
ar
X

iv
:2

30
8.

08
46

7v
2

 [
qu

an
t-

ph
]

 2
4

N
ov

 2
02

3

On Neural Quantum Support Vector Machines

Lars Simon

Bundesdruckerei GmbH

lars.simon@bdr.de

Manuel Radons

Bundesdruckerei GmbH

manuel.radons@bdr.de

November 27, 2023

Abstract

In [SR23] we introduced four algorithms for the training of neural
support vector machines (NSVMs) and demonstrated their feasibility. In
this note we introduce neural quantum support vector machines, that is,
NSVMs with a quantum kernel, and extend our results to this setting.

1 Introduction

The combination of neural networks (NNs) and support vector machines (SVMs)
has been explored in numerous publications, see, e.g., [WvE+13], [QWTZ16], or
[Tan15]. A neural support vector machine (NSVM) is a machine learning model
that combines (as the name would suggest) NNs and SVMs in its architecture.
A quantum support vector machine (QSVM) is an SVM with a quantum kernel,
see [SK19] and [HCT+19]. In this note we introduce neural quantum support
vector machines (NQSVMs), which we define to be NSVMs with a quantum
kernel.

A key benefit of NSVMs and NQSVMs is that they allow to incorporate
and exploit domain knowledge in the model architecture by adapting the NN
part to a given data type. A straightforward sample application would be to
use convolutional neural networks (CNNs) for the design of an N(Q)SVM image
classifier. The key drawback of NSVMs is that the SVM training runtime scales
unfavourably with the number of samples in the training set.

In [SR23] we developed four training algorithms for NSVMs that leverage
the Pegasos Algorithm to address this problem [SSSSC11] and demonstrated
their feasibility. The main objective of this note is to extend the latter results
to NQSVMs.

For fitting QSVMs the Pegasos algorithm is particularly beneficial since there
are theoretical bounds on the necessary number of circuit evaluations when using
the dual formulation versus using the Pegasos algorithm, cf. [GTSW22].

We note that the first of our four adapted algorithms is very similar to the
quantum kernel alignment algorithm via Pegasos in [GSZ+23]. Further, we
would like to stress, as we did in [SR23], that at this point we do not claim any

1

http://arxiv.org/abs/2308.08467v2

performance improvements over existing training procedures. The scope of this
article is restricted to the derivation of the adapted algorithms and a proof of
concept. We feel, however, that our experimental results are encouraging and
merit further investigation, both theoretical and pratical.

Acknowledgement This article was written as part of the Qu-Gov project,
which was commissioned by the German Federal Ministry of Finance. The
authors want to extend their gratitude to Manfred Paeschke and Oliver Muth
for their continuous encouragement and support.

1.1 Content and Structure

In Section 2 we cover the necessary preliminaries on SVMs, NSVMs and quan-
tum kernels. Section 3 contains our main contribution, the description of four
NQSVM training algorithms that leverage the Pegasos algorithm. Our proof of
concept experiments are described in Section 4. Section 5 contains our closing
remarks.

2 Preliminaries

In this section we briefly cover some material in preparation of our treatise of
neural quantum support vector machines in Section 3.

2.1 Support Vector Machines

Just like in the work that originally introduced the Pegasos algorithm [SSSSC11]
we consider support vector machines without bias terms. It is, however, not hard
to adapt the algorithms we will present to include a bias term. While it is com-
mon to consider the dual formulation of the optimization problem underlying
support vector machines, we will only consider the primal formulation; this is
appropriate, since the Pegasos algorithm and the algorithms we will present all
exclusively make use of the primal formulation. For the sake of brevity we will
only state the kernelized version of the primal problem.

Let n ∈ Z≥1, and m ∈ Z≥2. Assume we are given a set of points

(x1, y1), . . . , (xm, ym) ∈ R
n × {−1, 1} .

This is interpreted as having m datapoints x1, . . . , xm ∈ R
n divided into two

classes, where yi ∈ {−1, 1} determines the class of xi, where i ∈ {1, . . . ,m}. We
further assume that there exists at least one point in each of the two classes, i.e.,
{y1, . . . , ym} = {−1, 1}. Furthermore, let K be a positive semidefinite kernel on
Rn, i.e., a map K : Rn × Rn → R with K(a, b) = K(b, a) for all a, b ∈ Rn, such
that the matrix

(K(zi, zj))1≤i,j≤l

is positive semidefinite, whenever l ∈ Z≥1 and z1, . . . , zl ∈ R
n. Let (H, 〈·, ·〉H)

be the reproducing kernel Hilbert space associated to K. The corresponding

2

support vector machine minimization problem then becomes (here, λ ∈ R>0 is
a hyperparameter):

minimize
λ

2
‖f‖2H +

1

m

m
∑

i=1

max (0, 1− yif(xi))

subject to f ∈ H.

(1)

2.2 Neural Support Vector Machines

Informally speaking, the Neural Support Vector Machine [WvE+13] works by
first computing features of an input using a neural network and subsequently
feeding the so computed features into a support vector machine. The neural
network and the support vector machine are trained in unison in order to ensure
that the features are maximally relevant.

More formally, let (Fθ)θ∈RL be a family of maps Fθ : R
d → Rn and let K be

a positive semidefinite kernel on Rn with associated reproducing kernel Hilbert
space (H, 〈·, ·〉H). For simplicity, we further assume that the maps F : Rd×RL →
Rn, (x, θ) 7→ Fθ(x) and K are C∞-smooth. In practice, (Fθ)θ∈RL is usually
chosen to be a neural network, where θ represents the trainable parameters.
The hypothesis class we consider is then the set of functions

{

f ◦ Fθ : R
d → R|f ∈ H, θ ∈ R

L
}

.

Given an element g in this hypothesis class, the associated classifier is given by
the map Rd → {−1, 1} which maps x ∈ Rd to 1 whenever g(x) ≥ 0, and to −1
otherwise.

Given data (x1, y1), . . . , (xm, ym) ∈ Rd×{−1, 1}with {y1, . . . , ym} = {−1, 1},
we choose a classifier from the hypothesis class by solving the following opti-
mization problem:

minimize
λ

2
‖f‖

2
H +

1

m

m
∑

i=1

max (0, 1− yif(Fθ(xi)))

subject to f ∈ H, θ ∈ R
L,

(2)

where, as before, λ > 0 is a hyperparameter.

2.3 Quantum Kernels

Following [HCT+19], we consider quantum feature maps Φ: Rn → MN of the
form

x 7→ U(x)|0N 〉〈0N |U †(x)

where n,N ∈ Z≥1 and

U(x) ∈
(

C
2×2

)⊗N ∼= C
2N×2N

3

is unitary for all x ∈ Rn. For simplicity, we assume that

U : Rn → C
2N×2N

is C∞-smooth. Here, MN is the R-vector space of Hermitian matrices in

C2N×2N . Of course we have

Φ(Rn) ⊆ {M ∈ MN |M positive semidefinite and Trace(M) = 1} ,

but since the latter set is not an R-vector space with the canonical operations,
we consider MN instead. Note that dimR(MN) = 4N and that MN is an
R-Hilbert space when equipped with the Frobenius inner product 〈·, ·〉F .

It is then clear that the map K : Rn × Rn → R given by

K(x, z) = 〈Φ(x),Φ(z)〉F

= Trace(Φ(x)†Φ(z))

=
∣

∣〈0N |U †(x)U(z)|0N 〉
∣

∣

2

is a C∞-smooth positive semidefinite kernel on Rn. Kernels of this form are
called quantum kernels . For evaluation resp. estimation of quantum kernels on
a quantum computer we refer to [HCT+19] and [GGC+22].

2.4 The Reproducing Kernel Hilbert Space of a Quantum

Kernel

Let K be a quantum kernel (we adopt the notation from above). Then the
(uniquely determined) reproducing kernel Hilbert space of K is

H = {Trace(M †Φ(·)) : Rn → R|M ∈ MN}

=
{

f : Rn → R|∃M ∈ MN : f(x) = 〈0N |U †(x)MU(x)|0N 〉 for all x ∈ R
n
}

and the norm ‖ · ‖H is given as

‖f‖H = inf{‖M‖F |M ∈ MN and f = Trace(M †Φ(·))} for all f ∈ H,

where ‖ · ‖F denotes the Frobenius norm. Note that the inner product 〈·, ·〉H on
H is uniquely determined by the norm ‖·‖H via the polarization identities. Fur-
thermore, the canonical mapping Γ: MN → H given by M 7→ Trace(M †Φ(·))
is R-linear and surjective and, for all M ∈ MN , we have ‖Γ(M)‖H ≤ ‖M‖F
with equality if and only if M ∈ ker(Γ)⊥.

Note that H is also described by the set
{

l
∑

i=1

αi

∣

∣〈0N |U †(zi)U(·)|0N 〉
∣

∣

2
: Rn → R

∣

∣

∣

∣

l ∈ Z≥0, αi ∈ R, zi ∈ R
n ∀i ∈ [l]

}

,

where [l] := {1, . . . , l}, since the latter set is a dense R-vector subspace of H
and dimRH ≤ dimR MN = 4N < +∞.

All of the above is obvious from [SC08, Thm. 4.21]. For a treatment of these
facts that is specific to quantum kernels, see also [Sch21].

4

3 Neural Quantum Support Vector Machines

A neural quantum support vector machine is a neural support vector machine
whose kernel is a quantum kernel. So, let K be a quantum kernel and adopt
the notation from Sections 2.2, 2.3, and 2.4.

Roughly speaking, we now replace H by MN in optimization problem 2. To
see why this is appropriate, use the decomposition MN = ker(Γ)⊕ker(Γ)⊥ and
the properties of Γ from Section 2.4. The optimization problem underlying the
neural quantum support vector machine then becomes:

minimize
λ

2
‖M‖

2
F +

1

m

m
∑

i=1

max
(

0, 1− yi〈0
N |U †(Fθ(xi))MU(Fθ(xi))|0

N 〉
)

subject to M ∈ MN , θ ∈ R
L .

(3)
For a visual representation, see Figure 1. We are now ready to state the

four announced quantum-analogues of the NSVM training algorithms described
in [SR23]. Since the use of quantum kernels does not affect the validity of the
algorithms’ derivation, we will merely state an updated pseudocode of their
quantum versions and refer to the latter reference for technical justifications.

All algorithms take as an input the number of training steps T ∈ Z≥1, a
family of maps F := (Fθ)θ∈RL , where Fθ : R

d → Rn, a dataset

D := {(x1, y1), . . . , (xm, ym)} ⊂ R
d × {−1, 1}

with {y1, . . . , ym} = {−1, 1}, and a C∞-smooth map U : Rn → C2N×2N , where
n,N ∈ Z≥1, with U(z) unitary for all z ∈ Rn, which, in practice, is usually given
as a parametrized N -qubit quantum circuit. Further, the inputs will include
hyperparameters that vary between the algorithms. For the sake of simplicity
we assume that the map F : Rd × RL → Rn, (x, θ) 7→ Fθ(x) is C

∞-smooth.
From the output of each algorithm we construct a function g : Rd → R that

induces a classifier

R
d → {−1, 1} , x 7→

{

1 if g(x) ≥ 0 ,

−1 if g(x) < 0 .

The construction method for g varies from algorithm to algorithm.
We note that all algorithms will involve gradient descent steps wrt. the train-

able parameters θ; for implementation details we refer to [SR23]. Gradients of
the quantum kernel are estimated. Since finite difference approximation is com-
putationally expensive, we instead estimate gradients of quantum kernels using
the gradient estimator featuring in the well-known SPSA algorithm [Spa92].
While the gradients for the layers of the neural network can be calculated in
the usual way, they are still affected by the use of the aforementioned gradient
estimator (because of backpropagation).

Moreover, the vector of coefficients α will, in general, be sparse. For brevity
we refrain from mentioning this fact in the pseudocode, even though its ex-
ploitation is a necessity in any sensible implementation.

5

data
space Rd

NN Fθ

NN feature
space Rn

• x

• Fθ(x)

• Φ(Fθ(x))•

Tr(MΦ(Fθ(x)))
•

0

quantum
feature map Φ

decision
boundary

real
line R

Tr(M · (·))

QSVM feature
space MN

Figure 1: This figure indicates how a trained neural quantum support vector
machine makes predictions.

6

3.1 Remarks on the Algorithms

As noted above, the derivation of Algorithms 1-4 is layed out in detail in [SR23].
However, some remarks are in order.

Algorithm 1 is very similar to the algorithm presented in [GSZ+23]. The
key difference between Algorithms 1 and 2 lies in the update step for θ. In
Algorithm 2, for step t ∈ {1, . . . T }, we first update ft with a gradient descent
step as in Algorithm 1, to obtain some f̃t+1 ∈ H . Then θt is updated with a
gradient descent step to obtain some θt+1 ∈ RL. Subsequently, we obtain ft+1

by ”approximately projecting” f̃t+1 to span
R
({K(Fθt+1

(xi), ·)|i ∈ {1, . . . ,m}}).
Algorithm 3 introduces mini batching and a more involved minimization objec-
tive that is utilized in the gradient descent step.

Finally, Algorithm 4 consists of two parts: First we train the neural network
with the aim of improving the kernel alignment, then we fit a support vector
machine. Since the parameters of the neural network are no longer being trained
when we fit the support vector machine, we can choose any algorithm for fitting
a support vector machine, e.g. the Pegasos algorithm, or an algorithm making
use of the dual formulation. In order to accomodate this freedom of choice, we
will leave the second part of the pseudocode somewhat open, which of course
leads to a less strict description of the algorithm.

For the construction of the above-mentioned function g : Rd → R from the
output of the respective algorithms, we again refer to [SR23].

3.2 Comparison with Quantum Support Vector Machines

with Parametrized Kernel

The performance of a QSVM is closely connected to the suitability of its kernel
for a given dataset. For example, in [LAT21] the authors constucted a binary
classification problem which is closely related to the discrete logarithm prob-
lem (DLP), on which the security of cryptographic key exchange protocols such
as Diffie-Hellman and ElGamal is based, because it is believed to be compu-
tationally hard. A quantum kernel was specifically tailored to the underlying
structure of the data set (by using parts of Shor’s algorithm for DLP [Sho97]
as a subroutine), thus establishing a quantum advantage for the corresponding
QSVM over classical learners under the assumption that DLP is indeed classi-
cally intractable. On this data set, one should not expect such an advantage for
QSVMs with generic quantum kernels.

In general, it is not obvious how to construct quantum kernels that exploit
the intrinsic structure of a given data set. Moreover, in practice one often has
limited knowledge about the data structure. In [GGC+22], the above obser-
vations are explained in more detail and serve as motivation to introduce an
approach to finding quantum kernels which are well suited for a given dataset:
The approach is to consider a parametrized quantum kernel (Kτ)τ∈Rp and to
choose an appropriate τ using a classical optimization loop.

Strictly speaking, via the definition Kθ(·, ·) := K(Fθ(·), Fθ(·)), the neural
quantum support vector machine can be seen as a special case of a quantum

7

Algorithm 1:

Input : dataset D, number of steps T , hyperparameter λ,
parametrized unitary U , family of functions F

Output: coefficients α, labels Y, evaluations Z, parameters Θ
Initialization: randomly pick θ1 ∈ RL and i1 ∈ {1, . . . ,m} and set up a
parametrized quantum circuit for evaluating

K : Rn × R
n → R , K(a, b) =

∣

∣〈0N |U †(a)U(b)|0N〉
∣

∣

2

α1 = 1
z1 = Fθ1(xi1)
θ2 = θ1
for t=2,. . . , T do

Choose it ∈ {1, . . . ,m} uniformly at random
zt = Fθt(xit) ∈ Rn

Compute

g̃t =
1

λ(t− 1)

t−1
∑

s=1

αsyisK(zs, zt)

if yit g̃t < 1 then
αt = 1
Obtain θt+1 ∈ RL from θt via a gradient descent step wrt. the
minimization objective

R
L → R, θ 7→ −

yit
λ(t− 1)

t−1
∑

s=1

αsyisK(zs, Fθ(xit))

(gradients of K are estimated using the SPSA-estimator and
backpropagated the usual way)

end

else
αt = 0
θt+1 = θt

end

end

Set α := (α1, . . . , αT)
Set Y := (yi1 , . . . , yiT)
Set Z := (z1, . . . , zT)
Set Θ := θT+1

return (α,Y,Z,Θ)

8

Algorithm 2:

Input : dataset D, number of steps T , hyperparameter λ,
parametrized unitary U , family of functions F

Output: coefficients α, evaluations Z, parameters Θ
Initialization: randomly pick θ1 ∈ RL and i1 ∈ {1, . . . ,m} and set up a
parametrized quantum circuit for evaluating

K : Rn × R
n → R , K(a, b) =

∣

∣〈0N |U †(a)U(b)|0N〉
∣

∣

2

Let α(2) ∈ Rm with α
(2)
i1

= 1 and α
(2)
j = 0 ∀ j ∈ {1, . . . ,m} with j 6= i1

θ2 = θ1
for t=2,. . . , T do

Choose it ∈ {1, . . . ,m} uniformly at random

For all j ∈ {1, . . . ,m} with j 6= it: set α
(t+1)
j = α

(t)
j

Compute

g̃t =
1

λ(t− 1)

m
∑

j=1

α
(t)
j yjK(Fθt(xj), Fθt(xit))

if yit g̃t < 1 then

α
(t+1)
it

= α
(t)
it

+ 1

Obtain θt+1 ∈ RL from θt via a gradient descent step wrt. the
minimization objective

R
L → R , θ 7→ −

yit
λ(t− 1)

m
∑

j=1

α
(t)
j yjK(Fθ(xj), Fθ(xit))

(gradients of K are estimated using the SPSA-estimator and
backpropagated the usual way)

end

else

α
(t+1)
it

= α
(t)
it

θt+1 = θt
end

end

for j=1,. . . ,m do
zj := FθT+1

(xj)
end

Set α := α(T+1)

Set Z := (z1, . . . , zm)
Set Θ := θT+1

return (α,Z,Θ)

9

Algorithm 3:

Input : dataset D, number of steps T , hyperparameters λ, µ,
parametrized unitary U , family of functions F, batch size k

Output: coefficients α, evaluations Z, parameters Θ
Initialization: randomly pick θ1 ∈ RL and set up a parametrized
quantum circuit for evaluating

K : Rn × R
n → R , K(a, b) =

∣

∣〈0N |U †(a)U(b)|0N〉
∣

∣

2

Choose a subset A1 of {1, . . . ,m} with cardinality k uniformly at
random

Let α(2) ∈ Rm with α
(2)
j = 1

k
if j ∈ A1 and α

(2)
j = 0 otherwise

θ2 = θ1
for t=2,. . . , T do

Choose a subset At of {1, . . . ,m} with cardinality k uniformly at
random

For all j ∈ {1, . . . ,m} with j 6∈ At: set α
(t+1)
j = α

(t)
j

For all i ∈ At compute

g̃
(i)
t =

1

λ(t− 1)

m
∑

j=1

α
(t)
j yjK(Fθt(xj), Fθt(xi))

for all i ∈ At do

if yig̃
(i)
t < 1 then

α
(t+1)
i = α

(t)
i + 1

k

end

else

α
(t+1)
i = α

(t)
i

end

end

Obtain θt+1 ∈ RL from θt via a gradient descent step wrt. the
minimization objective RL → R:

θ 7→µ ·

∑

i,j∈At
α
(t+1)
i α

(t+1)
j yiyjK(Fθ(xi), Fθ(xj))

√

∑

i,j∈At

(

α
(t+1)
i α

(t+1)
j

)2

·
√

∑

i,j∈At
K(Fθ(xi), Fθ(xj))2

−

∑

i,j∈At
yiyjK(Fθ(xi), Fθ(xj))

k ·
√

∑

i,j∈At
K(Fθ(xi), Fθ(xj))2

(gradients of K are estimated using the SPSA-estimator and
backpropagated the usual way)

If α
(t+1)
i = 0 for all i ∈ At, then the first fraction is not well-defined.

In this case we replace the first fraction by 0
end

for j=1,. . . ,m do
zj := FθT+1

(xj)
end

Set α := α(T+1)

Set Z := (z1, . . . , zm)
Set Θ := θT+1

return (α,Z,Θ)

10

Algorithm 4:

Input : dataset D, number of steps T , parametrized unitary U , family
of functions F, batch size k, loss function L, hyperparameters
H

Output: classifier h, parameters Θ
Initialization: Randomly pick θ1 ∈ RL and set up a parametrized
quantum circuit for evaluating

K : Rn × R
n → R , K(a, b) =

∣

∣〈0N |U †(a)U(b)|0N〉
∣

∣

2

Part 1 (kernel alignment):
for t=1,. . . , T do

Choose a subset At of {1, . . . ,m} with cardinality k uniformly at
random

Obtain θt+1 ∈ RL from θt via a gradient descent step wrt. the
minimization objective RL → R:

θ 7→ L

1,

∑

i,j∈At
yiyjK(Fθ(xi), Fθ(xj))

k ·
√

∑

i,j∈At
K(Fθ(xi), Fθ(xj))2

(gradients of K are estimated using the SPSA-estimator and
backpropagated the usual way)

end

for j = 1, . . . ,m do
Set zj := FθT+1

(xj)
end

Part 2 (fit SVM):
Fit SVM with kernel K on data (z1, y1), . . . , (zm, ym) ∈ Rn × {−1, 1},
using H and obtain classifier

h : Rn → {−1, 1}

Set Θ := θT+1

return (h,Θ)

11

support vector machine with parametrized quantum kernel. However, in the
literature on parametrized quantum kernels that the authors are aware of, the
parameters τ only enter the picture via parametrized gates resp. unitaries Vτ

(which are independent from the kernel inputs), i.e., the data is explicitly not
passed through a neural network prior to being fed into the kernel. When
adjusting the trainable parameters τ of such a parametrized quantum kernel
during training, one changes the mapping of the data to the quantum feature
space MN , but does not transform the data itself prior to feeding it into the
quantum kernel. In contrast, when adjusting the trainable parameters θ of a
neural quantum support vector machine during training, the quantum kernel
(and thus the mapping of the data to the quantum feature space MN) stays
unchanged, but we change how the data is transformed prior to being fed into
the kernel. So, roughly speaking, one can say that a quantum support vector
machine with parametrized kernel (where the parameters only enter the picture
via parametrized gates which are independent from the kernel inputs) works by
modifying the kernel during training to better suit the data, whereas a neu-
ral quantum support vector machine modifies the data transformation during
training to better suit the (fixed) kernel.

On the other hand, it is certainly possible to consider a parametrized kernel
(Kτ)τ∈Rp in the neural (quantum) support vector machine, i.e., to consider
K(θ,τ)(·, ·) := Kτ (Fθ(·), Fθ(·)). The four algorithms we present can trivially be
adapted to this setting by optimizing over the concatenated parameter vector
(θ, τ) ∈ RL+p instead of over θ.

4 Experiments

The purpose of our numerical experiments is to demonstrate the feasibility of the
above adaptation of the algorithms described in [SR23] to the quantum setting.
As in the latter reference, we neither extensively tune hyerparameters, etc., to
optimize performance, nor do we exhaustively benchmark the performance of
our algorithms when compared to each other or to other well-known machine
learning models.

As before, we showcase the incorporation of domain knowledge in N(Q)SVMs
by choosing the neural layers depending on the characteristics of the data by
training a CNN in combination with the ZZFeatureMap on the MNIST dataset,
cf. [LCB10], and on the Fashion-MNIST dataset, cf. [XRV17].

All quantum circuits were simulated using the AerSimulator provided by the
Qiskit framework. Each circuit run was executed with 450 shots; this includes
circuit runs that were used to approximate/estimate gradients. Gradients of
the quantum kernel were estimated using the gradient estimator featuring in
the SPSA algorithm. While the gradients for the layers of the neural network
were computed in the usual way, they were also affected by the estimation of the
gradients for the quantum kernel, since the gradient estimates for the quantum
kernel were, of course, fed to the neural network during backpropagation.

12

4.1 MNIST Data Set

As we merely aimed for a proof of concept we restricted our experiments to the
binary classification task of distinguishing the digits 0 and 1. Adapting our al-
gorithms to multiclass classification and regression problems is a straighforward
task that we leave to future work.

Our training and testing set contain 12665, resp., 2115 28 × 28 grayscale
images. Both are approximately balanced between digits 0 and 1. 500 images
from each class (so, a total of 1000 images) were split off from the training set
to serve as a validation set during hyperparameter tuning. After deciding on a
hyperparameter configuration, we trained the models from scratch on the entire
training set (i.e., including the 1000 images that were previously split off).

4.1.1 Description of Models

All algorithms use the same model, a convolutional layer with 10 × 10 filters
and 4 output channels, followed by channel-wise dropout, followed by a 2 × 2
max pooling layer and a subsequent ReLU activation. The output is then fed
into a fully connected layer with input dimension 324 and output dimension
4. The output of the latter is normalized with respect to the Euclidean norm
in R4 (where the denominator is artificially bounded from below by a small
ǫ > 0 in order to avoid division by 0 and to provide numerical stability) and
subsequently scaled by the factor 2. Afterwards, the tanh activation function is
applied component-wise and its output is scaled by the factor π

4 .
As the Quantum Feature Map we use the above-mentioned ZZFeatureMap

with feature dimension 4, with 1 repetition, and with full entanglement, cf.
[HCT+19]).

4.1.2 Training and Results

All four algorithms only needed a relatively small number of training steps; as
a result, none of the models encountered all entries of the training set during
training.

All algorithms used gradient descent with momentum and L2-regularization
for the θ-update (Algorithm 4 in Part I, the kernel alignment). The hyperpa-
rameter λ was set to 0.0001 in all algorithms (in Algorithm 4 during Part II, the
QSVM fit via Pegasos). Algorithm 3 had an additional hyperparameter µ = 1.
The batch size of Algorithms 3 and 4 was 4. The loss function during Part I of
Algorithm 4 was L(β, γ) = (β − γ)2.

Algorithms 1 and 2 achieved 99.1% and 99.5% classification accuracy on
the test set, respectively, each after 1200 steps. Algorithm 3 achieved 99.9%
classification accuracy after 600 steps. Algorithm 4 achieved 99.7% classification
accuracy after 1200 steps, which were composed of 600 steps in Part I and 600
steps in Part II.

13

4.2 Fashion-MNIST Data Set

Similiarly to before we restrict our experiments to the binary classification task
of distinguishing between images of pullovers and sandals.

Our training and testing set contain 12000, resp., 2000 28 × 28 grayscale
images. Both are perfectly balanced between images of pullovers and images of
sandals. 750 images from each class (so, a total of 1500 images) were split off
from the training set to serve as a validation set during hyperparameter tuning.

4.2.1 Description of Models

In order to demonstrate the flexibility of our algorithms we used the same
NQSVM models for the experiments with the Fashion-MNIST data set as for
the experiments with the MNIST data set.

4.2.2 Training and Results

All four algorithms only needed a relatively small number of training steps; as
a result, none of the models encountered all entries of the training set during
training.

The training procedure for the experiments with the Fashion-MNIST data
set was the same as the training procedure for the experiments with the MNIST
data set, except that we chose different values for learning rate and momentum
for the θ-update, as well as different numbers of steps for the respective algo-
rithms.

Algorithms 1 and 2 achieved 98.7% and 98.0% classification accuracy on the
test set, respectively, each after 1200 steps. Algorithm 3 achieved 98.7% clas-
sification accuracy after 2000 steps. Algorithm 4 achieved 99.3% classification
accuracy after 3000 steps, which were composed of 1500 steps in Part I and 1500
steps in Part II.

We would like to stress that we do not claim superior performance in compar-
ison to the state of the art. After all, both classifications problems we considered
in our experiments were easy. The point of this section was merely to provide
a proof of concept that we can successfully train a NQSVM with convolutional
layers and quantum kernel using Algorithms 1-4.

5 Conclusion

The goal of this article was to incorporate quantum kernels in the N(Q)SVM
training algorithms derived in [SR23] and to provide a proof of concept for
this approach without any claims of superiority over the current state of the
art. However, as in the case of the latter work, which had a similarly modest
goal, we think that the numerical results are encouraging and merit further
investigation. A list of candidates for future work includes, but is not restricted
to, the move from binary classification to broader learning tasks, a thorough
theoretical analysis of the algorithms (with respect to convergence properties

14

and computational costs, etc.) and the research of relevant use cases where our
training methodology displays a tangible advantage over existing approaches.

Declarations

Competing interests

There are no competing interests. Both authors work for the same institution.

Authors’ contributions

The first author developed the theory, the second author wrote the paper. Ex-
periments were devised in cooperation. The first author implemented them.

Funding

No funding was received.

Availability of data and materials

TheMNIST data set [LCB10] is available at http://yann.lecun.com/exdb/mnist .
The Fashion-MNIST data set [XRV17] is available at https://github.com/zalandoresearch/fashion-mnist .

References

[GGC+22] J.R. Glick, T.P. Gujarati, A.D. Corcoles, Y. Kim, A. Kandala, J.M.
Gambetta, and K. Temme. Covariant quantum kernels for data with
group structure, 2022.

[GSZ+23] G. Gentinetta, D. Sutter, C. Zoufal, B. Fuller, and S. Woerner.
Quantum kernel alignment with stochastic gradient descent, 2023.

[GTSW22] G. Gentinetta, A. Thomsen, D. Sutter, and S. Woerner. The com-
plexity of quantum support vector machines, 2022.

[HCT+19] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W.
Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta.
Supervised learning with quantum-enhanced feature spaces. Nature,
567(7747):209–212, mar 2019.

[LAT21] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rig-
orous and robust quantum speed-up in supervised machine learning.
Nature Physics, 17(9):1013–1017, July 2021.

[LCB10] Y. LeCun, C. Cortes, and C.J. Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

15

http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist

[QWTZ16] Z. Qi, B. Wang, Y. Tian, and P. Zhang. When ensemble learn-
ing meets deep learning: a new deep support vector machine for
classification. Knowl. Based Syst., 107:54–60, 2016.

[SC08] I. Steinwart and A. Christmann. Support Vector Machines. Springer
Publishing Company, Incorporated, 1st edition, 2008.

[Sch21] M. Schuld. Supervised quantum machine learning models are kernel
methods, 2021.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, October 1997.

[SK19] M. Schuld and N. Killoran. Quantum machine learning in feature
hilbert spaces. Physical Review Letters, 122(4), feb 2019.

[Spa92] J.C. Spall. Multivariate stochastic approximation using a simulta-
neous perturbation gradient approximation. IEEE Transactions on
Automatic Control, 37(3):332–341, 1992.

[SR23] L. Simon and M. Radons. Algorithms for the training of neural
support vector machines, 2023.

[SSSSC11] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos:
primal estimated sub-gradient solver for SVM. Math. Program.,
127:3–30, 2011.

[Tan15] Y. Tang. Deep learning using linear support vector machines, 2015.

[WvE+13] M. Wiering, M. van der Ree, M. Embrechts, M. Stollenga, A. Mei-
jster, A. Nolte, and L. Schomaker. The neural support vector
machine. In The 25th Benelux Artificial Intelligence Conference
(BNAIC), 2013. Best paper award.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms,
2017.

16

	Introduction
	Content and Structure

	Preliminaries
	Support Vector Machines
	Neural Support Vector Machines
	Quantum Kernels
	The Reproducing Kernel Hilbert Space of a Quantum Kernel

	Neural Quantum Support Vector Machines
	Remarks on the Algorithms
	Comparison with Quantum Support Vector Machines with Parametrized Kernel

	Experiments
	MNIST Data Set
	Description of Models
	Training and Results

	Fashion-MNIST Data Set
	Description of Models
	Training and Results

	Conclusion

