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Abstract Linear gray enhancement is a spatial domain image enhancement
technique commonly used in classical computers, mainly including image neg-
ative, image contrast stretching, and piecewise linear gray transformation. In
order to realize these three linear gray enhancement techniques in the quan-
tum computers, this paper proposes three types of linear gray transformation
schemes for quantum images based on the generalized model of novel enhanced
quantum image representation(GNEQR), and the quantum circuits that re-
alize these three transformation methods are constructed according to the
schemes. The proposed circuits take advantage of efficient quantum arithmetic
operations and parallel Controlled-NOT modules to factor classical transfor-
mations into basic unitary operators such as the Controlled-NOT gates and
the Toffoli gates. The results show that the linear gray enhancement algorith-
m for quantum images is better than the classical algorithm in both spatial
complexity and time complexity.

Keywords Gray transformation · Image enhancement · Quantum computa-
tion · Quantum circuit · Quantum image processing

1 Introduction

The quantum computing model has become a hot topic in recent years, and it
was first proposed by the American physicist Feynman in 1982 [1]. The famous
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Moore’s Law states that computer performance will double every 2-3 years [2].
However, Moore’s Law cannot hold forever with the electronic components
cannot shrink indefinitely. The emergence of quantum computation provides
the possibility to solve this problem, and its properties such as superposition
and entanglement that can make computation faster and more efficient [3].
Researchers have also proposed quantum algorithms that can be used in prac-
tice, such as the famous Shor’s integer factoring algorithm [4] and Grover’s
database searching algorithm [5], which further provide strong support for
proving that quantum computation has stronger computing power than clas-
sical computation. With the rapid development of quantum computation and
quantum information, the research on quantum computation has gradually
deepened into the image processing [6]. Quantum image processing (QIP) has
become an important branch of quantum computation research. QIP focuses
on performing classical image processing tasks in quantum computers to im-
prove processing efficiency, especially in large-scale image processing tasks [7].
At present, the two major directions of QIP are quantum image representation
and quantum image processing algorithms.

In recent years, many classical models of quantum image representation
have been proposed. In 2003, the first quantum image representation model,
called the qubit lattice representation, was proposed by Venegas-Andrace [8].
More recently, Le. et al. proposed a flexible representation for quantum im-
ages(FRQI) [9] using quantum superposition state to store the colors and the
corresponging positions of an image. In 2013, Zhang. et al. proposed a novel
enhanced quantum representation model (NEQR) [10] based on FRQI, and
years later the generalized model of NEQR(GNEQR) was proposed by Li. et
al [11]. Comparing GNEQR with NEQR, the former not only has high storage
efficiency in color image representation but also can represent the rectangular
image. At the same time, many quantum image processing algorithms based
on these representation models have been proposed, such as quantum image
geometric transformation [12–14], quantum image scaling [15], quantum im-
age compression [11], quantum image watermarking [16, 17], quantum image
scrambling [18–20], quantum image encryption [21], quantum image edge de-
tection [22], quantum image enhancement [23].

Image enhancement is basically improving the interpretability or percep-
tion of information in images for human viewers and providing ‘better’ input
for other automated image processing techniques. The principal objective of
image enhancement is to modify attributes of an image to make it more suit-
able for a given task and a specific observer. There exist many techniques that
can enhance a digital image without spoiling it. The enhancement methods can
broadly be divided into the following two categories: spatial domain methods
and frequency domain methods [24].

In spatial domain techniques, we directly deal with the image pixels. The
pixel values are manipulated to achieve desired enhancement. On the other
hand, frequency based domain image enhancement is a term used to describe
the analysis of mathematical functions or signals with respect to frequency
and operate directly on the transform coefficients of the image, such as fourier
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transform, discrete wavelet transform (DWT), and discrete cosine transform
(DCT). Image enhancement techniques like spatial domain methods can a-
gain be classified into two broad categories: point processing operation and
neighborhood enhancement operation. However, compared with classical im-
age processing, quantum image processing technology is still in infancy, there
is not much research about the spatial domain methods in the quantum field.
Several detection schemes of quantum image edges based on the Sobel op-
erator [25], Prewitt operator [26], Kirsch operator [27] and Laplacian opera-
tor [28] has been proposed in previous years, but these algorithms belong to
the category of quantum image neighborhood enhancement operation. Point
processing operation is the simplest spatial domain operation as operations
are performed on single pixel only. Pixel value of the processed image depend
on pixel value of original image. The Point processing approaches can be clas-
sified into two broad categories: linear gray transformation and nonlinear gray
transformation [29].

Linear gray transformation for quantum image is the focus of our research.
This paper proposed three types of linear gray transformation schemes for
quantum images based on point processing operation in quantum computer-
s. We provide quantum circuits for realizing image negative, image contrast
stretching, and piecewise linear gray transformation by using high-efficiency
quantum arithmetic operations. As we know, this work has not been studied
yet.

The rest of the paper is organized as follows. A brief background on the
GNEQR representation, three types of linear gray transformation, quantum
gates and quantum arithmetic operations is presented in Sect. 2. The quantum
circuit architecture of these linear gray transformation is discussed in Sect. 3.
This is followed in Sect.4 by the theoretical analysis of network complexity.
Finally, a conclusion is given in Sect. 5.

2 Preliminaries

2.1 The generalized model of NEQR (GNEQR)

GNEQR is the generalized model of NEQR [11]. For a gray image with the
size 2n×2m and gray range 2q, GNEQR encodes the position information into
(n+m) qubits and encodes the gray intensity into q qubits. According to the
GNEQR, a quantum image can be written as the form shown below.

|I⟩ = 1√
2n+m

2
n−1
∑

X=0

2
m−1
∑

Y=0

|CXY ⟩|X⟩|Y ⟩, (1)

|CXY ⟩ = |Cq−1

XY C
q−2

XY · · ·C0
XY ⟩, Ci

XY ∈ {0, 1}, CXY ∈ {0, 2q − 1}, (2)

|X⟩|Y ⟩=|xn−1xn−2 · · ·x0⟩|yn−1yn−2 · · · y0⟩, xj , yj ∈ {0, 1}, (3)
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Fig. 1: An example of a 21 × 22 gray image and its GNEQR representation

where the binary sequence |CXY ⟩ is the gray value of the corresponding pixel
coordinate |X,Y ⟩. Fig. 1 shows an example of a 2n × 2m gray image and its
GNEQR representation.

2.2 Linear gray transformation

Linear gray transformation is to adjust the gray of the target image by es-
tablishing gray mapping, and to linearly expand or compress the gray of the
image [29]. The gray mapping relationship can be described as follows.

O(x, y) = T [I(x, y)], (4)

where T is a transformation that maps the original image into the transformed
image, (x,y) is the pixel coordinates, I (x, y) is the original image, and O(x, y)
is the transformed image. Fig. 2 shows the schematic diagram of mapping the
original image into the transformed image. It can be seen from Fig. 2 that the
pixel value has changed after the transformation. In classical point processing
operation, there are three types of linear gray level transformation: image
negative, image contrast stretching and piecewise linear gray transformation.
Each gray transformation method has a different adaptation scenario. For
different images, it is necessary to use the appropriate transformation method
to achieve a better enhancement effect. Fig. 3 shows the principle diagrams of
three types of gray transformation, where CXY represents the pixel value of
the original image, C ′

XY represents the pixel value of the transformed image,
and the color depth of the image is q bits.

The most basic and simple operation in digital image processing is to com-
pute the negative of an image. The pixel gray values are inverted to compute

TT

( , )I x y ( , )O x y

Fig. 2: The image gray level transformation process
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Fig. 3: The principles of three types of linear gray transformations. a Image
negative. b Image contrast stretching. c Piecewise linear gray transformation

the negative of an image. For example, if CXY is the gray value of the original
image, the gray value C ′

XY of the negative image can be computed as

C ′
XY = 2q − 1− CXY . (5)

Fig. 3(a) shows the principle diagram of image negative.
Image contrast stretching is to expand the gray value of all pixels in the

same proportion to increase the pixel difference between adjacent pixels and
achieve the purpose of contrast enhancement [30]. Suppose the pixel gray value
range of the input image I (x, y) is [a, b], the gray value range of the transformed
image O(x, y) is [a′, b′]. The image contrast stretching can be described as

C ′
Y X = a′ + k(CY X − a), (6)

k =
b′ − a′

b− a
, (7)

where k is the gray value stretching coefficient, represents the slope of the
oblique line in Fig. 3(b).

If the gray range of the original image is divided into two or more segments
for linear transformation, we call it piecewise linear gray transformation. Piece-
wise linear gray transformation can stretch the gray details of specific regions
of the target image and relatively suppress uninteresting regions according to
the actual situation [30]. Fig. 3(c) shows the schematic diagram of piecewise
linear gray transformation. Suppose the segmentation points are [a, a′] and
[b, b′], linear gray transformation can be described as

C ′
XY =











k1CXY 0 ≤ CXY < a

k2 (CXY − a) + a′ a ≤ CXY ≤ b

k3 (CXY − b′) + b′ b < CXY ≤ 2q − 1

, (8)

k1 =
a′

a
, k2 =

b′ − a′

b− a
, k3 =

2q−1 − b′

2q−1 − b
, (9)

where k1, k2, and k3 are the slope of the three broken lines in Fig. 3(c).



6 Kai Liu1, Hai-Sheng Li1

(a) (b) (c) (d)

Fig. 4: The transformed images for pollen images. a Original image, b Negative
of the image c Image after contrast stretching d Image after piecewise linear
gray transformation.

In order to show the different transformation effect of the three types of
linear gray transformations, we selected the pollen image as an example and
obtain different transitioned image by using three types of transformations
respectively, as shown in Fig. 4.

2.3 Quantum gates

The computational basis states |0⟩, |1⟩, and their dual states ⟨0|, ⟨1| can be
expressed in the row and column vectors as:

|0⟩=
[

1
0

]

, |1⟩=
[

0
1

]

, ⟨0|=
[

1 0
]

, ⟨1|=
[

0 1
]

.

Suppose U is the matrix of an n-qubit gate, n controlled-U gates are pre-
sented in Fig. 5, with matrices that can be expressed as:



















Cj
n(U2m) = ((|j⟩⟨j|)⊗ U2m) +

2
n−1
∑

i=0,i̸=j

((|i⟩⟨i|)⊗ I2m)

V j
n (U2m) = (U2m ⊗ (|j⟩⟨j|)) +

2
n−1
∑

i=0,i̸=j

(I2m ⊗ (|i⟩⟨i|)),
(10)

where |j⟩ = |jn−1jn−2 · · · j0⟩ and |i⟩ = |in−1in−2 · · · i0⟩. U2m is the 2m × 2m

unitary matrix and I2m is the 2m×2m identity matrix. The circuits of Cj
n(U2m)

1n
j
-

2n
j
-2n
j
-

0
j
0
j

n

m
2
mU

2
mU

1n
j
-

2n
j
-

0
j

n

m
2
mU

2
mU

(a)

2n
j
-2n
j
-

0
j
0
j

1n
j
-1n
j
-

2
mV

n

m
2
mV

n

m
2
mV

2n
j
-

0
j

1n
j
-

2
mV

n

m
2
mV

(b)

Fig. 5: Cj
n(U2m) gate and V j

n (U2m) gate
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(a)

VV

(b) (c)

Fig. 6: Representations of some quantum gates, including a Controlled-NOT
gate (i.e., XOR gate), b Controlled-V gate, c Toffoli gate
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Fig. 7: Quantum circuit for the parallel controlled-NOT module

gate and V j
n (U2m) gate are shown in Fig. 5. For instance, unitary matrices of

1-qubit X and V are

X =

[

0 1
1 0

]

, V = 1+i
2

[

1 −i

−i 1

]

, V † = 1−i
2

[

1 i

i 1

]

,

where i is an imaginary unit. Let n = 1, j = 1, U2m=X, C1
1 (X) is the CNOT

gate, let n = 1, j = 1, U2m=V , C1
1 (V ) is the controlled-V gate, and let n = 2,

j = 3, U2m=X, C3
2 (X) is the Toffoli gate. The corresponding controlled gates

are presented in Fig. 6.
The parallel controlled-NOT module consists of n CNOT gates, as illus-

trated in Fig. 7. This module is used to make a copy of n qubit sequence
information into the auxiliary qubits |0⟩⊗n

.
And the quantum gates covered in this paper also include

H = 1√
2

[

1 1
1 −1

]

, T =

[

1 0

0 e
iπ
4

]

, T † =

[

1 0

0 e
−iπ

4

]

.

In 2009, Thapliyal et al. proposed TR gate, which is constructed by a
Toffoli gate, a CNOT gate and two X gates [32]. Amy et al. gived the opti-
mal implementations of Peres gate(PG) in 2013 [31]. Fig. 8 shows the circuit
and logical relationship of PG gate and TR gate. In order to further promote
the development of quantum image, Li et al. designed fault-tolerant imple-
mentations of the TR gate, Peres gate, and variants with better performance
than that from the Toffoli gate in 2020. Therefore, based on the fault-tolerant
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Fig. 8: PG gate and TR gate

implementations of the TR and Peres gates, they implemented fault-tolerant
quantum arithmetic operation circuits for quantum image processing by using
the TR gate, PG gate and their variants. For a more comprehensive survey of
TR1, TR2, PG1, PG2 and other variants of TR and PG gates, readers can be
referred to [33].

2.4 Quantum arithmetic operations

From Eqs. (5), (6) and (8), we can see that linear gray transformation mainly
use addition operation, subtraction operation, multiplication operation, and
comparison operation. Hence, the relevant quantum arithmetic operations are
introduced in this section.

2.4.1 Quantum adder and quantum modular subtracter

Li et al. used the PG1 gate and the TR2 gate to design an efficient quantum
adder with an auxiliary bit, and the quantum cost of this quantum adder is
only (13n-10) [33]. Fig. 9 shows the implementation circuit for the quantum
adder. Suppose that |b⟩ = |bn−1bn−2 · · · b0⟩, |a⟩ = |an−1an−2 · · · a0⟩, and |s⟩ =
|snsn−1 · · · s0⟩, the quantum adder implemented the operation as follow:

|s⟩ = |b⟩+ |a⟩. (11)

2

1

1

0

0

a

b

a

b

a

1

1

2

2
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n

n
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s

a

s

a

-

-

-

-

2

1
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0
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Fig. 9: The implementation circuit of the quantum adder
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Fig. 11: Quantum arithmetic operation symbol. a Quantum adder, b Quantum
modular subtractor, c Quantum comparator

Since the quantum subtractor is not yet mature, the quantum modular
subtractor is used instead of the quantum subtractor in the design of related
circuits in this paper, this is because subtraction operation is equivalent to
modulo subtraction operation without borrow. Ref. [33] notes that quantum
modular adder is realized by modifying the circuit of the quantum adder, and
by substituting TR1 and PG2 for PG1 and TR2 in the circuit of the quantum
modular adder, we can obtain the circuit of the quantum modular subtractor.
The quantum modular subtractor implemented the operation as follow:

|d⟩ = |b− a⟩ mod 2n, (12)

where |d⟩ = |dn−1dn−2 · · · d0⟩. The simplified circuit diagram of the quantum
adder and quantum modular subtractor are shown in Fig. 11(b).

2.4.2 Quantum comparator

Comparator is used to compare two positive integers, which occupies an im-
portant position in the quantum image processing. Ref. [33] notes that the
quantum comparator circuit is implemented using the TR1 and PG1 gates as
shown in Fig. 10 and its symbol in Fig. 11(c). The output qubit c is used to
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Fig. 12: The implementation circuit of the quantum multiplier

denote the comparison result, i.e.

{

|a⟩ ≥ |b⟩ |c⟩ = |0⟩
|a⟩ < |b⟩ |c⟩ = |1⟩

. (13)

In this paper, it is applied to compare gray values of CXY .

2.4.3 Quantum multiplier

Li et al. designed a controllable adder based on a quantum adder, and then
a quantum multiplier can be realized by stacking multiple controlled quan-
tum adders. The circuit of the quantum multiplier is shown in Fig. 12. The
multiplier implemented the following:

|p⟩ = |a⟩ × |b⟩ (14)

where |a⟩ = |am−1an−2 · · · a0⟩, |b⟩ = |bn−1bn−2 · · · b0⟩ and |p⟩ = |pm+n−1 · · · p1p0⟩.

3 Quantum circuit architecture of image gray linear transformation

3.1 Image linear gray transformation’s GNEQR representation

In this paper, we use GNEQR to represent quantum images. Because gray
transformation is the operation which focuses on manipulating the gray value
of every pixel in the images, we only need to change the gray value CXY

in Eq. (1). We define the gray negative operation, the contrast stretching
operation and the piecewise linear transformation operation as T1, T2, and T3,
respectively. Assume I is the original image with the size 2n × 2m and gray
range 2q, O is the transformed image. CXY represents the pixel of the input
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image and C ′
XY represents the pixel of the transformed image. The operation

T which on GNEQR quantum images can be defined as

O = T (I) =
1√

2n+m

2
n−1
∑

x=0

2
m−1
∑

y=0

T (|CXY ⟩)|X⟩|Y ⟩.

According to Eq. (5), we define |C ′
XY ⟩ as

|C ′
XY ⟩ = T1(|CXY ⟩),

where

|C ′
XY ⟩T1

= |2q − 1− CXY ⟩. (15)

Likewise, image contrast stretching T2 and piecewise linear gray transfor-
mation T3 can be described as

|C ′
XY ⟩ = T2(|CXY ⟩),

where

|C ′
XY ⟩T2

= |a′⟩+ |k⟩(|CXY − a⟩), (16)

|k⟩ = |b
′ − a′

b− a
⟩, (17)

and

|C ′
XY ⟩ = T3(|CXY ⟩),

where

|C ′
XY ⟩T3

=











|k1⟩|CXY ⟩ 0 ≤ CXY < a

|k2⟩(|CXY − a⟩) + |a′⟩ a ≤ CXY ≤ b

|k3⟩(|CXY − b′⟩) + |b′⟩ b < CXY ≤ 2q − 1

, (18)

|k1⟩ = |a
′

a
⟩, |k2⟩ = |b

′ − a′

b− a
⟩, |k3⟩ = |2

q−1 − b′

2q−1 − b
⟩. (19)

Eqs (15), (16), and (18) give three types of linear gray transformation’s
quantum representation, respectively. In the following, the circuits we will
give are based on them.

3.2 Quantum circuit architecture of linear gray transformation

Because the operation T1 , T2 , and T3 are independent of each other as shown
in Eqs. (15-18), we will give several circuits to realize them, respectively.
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3.2.1 Image negative network

The image negative network that realizes T1. We use the quantum modular
subtracter to replace the subtracter to construct the network structure. By
contrasting Eq. (15) with Eq. (12), we can replace b, a in (12) with 2q − 1,
CXY , respectively.

|2q − 1, CXY ⟩ → |2q − 1, (2q − 1− CXY ) mod 2q⟩. (20)

The quantum image gray negative network is shown in Fig. 13. The final
output of the network is the gray information |C ′

XY ⟩T1
of negative image.

3.2.2 Quantum image contrast stretching network

According to Eq. (16), we will use quantum modular subtractor, quantum
multiplier, and quantum adder to design the image contrast stretching network
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according to the following three steps:

|CXY , a⟩ → |CXY , (CXY − a) mod 2q⟩
|k, (CXY − a) mod 2q⟩ → |k, k(CXY − a) mod 2q⟩
|a′, k(CXY − a) mod 2q⟩ → |a′, a′ + k(CXY − a) mod 2q⟩.

(21)

The first step corresponds to the quantum subtracter modulo 2q , the sec-
ond one corresponds to quantum comparator and the third one corresponds
to the quantum adder. We can cascade the three types of arithmetic oper-
ations to realize T2 as shown in Fig. 14. The output of the whole network,
(a′ + k(CXY − a) mod 2q), is the gray information |C ′

XY ⟩T2
of the trans-

formed image.

3.2.3 Piecewise linear gray transformation network

Unlike image negative network and image image contrast stretching network,
piecewise linear gray transformation network is more complex and requires
more arithmetic operations. In order to show a clear details of this network,
the whole workflow of our scheme, as well as the quantum circuit realization,
will be discussed in this subsection.

1. Workflow of piecewise linear gray transformation
The flow chart is shown in Fig. 15, which is divided into 5 stages more
specifically. Next we will give the details of our proposed network.

2. Quantum circuit realization of piecewise linear gray transformation
According to the flow chart, Fig. 16 gives the piecewise linear gray trans-
formation network. The following five steps will be described the network’s
details. The five steps are the preparation of quantum state, copying the
pixel information, dividing pixel values into three intervals, performing op-
eration and obtaining the transformed image.
Step 1. Preparation
Input the gray image into a quantum computer and we use GNEQR to
store the image |I⟩. Hence, the quantum state is as follows:

|I⟩ = 1√
2n+m

2
n−1
∑

x=0

2
m−1
∑

y=0

|CXY ⟩|X⟩|Y ⟩. (22)

Step 2. Auxiliary qubits store the pixel information
In this step we first prepare three |0⟩⊗q

auxiliary qubits. Two of them are
used to store the pixel value information |CXY ⟩ of the original image |I⟩
by using the parallel controlled-NOT modules, and the remaining one is
used to store the counterpart of the output image |O⟩. This step can be
described as

|I⟩|0⟩⊗q|0⟩⊗q|0⟩⊗q → 1√
2n+m

2
n−1
∑

x=0

2
m−1
∑

y=0

|CXY ⟩|CXY ⟩|CXY ⟩|0⟩|X⟩|Y ⟩.

(23)
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I

GNRQR quantum image and 

ancillary qubits 

O

0              a                   b              255

I

GNRQR quantum image and 

ancillary qubits 

O

0              a                   b              255

Fig. 15: The Workflow of piecewise linear gray transformation for quantum
image

Step 3. Divide pixel values into three intervals
According to the principle of piecewise linear gray transformation in Fig.
3(c), this step we need to use two quantum comparators to divide the pixel
value into three intervals. For the convenience of the following description,
we mark the comparator at the top of Step3 as COMP1 and the bottom
one as COMP2. Use |CXY ⟩ and |a⟩ as the input for COMP1 and |c1⟩ is its
output; According to the Eq. (13), we can draw the following conclusions.
For COMP1,

{

|CXY ⟩ ≥ |a⟩ |c1⟩ = |0⟩,
|CXY ⟩ < |a⟩ |c1⟩ = |1⟩.

(24)

For COMP2,
{

|CXY ⟩ ≥ |b⟩ |c2⟩ = |0⟩,
|CXY ⟩ < |b⟩ |c2⟩ = |1⟩.

(25)

As we know |0⟩ ≤ |CXY ⟩ ≤ |2q − 1⟩. From Eqs. (26) and (27), |CXY ⟩ can
be described as











|0⟩ ≤ |CXY ⟩ < |a⟩ |c1⟩=|1⟩,
|a⟩ ≤ |CXY ⟩ < |b⟩ |c1⟩|c2⟩=|0⟩|1⟩,
|b⟩ ≤ |CXY ⟩ ≤ |2q − 1⟩ |c2⟩=|0⟩.

(26)

Finally, we divide the pixel value into three intervals by judging the output
of the two comparators.
Step 4. Perform operation T3

If |c1⟩ = |1⟩, then the current pixel value interval is |0⟩ ≤ |CXY ⟩ ≤ |a⟩. Use
quantum multiplier to expand the gray value of this interval by k times,
and k1 = a′

a
,

|k1, CXY ⟩ → |k1, k1CXY ⟩. (27)
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Fig. 16: Piecewise linear gray transformation’s quantum network

If |c1⟩ |c2⟩= |0⟩ |1⟩, then the current pixel value interval is |a⟩ < |CXY ⟩ ≤
|b⟩. Use quantum modulo subtractor, adder and multiplier to realize the

following operations on the gray value of this interval, where k2 = b′−a′

b−a
.

|CXY , a⟩ → |CXY , (CXY − a) mod 2q⟩
|k2, (CXY − a) mod 2q⟩ → |k2, k2(CXY − a) mod 2q⟩
|a′, k2(CXY − a) mod 2q⟩ → |a′, a′ + k2(CXY − a) mod 2q⟩.

(28)

The operation process is the same as the process of Eq. (21).
If |c2⟩ = |0⟩, then the current pixel interval is |b⟩ ≤ |CXY ⟩ ≤ |2q − 1⟩,
k3 = 2

q−1−b′

2q−1−b
. The operation is as follows:

|CXY , b⟩ → |CXY , (CXY − b) mod 2q⟩
|k3, (CXY − b) mod 2q⟩ → |k3, k3(CXY − b) mod 2q⟩
|b′, k3(CXY − b) mod 2q⟩ → |b′, b′ + k3(CXY − b) mod 2q⟩,

(29)

the operation process is the same as that of Eq. (21).
Step 5. Get transformed image The results of linear gray transforma-
tion in step 4 are stored in the prepared state again by using the parallel
controlled-NOT module. Ignoring the garbage output, we will get the re-
sulting quantum image.

|O⟩ = 1√
2n+m

2
n−1
∑

x=0

2
m−1
∑

y=0

|C ′
XY ⟩T3

|X⟩|Y ⟩. (30)
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Fig. 17: Piecewise linear gray transformation’s process of the sample image.

Table 1: Gray information variation table of the sample image

The oridinal image I(x, y) The resulting image O(x, y)
Symbol C7 ∼ C0 Pixel Symbol C′

7
∼ C′

0
Pixel

00000000 0 00000000 0

00001010 10 00001010 10

00010100 20 00010100 20

00011110 30 00011110 30

00100000 32 00100000 34

00101110 46 00101110 62

00111100 60 00111100 90

01001010 74 01011000 118

01011000 88 01011000 146

01100110 102 01100110 174

01110100 116 01110100 202

01111111 127 01111111 224

11100110 230 11100110 230

11110000 240 11110000 240

11111010 250 11111010 250

11111111 255 11111111 255

3.3 A simple example

Let us consider the simple 22 × 22 GNEQR image with the gray range 2q

shown in Fig. 17(a) as an example. We first assign an initial value to the gray
of each pixel and mark each pixel with the number 1-16. Here we regard the
gray reversal circuit and the image contrast stretching circuit as part of the
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piecewise gray linear transformation circuit. Therefore, we only apply piecewise
linear gray transformation to sample image in this section.

According to the network, the change of gray information of the sample
image is shown in Table 1. After the quantum image state is prepared, we
prepare two |0⟩⊗q

to store the pixel information of the original image and one
|0⟩⊗q

to store the counterpart of the resulting image in step 2, which is shown
in Fig. 16(a). In step 3, we divide the gray value into three intervals, and
then each interval is expanded or compressed by a different proportion.Due
to the current limitation of quantum floating-point arithmetic operation, gray
expansion or compression coefficient k need to be set to integer. We set the
two points to (30, 30) and (127, 224), that is to say a = 30, a′ = 30, b = 127,
b′ = 224, the 16 pixels are divided into three parts: (1-4), (5-12) and (13-16)
by this way. According to Eq. (21), the slopes of the three broken lines in Fig.
3(c) are as follows.

k1 =
a′

a
=1, k2 =

b′ − a′

b− a
=2, k3 =

2q−1 − b′

2q−1 − b′
=1. (31)

In step 4, we perform linear gray transformation on the pixels of the three
intervals according to Eqs. (27-29). According to the gray information after
transformation in Table 1, the results of piecewise linear gray transformation
of the image are shown in Fig. 17(d). Finally, we store the final result in
auxiliary qubit, and Figure 17(e) shows the final resulting image. Compared
with the original image, we can find that the gray contrast of pixels (5-12)
of the resulting image is stretched, and the gray contrast of pixels (1-4) and
(13-16) remain unchanged.

4 Network complexity

The quantum image linear gray enhancement scheme relies on the parallelism
of quantum computing, which not only makes it better than the classical
method in terms of storage space, but also is more efficient in computing
efficiency. In this section, we analyze the complexity of the three types linear
gray enhancement schemes designed in this paper from two aspects of space
and time.

4.1 Spatial complexity

The space complexity means the memory cells an image needs when it is stored
in a computer. In a classical computer, a 2n × 2m image with 2q gray range
needs 2n×2m×q bits because it has 2n×2m pixels and each pixel needs q bits
to represent. In a quantum computer,according to GNEQR, the same image
only needs n+m+ q qubits. Table 2 gives three common images as examples.
After comparison, we find that the space complexity of storing images in a
quantum computer is significantly lower than that in a classical computer.
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Table 3: The quantum cost of module

No. Module Quantum cost

(1) Parallel CNOT module q

(2) Quantum adder 13q − 10
(3) Quantum comparator 12q − 8
(4) Quantum modular subtracter 13q − 22
(5) Quantum multiplier 17q2 − 12q

Table 2: Space complexity of an image

n m q
Bits needed in classical
computers 2n × 2m × q

Qubits needed in quantum
computers n+m+ q

6 5 8 16384 61
8 8 8 524288 66
10 9 8 4194304 69

4.2 Time complexity

Time complexity means the time an algorithm consumes when it is execut-
ing.In a classical computer, the time complexity depends on the number of
operation steps to execute the algorithm, while in a quantum computer, the
complexity of the quantum circuit network is determined by the number of el-
ementary quantum gates, which is called the quantum cost. Assuming that the
original image is a 2n × 2m image with 2q gray range, then we discuss its time
complexity in a classical computer and a quantum computer, respectively.

In classical computers, linear gray transformations require operating on
each pixel to change the gray value. For each pixel in the image,one modular
subtraction operation needs to be completed in image negative; modular sub-
traction, modular multiplication and modular addition need to be completed
in image contrast stretching; and three gray information copying operations,
one modular subtraction operation, one multiplication operation and one ad-
dition operation in piecewise linear gray enhancement. Therefore, in classical
computers, the complexity of the three linear gray transformations is 2n+m,
3× 2n+m, and 6× 2n+m.

In a quantum computer, the complexity of the basic quantum gate is 1,
including the X gate, the CNOT gate, and any 2 × 2 unitary operator. Here
we take the CNOT gate as the basic unit for evaluating the circuit complexity.
The circuit complexity designed in this paper mainly depends on the quantum
arithmetic operation. Ref. [28] gives the quantum cost of each operator, we list
them in Table 3. According to the circuit of Fig. 13, Fig. 14 and Fig. 16, we
can obtain the number of operators in each circuit. The quantum circuit for
image gray negative contains a quantum modular subtractor, so its complexi-
ty is (13q − 22). The quantum circuit of image contrast stretching contains 1
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Table 4: The time complexity comparison between the classical algorithm and
the quantum algorithm

n m q
Image negative Image contrast stretching

Piecewise linear gray
transformation

Classical Quantum Classical Quantum Classical Quantum
6 5 8 2048 82 6144 1170 12288 3730
8 8 8 65536 82 196608 1170 393216 3730
10 9 8 524288 82 1572864 1170 3145728 3730

quantum adder, 1 quantum modular subtractor and 1 quantum modular mul-
tiplier.so its complexity is (13q−10+13q−22+17q2−12q) = (17q2+13q−32);
The quantum circuit of piecewise linear gray transformation includes 5 paral-
lel CNOT gate modules, 2 modular subtractors, 2 adders, 3 multipliers and 2
comparators, so its complexity is {5q + 2(13q − 22) + 2(13q − 22) + 2(12q −
8) + 3(17q2 − 12q)} = (54q2 + 45q − 86). According to the calculation com-
plexity method given above, Table 4 gives three examples to further show the
superiority of the processing speed of the quantum image gray enhancement
algorithm.

5 Conclusion

Based on the GNEQR quantum image, this paper proposes three types of lin-
ear gray transformation schemes and gives the corresponding quantum circuit.
The complexity analysis shows that the quantum linear gray enhancement al-
gorithm has better performance than the classical algorithm in both space
complexity and time complexity, especially in large-scale image processing
tasks, the efficiency advantage is more obvious. At the same time, the realiza-
tion of quantum image linear gray transformation will also become the basis
for other quantum image processing, such as quantum image segmentation,
quantum image feature extraction, etc.

Due to the limitation of quantum transcendental function operations, the
design of quantum image nonlinear transformation has not been studied yet. In
the future research work, we will try to study the design of quantum transcen-
dental function operator, which will also lay the foundation for the realization
of nonlinear gray enhancement transformation of quantum images.
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