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Abstract
The k-nearest neighbors (k-NN) is a basic machine learning (ML) algorithm, and several quantum versions of it, employing
different distance metrics, have been presented in the last few years. Although the Euclidean distance is one of the most
widely used distance metrics in ML, it has not received much consideration in the development of these quantum variants.
In this article, a novel quantum k-NN algorithm based on the Euclidean distance is introduced. Specifically, the algorithm is
characterized by a quantum encoding requiring a low number of qubits and a simple quantum circuit not involving oracles,
aspects that favor its realization. In addition to the mathematical formulation and some complexity observations, a detailed
empirical evaluation with simulations is presented. In particular, the results have shown the correctness of the formulation, a
drop in the performance of the algorithm when the number of measurements is limited, the competitiveness with respect to
some classical baseline methods in the ideal case, and the possibility of improving the performance by increasing the number
of measurements.

Keywords Quantum computing · Quantum machine learning · k-Nearest neighbors · Euclidean distance

1 Introduction

Quantum machine learning (QML) is one of the most recent
and most popular directions of scientific investigation in the
area of quantum computing. In particular, the application of
quantum computation to machine learning (ML) tasks offers
some interesting solutions characterizedby aquantumadvan-
tage with respect to the classical counterparts, at least on
a theoretical level. Furthermore, QML seems to be a good
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way to exploit existing prototypes of quantum computers for
tackling real-world problems. In this sense, a general “prac-
tical” approach consists in executing quantum algorithms as
subroutines of more complex learning schemes, in which a
quantum machine is used as a co-processor within a hybrid
architecture. This approach is an interesting alternative to
the development of quantum algorithms that fully accom-
plish ML tasks under the (strong) assumptions of ideality
and universality of the quantum hardware.

In the last decade, several interesting QML algorithms
have been proposed and characterized from a theoreti-
cal viewpoint; sometimes, they have been also empirically
tested. Remarkable examples are the quantum SVM pro-
posed by Rebentrost et al. (2014), the distance-based classi-
fiers like the one defined by Schuld et al. (2017), and the
quantum neural networks, whose performance have been
discussed by Abbas et al. (2021). In particular, several quan-
tum versions of the k-nearest neighbors (k-NN) algorithm
have been proposed (see Section 2). In ML, the k-NN is
a very simple and widely used classification algorithm that
assigns a label to an unclassified data instance according to
the labels of the k nearest training instances. To do so, a suit-
able reference distance in the space in which the data are
represented must be selected. In the classical realm, typical

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00155-2&domain=pdf
http://orcid.org/0000-0002-7475-7183
http://orcid.org/0000-0001-6524-0601
http://orcid.org/0000-0001-5915-6796


   23 Page 2 of 22 Quantum Machine Intelligence             (2024) 6:23 

choices are the Hamming distance and the Euclidean dis-
tance; instead, in the quantum realm (considering only the
quantum k-NNs), the Euclidean distance has not received
much consideration. In this work, we propose a quantum k-
nearest neighbors algorithm in which the calculation of the
Euclidean distances is based on a novel quantum encoding
with low qubit requirements and a simple quantum circuit,
making the implementation particularly advantageous. As
with other algorithms involving the quantum computation of
the Euclidean distance (e.g., by means of the SWAP test),
an exponential speedup over a classical calculation can be
obtained assuming the availability of a quantum random
access memory (QRAM, Giovannetti et al. 2008) for data
retrieval. Otherwise, there is not a true quantum advantage in
terms of time complexity. From a practical viewpoint, in this
article, we analyze the performance of the proposed quantum
k-NN in terms of classification accuracy and correctness of
the nearest neighbors found (evaluated through the Jaccard
index). The algorithm has been implemented using Qiskit
and run with three different execution modalities: classical,
statevector, and simulation. Instead, the empirical evaluation
on a real quantum machine was prevented by the number of
qubits required by the considered experiments.

The article is structured as follows: Section 2 pro-
vides some background information; Section 3 presents
the new quantum k-nearest neighbors algorithm based on
the Euclidean distance metric; Section 4 deals with the
implementation of the algorithm; Section 5 describes the
experimental evaluation and the results obtained; Section 6
concludes the article.

2 Background

This sectionpresents background information about quantum
machine learning, the quantum k-nearest neighbors algo-
rithms available in the literature, and the usages of the
(squared) Euclidean distance in the field of quantummachine
learning.

2.1 Quantummachine learning

In general, ML is the automation of methodologies for
extracting information from collected data. If the data anal-
ysis techniques are implemented on conventional digital
computers, we refer to classical ML; if quantum machines
are employed, we refer to quantum ML. A general reason
justifying the efforts in developing newQMLschemes is sug-
gested by Biamonte et al. (2017): since (even small) quantum
systems are difficult to simulate with classical computers,
we can conjecture that (even small) quantum processors can

find structures in data that are difficult to discover classically.
Therefore, QML could be the right path towards non-trivial
applications of the small-scaled quantummachines available
today and in the near future. On the other hand, under strong
assumptions of universality, large scale, and fault tolerance, it
is possible to formulate several QML algorithms that outper-
form their classical counterparts. This is very important for
the comprehension of the foundations of quantum computing
and for showing the actual potential of quantum computers.
However, to promote the advent of quantum technologies in
the near term, taking into account the limitations of the cur-
rent quantum hardware is useful while seeking new QML
schemes.

From the mathematical viewpoint, there is another rele-
vantmotivation for developingML algorithms to be executed
by quantum machines, given by a formal analogy between
quantum mechanics and ML: both fields rely on matrix
operations in high-dimensional vector spaces. In practice,
the Hilbert spaces, in which physical quantum systems are
described, can be used as feature spaces for data represen-
tations. In this framework, linear algebraic operations are
physically realized by the time evolution of quantum states;
for instance, in the circuit model of quantum computation,
the evolution is described as the action of quantum gates, i.e.,
unitary operators. In addition, representing data into quantum
states is advantageous also in terms of space resources, since
the dimension of the Hilbert space of a multi-qubit system
is exponential in the number of qubits. Then, the controlled
dynamics of a small number of qubits towards a target state
may correspond to the application of a complex linear alge-
braic operation on the considered feature space.

A crucial notion in QML is quantum encoding, which is
any procedure that encodes classical data (e.g., a list of sym-
bols) into quantum states. In particular, loading efficiently
large amounts of data into quantum architectures is a seri-
ous bottleneck at the current status of QML; indeed, the
state preparation required for running several well-known
QML algorithms can be done efficiently only under the
strong assumption of the availability of a QRAM. More in
detail, given an n-qubit register, let {|i〉}i=0,...,2n−1 be a fixed
orthonormal basis of the corresponding Hilbert space that
we call computational basis. The simplest quantum encod-
ing is the basis encoding, in which the bit strings of length
n are encoded into the states that form the computational
basis. Therefore, n qubits are used to encode n bits of classi-
cal information with interesting quantum opportunities, like
creating superpositions of data and enabling non-classical
correlations via entanglement. Instead, amore efficient quan-
tum encoding in terms of space resources is the amplitude
encoding, in which a data instance represented by a normal-
ized complex vector x ∈ C

2n is encoded into the coordinates
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(or amplitudes) of a quantum state with respect to the com-
putational basis, namely,

|ψ〉 =
2n−1∑

i=0

xi |i〉 (n-qubit state).

The amplitude encoding exploits the exponential storing
capacity of a quantummemory, but it does not allow the direct
retrieval of the stored data. Indeed, the amplitudes cannot be
observed, and only the probabilities |xi |2 can be estimated.
The encoding procedure used in this work is based on ampli-
tude encoding.

Let us conclude this introductory section by arguing that
QML is probably themost promisingway to find out effective
applications of the existing small-scale quantum comput-
ers. In particular, one can also drop the requirement that an
ML task must be entirely accomplished by quantum com-
putations in favor of hybrid approaches, in which quantum
co-processors efficiently solve specific subproblems within
more complex learning schemes. Moreover, the quantum
speedup is not the unique quantum advantage that can be
pursued. Accuracy in prediction, expressive power, general-
ization capability, and the ability to avoid plateaus in training
are also noteworthy figures ofmerit in evaluating the learning
performance of quantum machines.

2.2 Quantum k-NN

The k-nearest neighbors (Fix and Hodges 1951) is a classifi-
cation algorithm that consists of three steps: the computation
of the distance with respect to the training elements; the
identification of the k nearest neighbors, i.e., the k elements
closest to the test instance; the prediction of the class label
through amajority voting. Several quantum variants with dif-
ferent distance measures have been proposed, but a common
aspect to all of them is the exploitation of a superposition
state in order to perform parallel operations, such as comput-
ing the distance from the training elements simultaneously
(quantum parallelism).

First of all, quantum k-NN algorithms employing the
Hamming distance, thus requiring binary features, have been
proposedbySchuld et al. (2014),Wiśniewska andSawerwain
(2018), Ruan et al. (2017), Zhou et al. (2021), and Li et al.
(2021). Specifically, the first two works compute the Ham-
mingdistances by encoding the sumsof the qubits differences
(differences obtained through controlled-NOT gates) into the
amplitudes by means of a unitary operation (an idea pro-
posed first by Trugenberger 2002). Then, the classification
is performed directly by measuring without explicitly select-
ing the nearest neighbors. Instead, the other works exploit
the incrementation circuit presented by Kaye (2004) in order
to obtain the distance values in basis encoding. After that,

Ruan et al. (2017) select the data with a distance lower than
a given threshold by means of an OR gate and a projec-
tion operation to directly perform the classification, Zhou
et al. (2021) exploit Dürr’sminimization algorithm (Dürr and
Høyer 1999) to find the k minimum distance values, while Li
et al. (2021) apply a novel quantum search procedure inspired
by a binary search in order to identify the minimum.

Concerning non-binary features, distance measures related
to the angle between vectors, such as the cosine distance,
are widely used. For instance, Dang et al. (2018) and Wang
et al. (2019) have applied a quantum k-NN variant of this
type to image classification tasks. In particular, the SWAP
test (Buhrman et al. 2001) without measurements is used
to compute the distances, whose values are then transferred
to the qubits states through the amplitude estimation algo-
rithm (Brassard et al. 2002). Finally, the nearest neighbors
are found by means of Dürr’s algorithm. This workflow has
been presented first byWiebe et al. (2015), although for find-
ing only the nearest neighbor. Instead, Afham et al. (2020)
and Ma et al. (2021) have proposed a conceptually simpler
variant, which consists in iterating SWAP tests and mea-
surements in order to estimate a quantity proportional to
the squared cosine similarity with respect to the training
instances. In addition, the model allows processing multi-
ple test instances in parallel, as shown by Ma et al. (2021).
Actually, Afham et al. have recently proposed another variant
(Basheer et al. 2021) whose workflow, however, is not so dif-
ferent from that of the previously described works. Indeed, it
involves the SWAP test, a quantum analog-to-digital conver-
sion algorithm (Mitarai et al. 2019), and a variation of Dürr’s
algorithm.

Other interesting distance measures for non-binary fea-
tures are the Euclidean, the Mahalanobis, and the polar
distances. Specifically, the Euclidean distance is dealt with
in-depth in Section 2.3. Regarding the other ones, Gao et al.
(2022) have proposed a variant based on the Mahalanobis
distance, while Feng et al. (2023) have presented a quantum
k-NN based on the polar distance, which combines angle and
module length information through an adjustable parameter.
In detail, theMahalanobis distance is computed by exploiting
the phase estimation algorithm (Cleve et al. 1998), combined
with Hamiltonian simulation (Rebentrost et al. 2018), and
a controlled rotation; instead, the polar distance is calcu-
lated through the SWAP test without measurements and a
pair of Toffoli gates (one of which extended). After that, in
both works, the distances are encoded in the qubits states by
applying the amplitude estimation algorithm (or its coher-
ent version, proposed by Wiebe et al. 2015) and the nearest
neighbors are retrieved through Dürr’s algorithm (or an algo-
rithm based on it, proposed by Miyamoto et al. 2019). To
conclude, it is also worth mentioning the quantum k-NN,
based on a quantum sorting subroutine, that has been pro-
posed by Quezada et al. (2022). It requires a metric operator
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computing distances and encoding them in qubits states, an
oracle that identifies sorted sequences, and Grover’s algo-
rithm (Grover 1996); as in other works, the classification is
performed directly without identifying the k nearest neigh-
bors.

2.3 Quantum Euclidean distance

The Euclidean distance is a well-known distance metric in
ML. Here, the definition of its squared version is provided,
since it will be useful in the following sections. In particular,
given two vectors u, v ∈ R

n , the squared Euclidean distance
between them, d2(u, v), is defined as

d2(u, v) = ‖u − v‖2 = ‖u‖2 − 2〈u, v〉 + ‖v‖2, (1)

where 〈u, v〉 is the scalar product between u and v.
The distance metric in question has been employed also in

the field of QML. For instance, Lloyd et al. (2013) have pro-
posed a quantumprocedure to estimate the squaredEuclidean
distancebetween adata point and the centroid of a cluster, i.e.,
themean of the elements contained in a group of data. Specif-
ically, the algorithm relies on the SWAP test, which is applied
to the index registers, and does not require the input vectors
to have unit norms. An analogous procedure has been used
by Sarma et al. (2020) to provide a hybrid k-means clustering
algorithm (in which the centroids are classically computed),
andbyGetachew (2020) for a hybrid version of the k-medians
one. Instead, Yu et al. (2020) have proposed three quantum
algorithms to estimate three similarity measurements, based
on the squared Euclidean distance, for datasets. In particular,
all procedures do not require unit-norm input vectors, exploit
the quantum interference (given by the change of basis), and
use the amplitude estimation algorithm to determine the sim-
ilarity measures. Finally, it is worth mentioning the quantum
binary classifier devised by Schuld et al. (2017). In detail, the
classifier circuit consists of a Hadamard gate (necessary for
the quantum interference), a conditional measurement, and a
final measurement. By iterating the procedure just described,
a probability value related to the squared Euclidean distances
is estimated for each class. In this last work, input vectors
with unit norms are considered.

Regarding the quantum k-NN model, as far as the authors
know, the only variant based on the Euclidean distance avail-
able in the literature has been presented by Fastovets et al.
(2019); it exploits the procedure proposed by Lloyd et al.
(2013) to estimate the pairwise distance values, and Dürr’s
minimization algorithm to find the k nearest neighbors. The
main drawback lies in the need of multiple iterations for each
of these steps, since both involve a final measurement. In
addition,Dürr’s algorithm requires an oracle, i.e., a black-box
function, to be used. Actually, the nearest neighbor algorithm

proposed by Wiebe et al. (2015) admits also the Euclidean
distance as the distance metric. However, the workflow,
which has been described in Section 2.2, is quite complex
to be implemented. Finally, the computation of the single
linkage, namely, one of the set similarity measures consid-
ered by Yu et al. (2020), could be seen as a generalization
of the nearest neighbor search. Nevertheless, their quantum
algorithmuses the reciprocals of the input vectors; as a conse-
quence, theoretically, the original distance relationships are
not preserved.

3 Method

In this section, the new quantum k-NN algorithm based on
theEuclidean distancemetric is presented. In addition, a brief
discussion of the algorithm’s complexity compared with that
of the classical counterpart is provided.

3.1 Algorithm

In the quantum k-NN algorithm introduced in this work, a
quantity related to the squared Euclidean distance is com-
puted in parallel for all training instances bymeans of a novel
encoding and a simple quantum circuit, which performs a
SWAP-test-like procedure without controlled-SWAP gates.
In practice, the algorithm exploits the quantum interference
and encodes these distance-related values, which are then
estimated through measurements, in the amplitudes of the
quantum states. It is worth highlighting that the input vec-
tors do not undergo a unit-norm normalization, which would
result in a significant information loss. In addition, the num-
ber of qubits needed is low, and no oracle is involved, making
the implementation feasible. A more detailed and formal
description of the steps of this new algorithm is provided
below.

3.1.1 Data preprocessing

Let us consider a training set U = {u0, ...,uN−1} of real-
valued data instances u j ∈ R

d , and let L = {l0, ..., lN−1} be
the set of corresponding labels. In addition, let us consider a
test instance u′ ∈ R

d , whose label is unknown.
The preprocessing step of the algorithm consists in cen-

tering and normalizing the data features into the range[
− 1

2
√
d
, 1
2
√
d

]
(procedure detailed in Section 4). In this way,

the maximum norm of the resulting vectors turns out to be 1
2

and the maximum (squared) Euclidean distance turns out to
be 1.
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3.1.2 Initial state and encoding(s)

Let V = {v0, ..., vN−1} and v′ be the training set and the test
instance after the preprocessing step described above. The
quantum circuit is then initialized in the state

|ψ〉 = |0〉 ⊗
(

1√
2
(|0〉|α〉 + |1〉|β〉)

)
, (2)

where

|α〉 = 1√
N

N−1∑

j=0

| j〉
F−1∑

i=0

x ji |i〉,

|β〉 = 1√
N

N−1∑

j=0

| j〉
F−1∑

i=0

x ′
j i |i〉.

Here, F is a positive integer value depending on the encoding
used, while x j = {x ji }i=0,...,F−1 and x′

j = {x ′
j i }i=0,...,F−1

represent the quantum encoded versions of the preprocessed
training and test data, respectively. Therefore, the number
of qubits required is 2 + 	log2 N
 + 	log2 F
. In particular,
two encodings, whose advantages are discussed in the next
sections, have been devised and tested in this work: extension
and translation. Let us look at their definitions. As regards
the extension encoding, F = 2d + 3 and

x ji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3
v j i

2√
3
v j(i−d)

2√
3
‖v j‖

0
√
1 − 4‖v j‖2

x ′
j i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2√
3
v′
i 0≤ i <d

− 2√
3
v′
(i−d) d≤ i <2d

2√
3
‖v j‖ i=2d

√
1 − 4

3 (2‖v′‖2 + ‖v j‖2) i=2d+1

0 i=2d+2,

with v j i being the i-th feature of the j-th preprocessed
training instance, and v′

i being the i-th feature of the prepro-
cessed test instance. Instead, for the translation encoding,
F = 2d + 4 and

x ji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v j i

v j(i−d)

‖v j‖
1
2

0√
3
4 − 3‖v j‖2

x ′
j i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−v′
i 0≤ i <d

−v′
(i−d) d≤ i <2d

‖v j‖ i=2d

− 1
2 i=2d+1√
3
4 − (2‖v′‖2 + ‖v j‖2) i=2d+2

0 i=2d+3.

As a consequence, the number of qubits required is the same
for both encodings. It is also worth highlighting that, in
both cases, x j (and therefore |α〉) is independent of the pre-
processed test instance v′, whereas x′

j (and therefore |β〉)
depends on the preprocessed training set V .

3.1.3 Bell-H operation and final state

After the initial state preparation, an operation denoted here
as Bell-H is performed. In detail, the Bell-H corresponds to
a SWAP-test-like procedure in which the states of interest
(|α〉 and |β〉), initially prepared in superposition, interfere by
means of a controlled-NOT (CNOT) gate. The corresponding
quantum circuit, including also the initial state preparation
(separated by a dashed vertical line), is the following:

|0〉
|ψ〉

H • H

|0〉 State
init.|0〉⊗I

|γ 〉 ,

⎫
⎬
⎭

where I = 	log2 N
 + 	log2 F
. In practice, the Bell-H
circuit consists of a Hadamard gate applied to the first qubit,
a CNOT gate with the first qubit as control and the second
qubit as target, and another Hadamard gate applied to the
first qubit. Hence, the difference with respect to a standard
Bell circuit, commonly used to generate Bell states, lies in
the presence of an additional downstream Hadamard gate.
A significant advantage with respect to the standard SWAP
test lies in the constant number of elementary gates required
(three), independently of the size of the states involved; as a
drawback, the preparation of the input state is more complex,
especially without the availability of a QRAM.

The output state obtained after the Bell-H operation is

|γ 〉 = 1

2

(
|0〉 ⊗

(
1√
2
(|0〉|α〉 + |0〉|β〉 + |1〉|β〉 + |1〉|α〉)

)

+ |1〉 ⊗
(

1√
2
(|0〉|α〉 − |0〉|β〉 + |1〉|β〉 − |1〉|α〉)

))
, (3)

and the probability of measuring 1 on the first qubit is 1
2 (1−

〈α|β〉) (the derivation is shown in Appendix A.1). By pulling
out the summation on the index register (| j〉 inside |α〉 and
|β〉) and tracing out (i.e., discarding) the second qubit and
the features register (|i〉 inside |α〉 and |β〉), it is possible to
write the final state as

|δ〉 = 1√
N

N−1∑

j=0

[√
1 − s(v j , v′)|0〉 +

√
s(v j , v′)|1〉

]
| j〉,

(4)

with s(v j , v′) being a similarity measure related to the
squared Euclidean distance between v j and v′; hence, the
lower the distance, the higher the s(v j , v′) value. Specifi-
cally, s(v j , v′) is given by

s(v j , v′) = P(qubit1 = 1 | j) = 1

2
(1 − 〈x j , x′

j 〉), (5)
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where qubit1 is the first qubit in the circuit, and the value of
〈x j , x′

j 〉 depends on the encoding used, as shown inTable 1 (a
more detailed description of howEq.4 is obtained is provided
in Appendix A.2).

Looking at the first row of Table 1 and recalling Eq. (1),
it is possible to notice two aspects: 〈x j , x′

j 〉 is strictly related
to the squared Euclidean distance between v j and v′ for both
encodings; the term ‖v′‖2 does not appear. However, the
latter is not an issue, since ‖v′‖2 is the same for all train-
ing instances. The other information contained in the table
allow understanding the strong point of each encoding. In
particular, the extension encoding maximizes the range of
possible values of s(v j , v′), allowing a better representation
of the similarity values, namely, a representation less sensi-
tive to the presence of noise. Instead, the translation encoding
maximizes the probability of measuring 1 on the first qubit,
a favorable situation for reasons that will become clear in
the next section. Eventually, it is worth highlighting that the
range of s(v j , v′) is determined by v′; in detail, the minimum
range corresponds to a test instance with norm 0, whereas
the maximum range corresponds to a test instance with norm
equal to 1

2 (the maximum possible value).

3.1.4 Measurements and distance estimate(s)

After the Bell-H operation, the state of the qubits shown in
Eq. (4), i.e., the first qubit in the circuit and the index regis-
ter | j〉, is measured. In particular, the first qubit is measured
first. As a consequence, when 1 (0) is obtained, the indices
of the nearest neighbors will have the highest (lowest) prob-
ability. If the index register were measured first, the indices
would be uniformly sampled. By iterating the circuit exe-
cution and the measurement process, the joint probabilities
P(0, j) and P(1, j) are estimated as relative frequencies,
allowing in turn the estimation of the Euclidean distances.
Indeed, the following relationships hold:

P(0, j) = 1+〈x j , x′
j 〉

2N
�⇒ 〈x j , x′

j 〉=2N×P(0, j)−1, (6)

P(1, j) = 1−〈x j , x′
j 〉

2N
�⇒ 〈x j , x′

j 〉=1−2N×P(1, j). (7)

Moreover, for the extension encoding (see Table 1),

d(v j , v′) =
√
3

4
〈x j , x′

j 〉 + ‖v′‖2, (8)

where d(v j , v′) is the Euclidean distance between v j and v′,
while, for the translation encoding,

d(v j , v′) =
√

〈x j , x′
j 〉 + 1

4
+ ‖v′‖2. (9)

Regardless of the encoding used, the Euclidean distances
d(v j , v′) can be estimated from either P(0, j) or P(1, j).
In this work, two ways of combining the information of the
two joint probabilities have been devised and tested: avg and
diff. In detail, the avg distance estimate is the average of the
Euclidean distance estimated from P(0, j) and the Euclidean
distance estimated from P(1, j). Instead, for the diff distance
estimate, the scalar product value is obtained as

〈x j , x′
j 〉 = N × (P(0, j) − P(1, j)),

and the Euclidean distance is retrieved through Eq. (8) or (9),
depending on the encoding used.

Eventually, it is worth making two observations: given
the estimates of P(0, j) and P(1, j) for two indices j1, j2 ∈
{0, ..., N − 1}, the corresponding training instances might
be sorted differently according to the avg and diff distance
estimates; if the distance estimates can be mathematically
retrieved (i.e., the arguments of the square roots are non-
negative), the avg distance estimate is always lower than or
equal to the corresponding diff estimate. More details about
these observations can be found in Appendix B.

3.1.5 k nearest neighbors and classification

Once all the Euclidean distances d(v j , v′) have been esti-
mated, the training elements are classically sorted according
to them. Then, the k nearest neighbors are identified, and the
test instance is classified by means of a majority voting on
the labels of the nearest neighbors.

Table 1 Properties of the two encodings

Extension Translation

〈x j , x′
j 〉 value 4

3 (‖v j‖2 − 2〈v j , v′〉) ‖v j‖2 − 2〈v j , v′〉 − 1
4

Minimum s(v j , v′) range [0.333, 0.5] [0.5, 0.625]

Maximum s(v j , v′) range [0, 0.666] [0.25, 0.75]

Notice that the range of values of s(v j , v′) is determined by the preprocessed test instance v′
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3.2 Complexity observations

In terms of complexity, the difference between the proposed
quantum k-NN algorithm and its classical counterpart lies
in the estimation/computation of the Euclidean distances.
Indeed, the data preprocessing, the k nearest neighbors identi-
fication (performed throughadistance sortingoperation), and
the classification are done classically in both cases. Specif-
ically, the data preprocessing has complexity O(Nd), and
the identification of the k nearest neighbors has complexity
O(N log N +k), while the classification step has complexity
O(k).

In the proposed algorithm, the Euclidean distances are
not computed exactly but are estimated. To this end, a cer-
tain number of shots, namely, measurements, iterations, is
needed. In particular, each iteration requires to prepare the
initial state, run the Bell-H quantum circuit, and measure
the state of the qubits. The initial state preparation is a quite
complex operation that can be efficiently accomplished if a
QRAM is available.

Proposition 1 Assuming the availability of aQRAM, the esti-
mation of the Euclidean distances in the proposed quantum
k-NN algorithm has a complexity of O(shots × (log N +
log d) + N ).

Proof Let x ji and x ′
j i be real numbers stored in the QRAM

as classical floating point numbers. Then, the initial state
can be prepared with complexity O(log(NF)). Indeed, the
states |α〉 and |β〉 can be retrieved from the QRAM with
complexity O(log(NF)) by definition of QRAM. Instead,
the Bell-H quantum circuit consists of a constant number
of elementary gates; therefore, its complexity is O(1). The
measurement step also has constant complexity, as the index
qubits are measured simultaneously. Eventually, given the
state counts, the computation of the distance estimates has
cost O(N ). Hence, the complexity of the Euclidean distances
estimation is O(shots × log(NF) + N ), which is equal to
O(shots × (log N + log d) + N ). ��

Instead, if a QRAM is not available, it is necessary to pre-
pare the desired state starting from |0〉⊗(1+I ), and the number
of gates needed depends on the architecture of the quantum
processor. Notice that, since the index register states have
non-uniform probabilities that depend also on the outcome
of the first qubit measurement, it is not possible to obtain
a predefined precision for all the distance estimates. More-
over, shots accounts for the estimation of all N Euclidean
distances.

In the classical k-NN algorithm, the computation of the
Euclidean distances has complexity O(Nd). If we assume
that shots is a constant value, the complexity of the Euclidean
distances estimation in the proposed quantum k-NN turns out
to be O(log d + N ), which is lower than O(Nd). However,

practically, the higher N , the higher the number of shots
needed to properly estimate the Euclidean distances. If, for
instance,we assume that shots depends logarithmically on N ,
the complexity turns out to be O(log N log d + N ), which is
still lower than O(Nd). Therefore, under different assump-
tions on the complexity of shots, the proposed quantum k-NN
algorithm exhibits a lower complexity than its classical coun-
terpart.

4 Implementation

This section deals with the implementation of the algorithm
presented in Section 3. In detail, the Euclidean distance
quantum k-NN has been implemented in Python using
Qiskit, the open-source SDK provided by IBM (Anis et al.
2021). The code, which is publicly available at https://github.
com/ZarHenry96/euclidean-quantum-k-nn, supports differ-
ent execution modalities, among which:

• classical, which does not involve quantum circuits but
runs a classical k-NNwith the Euclidean distance metric,
after the preprocessing step described in Section 3.1.1;

• statevector, which processes the final state vector of the
circuit and, in actual fact, represents an ideal execution
with infinite iterations (in this case, no measurement is
performed);

• simulation (local simulation in the code), which samples
from the final probability distribution of the circuit in
order to provide state counts.

None of these modalities takes into account the presence
of noise. Furthermore, a sample circuit (for the simulation
modality) is shown in Fig. 1.

In general, the implementation of the algorithm adheres
to the description provided in Section 3.1, but some technical
aspects deserve to be mentioned. Concerning the prepro-
cessing step, each feature is normalized by: subtracting the
average of the maximum and the minimum feature values
in the training set; dividing by the feature range (com-
puted on the training set, and set to 1 if the feature is
constant) multiplied by

√
d . In addition, if a feature of the

test instance exceeds the target range after the normalization,
it is clipped to the exceeded edge value. Then, let us focus on
the execution modalities involving quantum circuits, since
the functioning of the classical one is quite straightforward.
Specifically, the preparation of the initial state |ψ〉 (Eq. 2)
is done by providing the initialization function supplied by
Qiskit with the amplitudes of all qubits except the first one,
which is in state |0〉 by default. As regards the indices not
associated with any training instance, which exist if N is not
a power of 2, they are excluded when computing the distance
values (hence, they are kept in the joint probabilities estima-
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Fig. 1 Example of quantum circuit for the quantum k-NN based on the Euclidean distance. In detail, N = 4, d = 2, and the execution modality is
simulation (statevector does not include the final measurements)

tion). In addition, if the argument of the square root in Eq.
(8) or (9) is negative or larger than 1 due to the state counts
distribution obtained, the distance value is approximated to
0 and 1, respectively. Eventually, the training instances with
the same Euclidean distance are sorted by increasing index
in the training set (this holds also for the classical execution
modality).

To conclude, it is worth highlighting that the Laplace
smoothing (Wilson 1927) has been applied to the estima-
tion of the joint probabilities in the simulation modality. In
practice, given a number of counts c for the state |a〉| j〉, with
a ∈ {0, 1}, the probability P(a, j) is estimated as

P(a, j) = c + p

shots + 2Np
,

where p is the number of pseudocounts added (for each state),
and shots is the total number of measurements. In detail, the
pseudocounts are summed only to the counts of the signifi-
cant indices, i.e., the indices actually associated with training
instances.

5 Empirical evaluation

In this section, the methods tested, the datasets used, the
experimental setup employed, and the results obtained are
presented. In particular, the experiments have been run on a
shared machine with an Intel Xeon Gold 6238R processor
running at 2.20 GHz and 125 GB of RAM.

5.1 Methods

The quantum k-NN based on the Euclidean distance intro-
duced in Section 3 has been tested with different execution
modalities and under different (encoding, distance estimate)

configurations, which are reported in Table 2. Runs on real
quantum devices have not been performed due to the lack of
free-access devices with enough qubits. In addition, for com-
parison, some classical baseline methods (listed in the same
table) have been considered; in particular, the results data for
these ones have been fetched from the article by Zardini et al.
(2023) (more precisely, from Zardini 2023b).

5.2 Datasets

The datasets used in all the experiments have been taken
from the article by Zardini et al. (2023) (more precisely,
from Zardini 2023a), mainly for the comparability of the
results with the baselinemethods. Specifically, the properties
of these datasets are reported in Table 3. As explained in the
aforementioned article, the original versions of the datasets
have been picked from the UCI Machine Learning Repos-
itory (Dua and Graff 2017) according to specific criteria,
such as numerical features. Then, they have been prepro-

Table 2 Methods tested

Quantum k-NN with Euclidean distance

Execution modality Encoding Distance estimate

classical − −
statevector extension, translation avg, diff

simulation extension, translation avg, diff

Baseline methods

k-NN with cosine
distance

Random forest (100
trees)

SVM with {Gaus-
sian, linear} kernel
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Table 3 Properties of the datasets used

Name Classes Size Features

01_iris_setosa_versicolor 2 100 4

01_iris_setosa_virginica 2 100 4

01_iris_versicolor_virginica 2 100 4

02_transfusion (Yeh et al. 2009) 2 748 4

03_vertebral_column_2C 2 310 6

04_seeds_1_2 2 140 7

05_ecoli_cp_im 2 220 7

06_glasses_1_2 2 146 9

07_breast_tissue_adi_fadmasgla 2 71 9

08_breast_cancer (Patrício et al.
2018)

2 116 9

09_accent_recognition_uk_us 2 210 12

10_leaf_11_9 (Silva et al. 2013) 2 30 14

Note that the dataset names are links leading to the UCI pages of the
original versions of the datasets

cessed in order tomeet precise requirements, like binary class
labels. The datasets used here, which are available together
with the code at https://github.com/ZarHenry96/euclidean-
quantum-k-nn, are theones obtained after the reductionof the
number of classes, without subsampling. Additional infor-
mation about the selection criteria and the preprocessing
procedure can be found in the original article.

5.3 Experimental setup

In all experiments, the stratified k-fold cross-validation has
been adopted as the validation technique. In practice, each
dataset is split into k folds, i.e., subsets. Then, k − 1 folds
form the training set, whereas the leftover represents the test
set, and this last step is executed k times so that each subset
is used once as the test set. The adjective “stratified” implies
that the ratio between classes in the folds has been kept as
close as possible to the one of the given dataset. In addition,
the same seed has been used for the folds generation in all
experiments; in this way, all methods have been evaluated on
the same folds.

The parameter values employed in the quantum k-NN
experiments are reported in Table 4. In particular, for all
execution modalities, the number of folds in the k-fold cross-
validation (folds) has been set to 5 (a common value in ML),

and four different numbers of nearest neighbors selected (k)
have been considered. Concerning the simulation modality,
all (encoding, distance estimate) configurations have been
tested with 1024 measurements (shots), which is the default
value provided byQiskit, and the best one has been evaluated
also varying this parameter value. In addition, the number of
pseudocounts for the Laplace smoothing has been arbitrarily
set to 10, and five runs with different seeds have been per-
formed in order to gain statistical evidence. Specifically, the
simulation seed for each test instance is randomly generated
starting from a “root” run seed. Eventually, it is worth high-
lighting that the different k values have been evaluated on
different seeds, while the avg and diff distance estimates
have been evaluated on the same seeds (namely, for each test
instance, the two distance estimates are computed using the
same state counts).

Regarding the baseline methods considered for compari-
son (Zardini et al. 2023), the normalization procedure applied
to the input data features is a canonical min-max normaliza-
tion, whose output range is [0, 1]. The number of folds, the
folds generation seed, and the k values considered for the
classical k-NN with cosine distance are the same as those
used in the quantum k-NN experiments. Eventually, the num-
ber of runs for the random forest is 5 (it is a stochastic
method).

5.4 Results

The results are presented by means of scatterplots and box-
plots. In particular, the quantum k-NN has been evaluated in
terms of classification accuracy and correctness of the nearest
neighbors found, whereas, for the baseline methods, only the
classification accuracy has been considered. More in detail,
given a fold, the accuracy is defined as

accuracy= number of correctly classified instances in the fold

total number of instances in the fold
;

in the case of multiple runs, the average value across runs
is reported. Instead, regarding the correctness of the nearest
neighbors found, the Jaccard index and the Average Jaccard
score (Greene et al. 2014) have been taken into account.
Specifically, given a test instance, the Jaccard index (JI) is

Table 4 Parameter setting for
the quantum k-NN experiments

Common parameters Simulation parameters

Folds 5 Shots 512a, 1024, 2048a, 4096a, 8192a

k 3, 5, 7, 9 Pseudocounts 10

Runs 5

aOnly the best (encoding, distance estimate) configuration of the quantum k-NN has been tested with this
number of shots
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Fig. 2 Comparison between classical and statevector execution modalities in terms of accuracy (a), Jaccard index (b), and Average Jaccard score
(c). The configuration used for statevector is (extension, avg), but the results are the same for all configurations. Each point is related to a dataset
fold

defined as

Jaccard index (JI) = |Sc ∩ S f |
|Sc ∪ S f | ,

where Sc is the set of correct nearest neighbors (classically
computed), and S f is the set of nearest neighbors found.
Since there is a Jaccard index value for each test instance,
the average value has been considered for each fold, and
the average of this average value across runs is reported. The
same is done for theAverage Jaccard (AJ) score,which, given
a test instance, is defined as

Average Jaccard (AJ) = 1

k

k∑

m=1

h(Scm,S f m) ,

where k is the number of nearest neighbors selected, h is
the function computing the Jaccard index, and Scm is the set
containing the correct nearest neighbors up to the m-th most
similar item (the same for S f m). Eventually, the statistical
significance of the results obtained has been assessed through
the Wilcoxon signed-rank test (Wilcoxon 1945), as the data
are paired; in some cases (difference boxplots), also the one-
sample T -test (Gosset 1908) has been taken into account.

Table 5 Wilcoxon signed-rank test (α = 0.05) applied to the distribu-
tions shown in Fig. 2

k=3 k=5 k=7 k=9

Figure 2a 1.000 1.000 1.000 1.000

Figure 2b 1.000 1.000 1.000 1.000

Figure 2c 1.000 1.000 1.000 1.000

The values reported in the table are the p-values obtained

5.4.1 Execution modalities comparison

Let us consider first the classical and statevector execution
modalities. As shown in Fig. 2, the two modalities are equiv-
alent in terms of accuracy (Fig. 2a), Jaccard index (Fig. 2b),
and Average Jaccard score (Fig. 2c); the absence of a statis-
tical difference is certified by the Wilcoxon signed-rank test
(Table 5).Only one statevector configuration, i.e., (extension,
avg), is shown here, but the results are identical for all
of them1. This confirms that the algorithm presented in
Section 3 is correct; indeed, in the ideal case, it is able to
achieve the same results as its classical counterpart. It is
also worth remembering that the advantage of the quantum
algorithm with respect to its classical counterpart lies in the
execution time.

Then, let us focus on the statevector and simulation exe-
cution modalities. Specifically, Fig. 3 shows the comparison
in terms of accuracy (Fig. 3a), Jaccard index (Fig. 3b), and
Average Jaccard score (Fig. 3c) for the (extension, avg) con-
figuration. As expected, the limited number ofmeasurements
(1024) leads to a substantial performance worsening, and
statevector turns out to statistically outperform the simula-
tionmodality in both classification accuracy and correctness
of the nearest neighbors found, as reported in Table 6. In par-
ticular, the drop in performance is more marked for the Jac-
card index and theAverage Jaccard score. These observations
hold for all the (encoding, distance estimate) configurations;
analogous plots and related significance tables for the other
configurations are available in Appendix C.1.

1 For the translation encoding, in one fold of one dataset, there are
cases in which two nearest neighbors are swapped due to the numerical
approximation of the distance values. Therefore, the Average Jaccard
score for that fold turns out to be slightly lower than that of the classical,
but the difference is not statistically significant (p-value=0.317 for all
k values)
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Fig. 3 Comparison between statevector (extension, avg) and simulation (extension, avg) in terms of accuracy (a), Jaccard index (b), and Average
Jaccard score (c). The number of shots for simulation is 1024, and each point is related to a dataset fold

5.4.2 Encodings and distance estimates comparison

Since the various (encoding, distance estimate) configura-
tions have achieved the same results for the statevector
execution modality (the Euclidean distance estimates are
exact), only simulation (with 1024 shots) is taken into
account here. In detail, the configurations are compared by
means of difference boxplots, in which each data point rep-
resents the difference for a (dataset fold, k value) pair. The
comparisons in accuracy and Jaccard index are shown in
Fig. 4a and 4b, respectively, while the plot for the Average
Jaccard score is available in Appendix C.2 (Fig. 10) for space
reasons.

Concerning the classification accuracy, the configuration
that has achieved the best results is (translation, avg), which
has statistically outperformed all the others, as confirmed
by Table 7a. In general, the translation encoding has per-
formed better than the extension encoding in accuracy, and,
with an equal encoding, the avg distance estimate has outper-
formed the diff distance estimate. Moreover, the differences
are statistically significant in termsof bothmedian (Wilcoxon
signed-rank test) and mean (one-sample T -test), except for
the (extension, avg) - (translation, diff ) comparison in terms
of median.

Surprisingly, the configuration with the highest classifica-
tion accuracy is not the one that has found the best nearest

Table 6 Wilcoxon signed-rank test (α = 0.05) applied to the distribu-
tions shown in Fig. 3

k=3 k=5 k=7 k=9

Figure 3a 1.624E−10 1.622E−10 5.140E−10 1.608E−09

Figure 3b 1.626E−11 1.630E−11 1.629E−11 1.630E−11

Figure 3c 1.629E−11 1.630E−11 1.630E−11 1.630E−11

The values reported in the table are the p-values obtained

neighbors. Indeed, the configuration that has achieved the
best results in Jaccard index is (extension, avg), and the dif-
ferences with respect to the other ones are almost always
significant as reported in Table 7b. In general, the extension
encoding has outperformed the translation encoding in Jac-
card index, while, with an equal encoding, there is not a clear
winning distance estimate: the avg distance estimate has per-
formed better with the extension encoding, whereas the diff
distance estimate has achieved better results with the trans-
lation encoding. The differences are almost all significant in
terms of both median and mean; the only exceptions are the
(extension, avg) - (extension, diff ) comparison in mean, and
the (translation, avg) - (translation, diff ) comparison for both
statistics. Regarding the Average Jaccard score (Fig. 10), the
trend is similar, with (extension, avg) being the best config-
uration. However, in this case, the extension encoding with
the diff distance estimate has performed the worst, which
means that among the k nearest neighbors selected by this
configuration, the correct ones are placed in the last posi-
tions. In addition, few differences are statistically significant
as reported in Table 13. Among these, it is worth mentioning
the (extension, avg) configuration statistically outperforming
all the others in terms of median and (extension, diff ) also in
terms of mean.

5.4.3 Comparison with baseline methods

Some classical baseline methods have been chosen for com-
parison in terms of classification accuracy. Figure5 shows
the comparisons with the statevector execution modality in
the (translation, avg) configuration; actually, the configura-
tion used is irrelevant for statevector, as explained in the
previous sections. In practice, in the ideal case, the quantum
k-NN based on the Euclidean distance metric statistically
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Fig. 4 Comparison of (encoding, distance estimate) configurations in terms of accuracy (a) and Jaccard index (b) for the simulation execution
modality. The number of shots is 1024, and each data point corresponds to the difference for a (dataset fold, k value) pair

outperforms both the classical k-NNwith the cosine distance
metric (Fig. 5a) and the SVMwith the linear kernel (Fig. 5d),
as confirmed by Table 8. Instead, it is outperformed by both
the random forest (Fig. 5b) and the SVM with the Gaussian
kernel (Fig. 5c), although the differences are almost never
statistically significant (only the difference with respect to
the SVMwith the Gaussian kernel, for k = 3, is significant).

Analogous comparison plots for the simulation execution
modality in the (translation, avg) configuration, namely, the
configuration that has achieved the best results in classifica-
tion accuracy, are available inAppendixC.3 (Fig. 11). Specif-
ically, all baseline methods considered have statistically
outperformed the quantum k-NN in the simulation execu-
tion modality, as confirmed by Table 14.
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Table 7 Wilcoxon signed-rank
test and one-sample T -test
applied to the distributions
shown in Fig. 4a (a) and 4b (b)

EA-ED EA-TA EA-TD ED-TA ED-TD TA-TD

(a)

Wilcoxon 9.378E−26 3.019E−05 0.069 1.771E−24 1.539E−21 1.084E−09

T -test 1.236E−27 3.706E−07 0.001 1.404E−20 2.037E−18 2.492E−09

(b)

Wilcoxon 0.003 8.888E−09 1.917E−07 0.010 0.043 0.104

T -test 0.054 6.775E−07 1.102E−05 0.001 0.005 0.054

Each column corresponds to a different comparison, and the first letter identifies the encoding (E=extension,
T=translation), while the second letter identifies the distance estimate (A=avg, D=diff ). The values reported
in the tables are the p-values obtained (α = 0.05)

Fig. 5 Comparison between some classical baseline methods and statevector in terms of accuracy. The configuration used for statevector is
(translation, avg), but the results are the same for all configurations. Each point is related to a dataset fold
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Table 8 Wilcoxon signed-rank test (α = 0.05) applied to the distribu-
tions shown in Fig. 5

k=3 k=5 k=7 k=9

Figure 5a 0.003 0.001 6.502E−05 8.149E−05

Figure 5b 0.074 0.165 0.095 0.258

Figure 5c 0.046 0.407 0.103 0.062

Figure 5d 0.045 0.005 0.012 0.007

The values reported in the table are the p-values obtained

5.4.4 Number of shots analysis

The last analysis is devoted to the relationship between num-
ber of shots (measurements) and performance for the simula-
tion execution modality. In particular, for this investigation,
only the best quantum k-NN configuration has been con-
sidered. Since the primary goal of the quantum k-NN is to
correctly find the k nearest neighbors, the (extension, avg)
configuration has been used. Indeed, it has achieved the best
Jaccard index andAverage Jaccard score, as shown in Section
5.4.2. The results are presented in Fig. 6 and 12 (the latter is
available in Appendix C.4) by means of difference boxplots
in which 512 is employed as the baseline number of shots.

In practice, the performance tends to improve by increas-
ing the number of shots, and the trend is more evident for
both the Jaccard index (Fig. 6b) and the Average Jaccard
score (Fig. 12), although the differences in absolute value
are smaller when compared to the ones for the accuracy
(Fig. 6a). Furthermore, almost all performance differences
are statistically significant in termsof bothmedian (Wilcoxon

signed-rank test) and mean (one-sample T -test), as reported
in Table 9 and 15 (available in Appendix C.4); the only
exception is represented by the 1024 − 512 comparison in
terms of mean for the accuracy. Eventually, it is worth high-
lighting that, the larger the dataset, the higher the number of
shots required to estimate the joint probability values.

6 Conclusion

In this article, a novel quantum k-NN algorithm based on
the Euclidean distance metric has been introduced. In detail,
two new encodings of the input data into the quantum states
amplitudes, with different properties and low qubit require-
ments, have been presented (these encodings do not require
the unit-norm normalization of the input data). The quantum
circuit employed, which does not involve oracles, performs
a SWAP-test-like procedure characterized by a fixed num-
ber of elementary gates; in this way, quantities related to the
pairwise Euclidean distances are computed in parallel. Even-
tually, given the measurements results (the measurements
must be repeated several times), two different ways of esti-
mating the Euclidean distance values have been illustrated;
the final training data sorting and classification are classical.

In addition to the theoretical formulation and some com-
plexity observations, an implementation of the algorithm in
Python and an extensive empirical evaluation have been pro-
vided. First of all, the experimental results have confirmed
the correctness of the formulation, with the statevector exe-
cution modality (ideal execution with an infinite number of
shots) achieving the same performance as the classical one;

Fig. 6 Comparison of different numbers of shots in terms of accuracy (a) and Jaccard index (b) for the simulation execution modality in the
(extension, avg) configuration. Each data point corresponds to the difference for a (dataset fold, k value) pair
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Table 9 Wilcoxon signed-rank
test and one-sample T -test
applied to the distributions
shown in Fig. 6a (a) and 6b (b)

1024-512 2048-512 4096-512 8192-512

(a)

Wilcoxon 0.001 3.131E−07 2.432E−11 6.830E−11

T -test 0.473 5.648E−05 3.016E−08 7.904E−11

(b)

Wilcoxon 1.151E−17 5.672E−33 4.761E−38 1.393E−40

T -test 4.330E−17 5.712E−26 1.955E−30 1.561E−38

The values reported in the tables are the p-values obtained (α = 0.05)

it is worth remarking that the advantage over the classical
counterpart lies in the execution time. As expected, statevec-
tor has outperformed simulation, for which the number of
measurements is limited, in both classification accuracy and
correctness of the nearest neighbors found (the difference
is more marked for the latter). Among the (encoding, dis-
tance estimate) configurations tested, (translation, avg) has
achieved the best results in terms of classification accuracy,
whereas (extension, avg) has found the best nearest neigh-
bors. It is worth highlighting that, in the two configurations
just mentioned, the encoding is different, while the distance
estimate is the same; however, since the primary goal of the
algorithm is to find the correct nearest neighbors, (extension,
avg) can be considered the best configuration overall. Con-
cerning the classical baseline methods considered, half of
them have achieved better results than the quantum k-NN in
the statevector modality, whereas the quantum k-NN in the
simulationmodality has been always outperformed. Eventu-
ally, the analysis on the number of shots has certified that the
performance of the algorithm in simulation can be improved
by increasing the number of measurements.

Possible future work includes testing the model presented
here on different datasets, with a higher number of shots,
and on real quantum machines, which are characterized by
the presence of noise.

Appendix A: Derivations

Some derivations related to the output state |γ 〉 (Eq. 3) are
provided in this appendix.

A.1 Probability of measuring 1 on the first qubit

The probability of measuring 1 on the first qubit of the state
|γ 〉 is

P(1) = ‖|1〉〈1|γ 〉‖2 =

=
∥∥∥∥
1

2
|1〉⊗

(
1√
2
(|0〉|α〉−|0〉|β〉+|1〉|β〉−|1〉|α〉)

)∥∥∥∥
2

=

= 1

8
(〈0|〈α| − 〈0|〈β| + 〈1|〈β| − 〈1|〈α|)×

× (|0〉|α〉 − |0〉|β〉 + |1〉|β〉 − |1〉|α〉) =
= 1

8
(1−〈α|β〉−〈β|α〉+1+1−〈β|α〉−〈α|β〉+1)=

= 1

8
(4 − 2〈α|β〉 − 2〈β|α〉) =

|α〉and|β〉have real coefficients
= 1

8
(4 − 4〈α|β〉) =

= 1

2
(1 − 〈α|β〉).

A.2 Reduced final state

Given |γ 〉, let us first pull out the summation on the index
register | j〉 inside |α〉 and |β〉. In this way, we obtain a state
in the form

1√
N

N−1∑

j=0

[...] | j〉,

where [...] includes all circuit qubits except those belonging
to the index register. Then, let us trace out, namely, discard,
the second qubit in the circuit and the features register |i〉;
from the mathematical viewpoint, this corresponds to com-
pute the partial trace over these qubits of the density operator
describing the system. By doing this, we obtain a reduced
version of the final state including only the first qubit in the
circuit and the index register, which can be written as

1√
N

N−1∑

j=0

[√
P(0 | j)|0〉 + √

P(1 | j)|1〉
]
| j〉.

Eventually, let us exploit the derivations presented in Appendix
A.1. In practice, as shown in Eq. (5), P(1 | j) turns out to be
equal to 1

2 (1 − 〈x j , x′
j 〉), since the summation on the index

register (together with its coefficient) has been pulled out.
In addition, P(0 | j) must be equal to 1 − P(1 | j) due to
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the law of total probability. This leads to the definition of the
reduced final state |δ〉 provided in Eq. (4).

Appendix B: Distance estimates

In this appendix, some additional information about the avg
and diff distance estimates is provided. In particular, let us
consider two preprocessed training instances v j1 and v j2 ,
with j1, j2 ∈ {0, ..., N −1}, and a preprocessed test instance
v′. Let d0(v j1 , v

′) and d1(v j1 , v
′) be the Euclidean distances

from v′ estimated from the joint probabilities P(0, j1) and
P(1, j1) for v j1 (analogously for v j2 ). Then, the following
relationships hold:

avg = d0(v j1 , v
′) + d1(v j1 , v

′)
2

,

diff =
√
d0(v j1 , v′)2 + d1(v j1 , v′)2

2
.

The former is just the definition of the avg distance estimate,
whereas the latter can be easily verified using Eq. (8) (or 9,
depending on the encoding selected) together with Eq. (6)
and (7).

B.1 Instance sorting

It is possible that v j1 and v j2 are sorted differently according
to the avg and diff distance estimates. Indeed, let us consider
the following scenario:

d0(v j1 , v
′) = 0.5 d0(v j2 , v

′) = 0.4

d1(v j1 , v
′) = 0.29 d1(v j2 , v

′) = 0.4 .

In this case, the avg distance estimates for v j1 and v j2 are
0.395 and 0.4, respectively, while the diff distance estimates
are 0.409 and 0.4, respectively. Hence, v j1 turns out to be
closer than v j2 (to v′) according to avg and further than it
according to diff.

B.2 Magnitude

Let us assume that d0(v j1 , v
′) and d1(v j1 , v

′) can be mathe-
matically computed, namely, the arguments of the square root
in Eq. (8) (or 9, depending on the encoding selected) are non-
negative. Then, theavg distance estimate is always lower than
or equal to the corresponding diff estimate. In fact, the oppo-
site would be true if and only if (d0(v j1 , v

′)−d1(v j1 , v
′))2 <

0, which is not possible.
If the assumption about the square root arguments does

not apply due to the state count distribution obtained, the
avg distance estimate might turn out to be higher than the
corresponding diff estimate. Indeed, in the implementation
provided here, square roots of negative values are approxi-
mated to 0, as explained in Section 4.

Appendix C: Additional plots

Additional results plots and related statistical significance
tables are provided in this appendix.

C.1 Executionmodalities comparison

Fig. 7 Comparison between statevector (extension, diff ) and simulation (extension, diff ) in terms of accuracy (a), Jaccard index (b), and Average
Jaccard score (c). The number of shots for simulation is 1024, and each point is related to a dataset fold
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Table 10 Wilcoxon signed-rank
test (α = 0.05) applied to the
distributions shown in Fig. 7

k=3 k=5 k=7 k=9

Figure 7a 1.106E−10 1.106E−10 7.530E−11 1.719E−10

Figure 7b 1.628E−11 1.629E−11 1.630E−11 1.630E−11

Figure 7c 1.630E−11 1.630E−11 1.630E−11 1.630E−11

The values reported in the table are the p-values obtained

Fig. 8 Comparison between statevector (translation, avg) and simulation (translation, avg) in terms of accuracy (a), Jaccard index (b), and Average
Jaccard score (c). The number of shots for simulation is 1024, and each point is related to a dataset fold

Table 11 Wilcoxon signed-rank
test (α = 0.05) applied to the
distributions shown in Fig. 8

k=3 k=5 k=7 k=9

Figure 8a 1.234E−10 3.492E−10 3.492E−10 6.149E−10

Figure 8b 1.628E−11 1.630E−11 1.630E−11 1.630E−11

Figure 8c 1.630E−11 1.630E−11 1.630E−11 1.630E−11

The values reported in the table are the p-values obtained

Fig. 9 Comparison between statevector (translation, diff ) and simulation (translation, diff ) in terms of accuracy (a), Jaccard index (b), and Average
Jaccard score (c). The number of shots for simulation is 1024, and each point is related to a dataset fold
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Table 12 Wilcoxon signed-rank
test (α = 0.05) applied to the
distributions shown in Fig. 9

k=3 k=5 k=7 k=9

Figure 9a 1.379E−10 1.712E−10 7.516E−11 2.523E−10

Figure 9b 1.627E−11 1.629E−11 1.630E−11 1.630E−11

Figure 9c 1.629E−11 1.630E−11 1.630E−11 1.630E−11

The values reported in the table are the p-values obtained

C.2 Encodings and distance estimates comparison

Fig. 10 Comparison of (encoding, distance estimate) configurations in terms of Average Jaccard score for the simulation execution modality. The
number of shots is 1024, and each data point corresponds to the difference for a (dataset fold, k value) pair

Table 13 Wilcoxon signed-rank
test and one-sample T -test
applied to the distributions
shown in Fig. 10

EA-ED EA-TA EA-TD ED-TA ED-TD TA-TD

Wilcoxon 1.556E−07 0.002 0.008 0.315 0.111 0.043

T -test 6.693E−07 0.057 0.202 0.735 0.374 0.123

Each column corresponds to a different comparison, and the first letter identifies the encoding (E=extension,
T=translation), while the second letter identifies the distance estimate (A=avg, D=diff ). The values reported
in the table are the p-values obtained (α = 0.05)
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C.3 Comparison with baselinemethods

Fig. 11 Comparison between some classical baseline methods and simulation (translation, avg) in terms of accuracy. The number of shots for
simulation is 1024, and each point is related to a dataset fold

Table 14 Wilcoxon signed-rank
test (α = 0.05) applied to the
distributions shown in Fig. 11

k=3 k=5 k=7 k=9

Figure 11a 2.147E−10 5.660E−10 8.949E−10 1.210E−09

Figure 11b 1.105E−10 2.521E−10 3.705E−10 6.632E−10

Figure 11c 1.105E−10 2.380E−10 3.494E−10 3.500E−10

Figure 11d 3.172E−10 3.976E−10 1.299E−09 3.502E−10

The values reported in the table are the p-values obtained
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C.4 Number of shots analysis

Fig. 12 Comparison of different numbers of shots in terms of Average Jaccard score for the simulation execution modality in the (extension, avg)
configuration. Each data point corresponds to the difference for a (dataset fold, k value) pair

Table 15 Wilcoxon signed-rank
test and one-sample T -test
applied to the distributions
shown in Fig. 12

1024-512 2048-512 4096-512 8192-512

Wilcoxon 1.977E−11 8.804E−30 2.327E−37 1.030E−39

T -test 3.037E−09 6.719E−23 1.862E−27 3.622E−33

The values reported in the table are the p-values obtained (α = 0.05)
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