the same exact 32 samples (the size of one epoch):

– once in the quantum simulator;
– twice on ibmq quito (due to queue size).

The results were exactly the same:

– 6 of our samples were positive but incorrectly classified
as negative;

– 26 of our samples were negative and correctly classified
as negative.

As expected, the results were the same for testing of the
same samples. This leads us to believe that noise has little or
no interference in our model and that the quantum simulator
does a good job of simulating a quantum device.

6 Conclusion and future work

It is too soon to say whether or not QML can be an
advantage. Our results only point to a good generalization
of complex data which needs further testing. The classical
residual neural network, without resourcing to TL, achieved
a maximum of 67% accuracy while our other experiments

Fig. 7 The rows in (a) and (b) show the results for a positive and
for a negative sample, respectively. The first column corresponds to
the original image, the following two result from GradCAM (without

image overlap and with image overlap) and the last two result from
GradCAM++ (without image overlap and with image overlap)
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Table 4 Performance metrics results for test set in all ResNet models
tested. These results were on the same dataset, same train-test split
and with a fixed seed. Results using the hybrid classical-quantum are
executed in the simulator

Model C C+TL CQ1 CQ2 CQ3 CQ4

Loss 0.66 0.38 0.41 0.42 0.44 0.42

Precision 0.75 0.95 1.00 0.95 0.99 0.97

Recall 0.52 0.73 0.69 0.70 0.61 0.71

F1-score 0.61 0.82 0.82 0.83 0.80 0.82

Accuracy 0.67 0.84 0.84 0.83 0.83 0.84

Specificity 0.83 0.96 1.00 0.96 0.99 0.98

AUC 0.70 0.58 0.77 0.77 0.74 0.69

Trainable parameters 11689512 1026 2066 2070 2074 2078

Time (min) 48 24 40 51 69 82

using TL achieved 84%. When comparing classical ResNet
with and without applying TL method we can see that the
task execution time was cut by half. The results are not
so drastic when comparing the classical-classical and the
classical-quantum hybrid networks making use of TL. The
results for every metric are far more consistent between
training and testing and between epochs when using the
dressed quantum circuit, so much so that AUC value went
from 58 to 77%, leading us to believe that a hybrid-quantum
network does present some advantage as AUC measures
how well the model separates two classes. Our overall
results surpassed those from the literature that also applied
a classical transfer learning technique — accuracy of 84%
against 76.9%, AUC of 77% against 74.9% and specificity
of 100% surpassed 64.91%. However, regarding recall we
obtained 69% and 84.88% was mentioned in the literature.

Table 5 Performance metrics results for test set in the quantum device,
using the best model found by the quantum simulator

Loss Precision Recall F1-score Accuracy Specificity Time (hours)

0.47 0.83 0.80 0.81 0.81 0.84 43.7

Nevertheless, the results from the quantum device show a
recall closer to that of the literature, 81%.

As is known in the community, there has been a lot
of work in the field of error correction regarding quantum
machines. However, despite the errors associated to the used
quantum device ibm lagos, good results were obtained
with the quantum experiments. Our results seem to confirm
what has been said in the quantum machine learning
literature: the results seem to converge towards an optimal
solution much earlier, which leads us to believe that such a
large number of iterations in the quantum version will not
be needed compared to the classical version.

As future work, an interesting approach could be to
separate the dataset into masses and calcifications and
only then perform classification. That way, we would be
evaluating different specific features in a similar scenario
and would probably get clearer results. It would also be
interesting to test different datasets. We also would like
to explore other gate-based quantum devices with smaller
associated errors. Lastly, the best way to know how well this
model performs would be to see how the data appears in
our Hilbert space. Ideally, both classes would appear very
separately in it, as tight clusters.

In addition, in this research we conduct the experiments
using the angle embedding technique since with this method
the features can be learned. The same is not true if
we use, for example, the basis embedding because it is

Fig. 8 Results for the quantum
experiments on the IBM
Quantum device
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Fig. 9 ibm lagos error map

theoretically impossible. In addition, if we had used, e.g.,
the amplitude embedding, it could have been too complex to
compute gradients with respect to features, which may not
be feasible. However, in the future other embeddings can be
considered (Lloyd et al. 2020).
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