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Abstract

Quantum state preparation is crucial in quantum computing for various appli-
cations, notably in quantum simulation where a quantum state must represent
the simulated system. This study unveils the multi-Split-Steps Quantum Walk
(multi-SSQW), an advanced simulation algorithm using parameterized quantum
circuits (PQC) and a variational solver to manage complex probability distri-
butions. Enhanced from the traditional split-steps quantum walk (SSQW) to
include multi-agent decision-making, the multi-SSQW is adept at financial mar-
ket modeling. It leverages quantum computation to accurately model intricate
financial distributions and scenarios, offering key insights for financial analysis
and strategic decisions. The algorithm’s flexibility, reliable convergence, and rapid
computation make it a powerful tool for fast-paced financial market predictions.
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1 Introduction

Since the 1950s, digital computing has significantly advanced scientific capability to
address complex issues quantitatively, laying the groundwork for modern quantitative
finance and transforming financial analysis and decision-making. Quantum mechanics,
with its principles of superposition, entanglement, and interference, offers ground-
breaking solutions to challenges beyond classical computing’s reach. The fusion of
computer science and quantum physics has unveiled potential for addressing problems
that classical computing finds intractable. Quantum algorithms, leveraging the inher-
ent uncertainty of quantum mechanics, present innovative ways to model complex
probability distributions, providing a fresh approach to computational methods and
enhancing operations like factorization[l] and simulation[2, 3] more efficiently than
classical computers.

Uncertainty is an inherent nature of financial markets, manifesting itself in the
unpredictability of the cognitive processes of market participants, their decision-
making routines, and the general macroeconomic conditions and structural dynamics
of the financial market, which directly influence asset valuation. This concept is strik-
ingly similar to quantum theory. Quantum computing is particularly promising for
the financial sector, which stands to benefit significantly from this innovation. This
is primarily due to many financial scenarios that could be resolved using quantum
algorithms. Our ambitions focus on developing quantum states that encapsulate the
inherent uncertainties that pervade financial markets, which can be processed using
quantum computers. Additionally, we aim to devise quantum algorithms to simulate
the dynamic nature of financial systems.

In traditional finance, the random walk theory is a prevalent model. This theory,
first postulated by the French mathematician Louis Bachelier[4], posits that the tra-
jectory of stock prices is essentially random. In other words, the future price of a stock
is independent of its past prices, making it impossible to predict a stock’s future tra-
jectory based on historical data alone. This idea forms the basis of the Efficient Market
Hypothesis[5], stating that all available information is already incorporated into the
stock’s current price and changes to that price will only be triggered by unforeseen
events. Stock prices are the product of an ongoing interplay of buying and selling
transactions from all participants in the stock market. This dynamic process reflects
the collective sentiment, beliefs, and actions of all these market participants. There-
fore, the random walk theory of stock prices doesn’t mean prices are entirely chaotic,
but rather that they evolve based on the aggregate of numerous decisions made by
market participants, often in response to new information.

Given that uncertainty is a fundamental characteristic shared by both finance and
quantum mechanics, it is promising to employ quantum principles for the simulation



of financial markets. The potential applications of quantum computing in the finan-
cial sector[6, 7] are incredibly vast. More recent work has focused on the quantum
algorithm for amplitude estimation[8] and Monte Carlo with the pricing of financial
derivatives[9-14]. Ref. [8], which builds upon Grover’s quantum search method to
improve the likelihood of identifying desired outcomes in quantum algorithms without
needing to know the success probabilities in advance. Ref. [9] presents a quantum algo-
rithm for Monte Carlo pricing of financial derivatives, demonstrating how quantum
superposition and circuits can implement payoff functions and extract prices through
quantum measurements. Ref. [11] details a method for option pricing using quantum
computing. This method leverages amplitude estimation to achieve a quadratic speed
increase over traditional Monte Carlo methods, showcasing significant advancements
in quantum algorithm applications and financial modeling techniques. Furthermore,
Ref.[10, 12-14] explore various aspects, from implementing quantum computational
finance and option pricing to leveraging quantum advantage in market risk assess-
ment and stochastic differential equations. Each study contributes to the broader
understanding of how quantum algorithms can offer a more efficient, accurate and
comprehensive approach to financial simulations, surpassing traditional computational
methods and providing new insights into quantum finance’s potential.

In leveraging the principles of quantum mechanics for financial market analysis,
we adopt a novel approach by interpreting states of financial uncertainty through the
lens of quantum states. This perspective allows us to model potential financial out-
comes within the quantum framework, thus providing a more nuanced understanding
of market dynamics. Equation 1

[0) =3 vl 1)

illustrates the concept of superposition in quantum mechanics, where |¢) represents
the superposition state of the system. Each potential outcome in the financial market
is analogized to a quantum state |¢), with p; denoting the probability of the system
being in state |¢). This superposition principle enables the encapsulation of multiple
possible financial outcomes within a single quantum state, offering a powerful tool for
modeling financial uncertainty and making predictions based on quantum probabilistic
outcomes.

In simulating the evolution of financial markets through a quantum mechan-
ics framework, we employ a model that mirrors the evolution of quantum systems.
Equation 2 captures this:

U(t) [4(0)) = [4(1)), (2)
where U(t) represents a unitary operator that governs the evolution of the quantum
state over time, transitioning the initial state |1(0)) to its future state |¢(¢)) at time
t. In financial markets, the Eq. 2 symbolizes applying quantum evolution principles
to model how market states evolve under the influence of various factors, including
investor sentiment. To achieve this, we adopt Quantum walks(QW) algorithm as a
critical methodology for simulating the nuances of price formation processes influenced
by investor behavior. Unlike traditional models, QW introduces complexity and preci-
sion by leveraging quantum systems’ inherent probabilistic nature and superposition



capabilities. The quantum evolution model represented by Eq. 2 opens new avenues
for understanding and predicting financial market behaviors more comprehensively
and nuancedly.

Quantum walks, the quantum mechanical counterparts to classical random walks,
offer an innovative financial simulation approach. Whereas classical random walks
allow a system to move randomly from one point to another, quantum walks incorpo-
rate the principles of superposition and entanglement, enabling a quantum system to
exist in multiple states simultaneously and to explore many paths at once.In a finan-
cial context, a quantum walk could simulate multiple behaviors in parallel, potentially
capturing the complexity and randomness of financial markets more accurately than
a classical random walk. Therefore, applying the quantum walk algorithm to financial
simulations could provide a more detailed and comprehensive understanding of poten-
tial outcomes and market behavior. This extension of random walks to the quantum
realm could open new financial modeling and risk management.

Using the quantum walk algorithm in the financial simulations allows us to set
up the quantum state in a superposition of states, each corresponding to a potential
financial outcome. This method generates designated amplitudes for these states in a
way that closely resembles a targeted probability distribution and could also provide a
novel method for quantum state preparation. Quantum state preparation is a crucial
step in quantum computing and quantum simulations. The ability to prepare quan-
tum states allows for parallel information processing, enabling quantum computers
to solve specific quantum algorithms[8, 15-19] significantly faster than classical com-
puters. The referenced works [15-17] highlight significant advancements in quantum
computing applications. Harrow, Hassidim, and Lloyd [15] introduce a quantum algo-
rithm for solving linear systems of equations, offering a potential exponential speedup
over classical methods. Lloyd, Mohseni, and Rebentrost [16] propose a quantum prin-
cipal component analysis, paving the way for more efficient data processing. Havlicek
et al. [17] discuss the application of quantum-enhanced feature spaces in supervised
learning, suggesting a new approach to machine learning with quantum computing.
These studies collectively demonstrate the broad potential of quantum algorithms in
solving complex computational problems across various domains. Furthermore, Ref.
[18, 19] emphasize the transformative potential of quantum computing, illustrating
key advancements in quantum algorithms and their wide-ranging applications. These
works offer insight into quantum computing’s ability to tackle complex problems more
efficiently than conventional approaches, spotlighting the dynamic progress and future
possibilities in various sectors through quantum solutions.

The achievement of quantum advantage is considered an essential goal in quantum
computing. The three steps of realizing quantum advantage: quantum state prepara-
tion, quantum algorithm computation, and result measurements, are shown in Fig.1.
The ability to prepare quantum states in quantum circuits has many conceivable
applications. Efficient methods to simulate probability distributions in quantum cir-
cuits are critical, as an ineffective and inefficient quantum state preparation algorithm
could diminish the potential impact of quantum computing[20]. The randomness of
quantum systems has been demonstrated [21] with the distribution of states close
to the Haar-random. Haar-random|[22, 23] is significant in quantum computations, as
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Fig. 1: The three generic steps to realize the quantum advantage.

they can be used to generate arbitrary quantum states and perform quantum gates
that enable applications of these quantum devices in a much broader context. These
generic quantum state preparation methods have been designed[10, 24-29]. Grover has
proposed a scheme [24] to generate the probability distributions. It shows how to gen-
erate a superposition of quantum states by taking an ancilla register that performs a
controlled rotation of angle 6;:

VDi i) = /Di i) ® (cos B |0) + sin|1)). (3)

Using ancilla qubits makes it possible to reduce the circuit depth, resulting in
complexity mitigation at a scale less than exponential[28].

Moreover, Rocchetto has proposed a method[25] based on variational autoencoders
to encode the probability distribution of quantum states and benchmark the perfor-
mance of deep networks in states. Quantum Generative Adversarial Networks (qGAN)
have been demonstrated to load distributions[10]. The qGAN combines a quantum
generator and a classical discriminator to learn the probability distribution of classical
training data. The quantum generator, a parametrized quantum channel, is trained
to convert an input state of n-qubits, represented by [¢), into an output state of n-
qubits. A method using variational solvers to fix gate rotation parameters has been
proposed to generate symmetrical and asymmetric probability distributions[26]. The
authors demonstrated trajectories of the individual quantum states to understand the
effect of an ancilla register to control rotation.

In this study, we introduce a novel methodology based on Eq.(2) that incorpo-
rates multi-SSQW, and expanded the concept of Single-Split-Step Quantum Walk
(SSQW), into the simulation of the financial system and quantum state preparation.
Multi-SSQW leverages an ancilla qubit as a coin space to control the position space,
representing the targeted quantum state. The structure of the paper unfolds as follows:

Firstly, we rethink the theoretical underpinnings of quantum walks and shed light
on their role in simulating financial pricing and preparing quantum states. Next, we
engineer the methodology of multi-SSQW and apply the approach to a range of test
cases, on financial pricing process simulating and quantum state preparation, including



normal, log-normal, and binomial distributions, with a quantum simulator accessi-
ble via IBM Q Experience. We then demonstrate using the multi-SSQW method to
facilitate quantum benefit in financial derivative pricing.

2 Multi-split-steps quantum walk (multi-SSQW)
2.1 Mathematical Model

The multi-SSQW represents an expansion of conventional quantum walks, extend-
ing its capabilities and potential applications. QW[30-37] are used as a foundation
for generating models of controlled quantum simulation. The evolution of QW marks
a crucial chapter in quantum computing, originating from Feynman’s[30] early ideas
on quantum mechanics for computational use. Over time, the scope of research has
expanded to include quantum random walks[31, 35|, their role in universal computa-
tion, and their contribution to improving algorithmic efficiency and enabling quantum
simulations. Significant strides in QW utilization for quantum computing have been
marked by Childs’ work on universal computation[32, 36, 37], the integration of Dirac
cellular automata[33], and the innovative application of machine learning to fine-tune
QW parameters[34]. These developments underscore the growing capability of QW to
facilitate complex quantum computing operations. These contributions have deepened
our comprehension of QW, from their theoretical underpinnings to practical applica-
tions in enhancing computational processes, showcasing a dynamic field of study. QW
lays the groundwork for controlled quantum simulations. They offer a versatile frame-
work for mimicking quantum-mechanical behaviors by adjusting parameters and coin
operators within the walks. QW is broadly categorized into discrete-time (DTQW)
and continuous-time (CTQW) models, each with distinct characteristics that render
them effective for specific quantum computing operations.

QW enables the walker to simulate several quantum-mechanical phenomena by
tuning a QW’s parameters and evolution coin operators. Here, we will focus only on
the one-dimensional DTQW. A classical walk can be described using just a position
Hilbert space, while a DTQW requires an additional coin Hilbert space to express
its dynamics fully. This coin space represents the internal state of the walker and is
necessary to capture the controlled dynamics of the walker. Hilbert space of QW is
defined as follows.

H=H.®Hp, (4)
where H, is the coin Hilbert space and H, is the position Hilbert space. The coin

Hilbert space for one-dimensional DTQW has the basis states { | 1) = ((1)) ;1) =

(?)} and the position Hilbert space is defined by the basis states |z) where z € Z.
The probability amplitude of the quantum state at position x can be represented by

wo.0) = (30 5



where describe the state of DTQW with two internal degrees of freedom { | 1), | )}. In
DTQW, the system’s evolution is governed by two unitary operators: the coin operator
and the shift operator. The shift operator moves the walker in a superposition of
position states, while the coin operator acts on the coin Hilbert space and determines
the amplitudes of the position space. The coin Hilbert space represents the internal
state of the walker and plays a crucial role in determining the overall dynamics of the
system. A universal operator is defined as

A cos(¥ —e* gin(¢
Co.00) = (8 i), ). ©)
where are the three independent parameters and the most general unitary coin oper-
ator. Therefore, accurately estimating the coin parameters is essential for effectively
using quantum walks as a quantum simulation tool and for further research on mod-
eling realistic dynamics. Finding patterns in complex data can be challenging, but an
algorithm that automates the learning process can solve this problem.

The shift operator is an essential part of DTQW. A unitary operator moves the
quantum walker in a superposition of position states. The shift operation is defined as,

S=1D @Y e =Dl + | () e+ 1)zl (7)

In other words, the shift operator shifts the position of the particle one step to the
right if the internal state is | 1) or one step to the left | ). The initial state of the
system is a superposition of the position states, with the internal state of the particle
determined by the coin operator and defined as

[Wo) = (a| 1) + B[ 1)) ® |z = 0). (8)

At each time step, the shift operator is applied to the position state after the coin
operator is applied to the internal state of the particle. Together, these two opera-
tors form the evolution operator of DTQW, which describes the overall dynamics of
the system. This process is repeated several times, and the system’s final state is a
superposition of position states, with the amplitudes determined by the coin operator.

U(z,t) = [S(L @ C))' W) = W'|¥y), 9)

where I = > . |z) (x| is an identity in space.

The probability distributions in position space of DTQW [33-35], shown in Fig.(2),
do not resemble the probability distributions in everyday life. In the marketplace,
prices are typically determined by the interaction of buyers and sellers. The price of a
good or service in the market is established through the agreement between investors.
Sentiment-induced buying and selling is an important determinant of stock price vari-
ation. The shaping of short-term financial market prices predominantly hinges on the
sentiment of investor[38, 39], broadly classified into optimism and pessimism. Investors
who are optimistic play a proactive role in investing, which creates an upward push



for the stock price. On the contrary, pessimistic investors, who decide to sell and with-
draw from the market, generate a downward pull on the stock price. Inspired by the
free market economy, we introduce the split-step quantum walk(SSQW)[40, 41] that
can be regarded as a financial simulation.
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Fig. 2: Demonstrating probability distributions in position space using DTQW with
Z, X, and H gates as coin operators and various initial states (a) Initial state = |0)
(b) Initial state = %(|O> +14|1))(c) Initial state = |1)

SSQW is a specific type of quantum walk that divides the evolution of the quantum
system into two steps, one to the right and one to the left. The evolution operator W
is divided by a composition of two half-steps,

W = S,ég2§+égl. (10)

where é@k is a universal coin operator as Eq.(6) and shift operators S, are defined as,

Se =3 0N ®lz+ el + | D | © |z)(x]
- (11)
S_=SID @)l + ] (@l — 1),

T

where S, represents the walker goes to right(| 1)) or stop in place(| J)) and S
represents the walker goes to left(] J)) or stop in place(] 1)).
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Fig. 3: The scheme of (a)DTQW and (b)SSQW

In Fig.3, the diagrams depict two types of QW, which are central concepts in
quantum computing. Figure (a) illustrates DTQW, where a particle on a line can move
to adjacent positions at discrete time intervals, guided by a quantum coin operation C'



determining its direction. Figure (b) shows SSQW. In this variant, the coin operation is
split into two steps, égl and 092, allowing for more control over the particle’s movement
and hence enabling a richer simulation of quantum systems. These models provide
frameworks for algorithmic development in quantum simulations and computational
tasks, capturing the complexities of quantum mechanics in a controllable process.

In the context of SSQW applied to financial markets, the coin operators, denoted
as C'gland 002, act as quantum analogs to reflect investor sentiment. They control the
probability amplitudes for different market states, effectively modeling the decision-
making process of investors based on their market sentiments. This mechanism allows
for the simulation of market dynamics in a quantum computational framework, offer-
ing a nuanced approach to understanding financial fluctuations. é@l embodies the
amplitude of the investor’s optimism, influencing the likelihood of a price increase.
Conversely, 6’92 reflects the amplitude of the investor’s pessimism, regulating the prob-
ability of a price decrease. This process models the decision-making process of an
investor‘s behavior: to buy or not, or to sell or not. This dual-step approach effec-
tively simulates the complex dynamics of trading behavior and investor sentiment.
Therefore, investor sentiment is an integral aspect of financial market analysis, much
like the concept of superposition in quantum mechanics. With various sentiments and
outlooks overlapping and coexisting, it affects not only the trading behavior but also
shapes the overall market’s perception of risk and value.

The financial market is marked by the participation of a diverse range of investors,
each with their unique attitudes and investment strategies. In order to capture this
diversity, we build upon existing concepts and introduce the multi-SSQW that corre-
sponds to a multitude of investors. This approach allows us to design a quantum model
that simulates various investor sentiments. Such a quantum model aids in simulating
trader sentiment within the financial market, enabling us to predict the distribution of
short-term financial prices. The scheme for simulating the distribution of short-term
financial prices is introduced with a practical approach to find patterns in complex data
and map them to a multi-SSQW dynamic system and the architecture has shown below
in Fig.(4). In the multi-SSQW framework, the U3 gate sets the initial quantum state,
encoding the market’s overall sentiment. Subsequent unitary operations, represented
by two U3 gates for each investor, model individual investor biases towards specific
assets. The evolution operator, W, is decomposed into two halves—first moving with
Cy, and incrementing (S,) and then applying Cy, before decrementing (S_). These
coin operators, é@k, and the shift operators, S’i, collectively govern the walker’s direc-
tion and position, with each 1% operator reflecting the nuances of investor sentiment
towards a financial asset within a quantum simulation model. Figure 4 illustrates the
mechanics of a quantum system designed to simulate and analyze financial markets,
capturing the dynamics of investor behavior and market fluctuations.

We have extended the concept of SSQW to multi-SSQW, employing multiple
walkers to represent investors with diverse investment strategies in the market. In
modeling the intrinsic uncertainty in financial markets, we showcase the efficacy of our
purpose-built multi-SSQW quantum algorithm and circuitry through its application
in replicating the price distribution in real-world stock markets.
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Fig. 4: (a) Illustrates the multi-Split-Steps Quantum Walk (multi-SSQW) setup,
showing the initial state and the sequence of operations modeling investors’ decision-
making. The quantum state evolves iteratively to achieve a targeted distribution,
analyzed by a classical optimizer. (b) Depicts the quantum circuit of S, controlling
state incrementation. (¢) Shows the quantum circuit of S_, managing state decremen-
tation. This ensemble represents a quantum approach to simulating financial market
dynamics.

2.2 Solution Architecture

The multi-SSQW framework leverages a dual-domain computational approach, involv-
ing a Parameterized Quantum Circuit (PQC) and a classical optimizer. The PQC is
composed of n+1 qubits, one designated for coin space and the remainder for position
space. This setup is employed to represent and emulate the distribution of short-term
financial prices. To fine-tune these parameters in alignment with empirical data, the
framework employs a classical optimizer. The optimizer implements the Constrained
Optimization By Linear Approximation (COBYLA) algorithm to refine the trained
results toward the target distribution. The COBYLA optimizer uses the mean-square

10



error (MSE) and KL divergence as loss functions for an enhanced approach to the tar-
geted distribution. This methodology allows for financial simulation and preparing the
probability data into a quantum state, effectively bridging the gap between classical
finance models and quantum simulation.

The coin space of a multi-SSQW that performs a controlled motion of a walker on
the position space is similar to the ancilla qubit taking a controlled rotation in Eq.(3).
The goal is to optimize the coin parameters of a multi-SSQW to achieve the targeted
distribution of the position space, and then we only compute the position space. We
will accomplish this by using parameterized quantum circuits (PQC). The steps for
this process are as follows:

® Begin with a classical targeted data set p = {pg,...,pon_1} € R sampled from a
distribution of short-term financial prices.

® Multi-SSQW implementation uses an auxiliary qubit representing the coin space
and N qubits representing the 2V distributions in the position space.

e Imply Wl, Wa.. W operators or walkers on the quantum circuit and repeat t steps.

® Measure the state amplitudes of the position space and compute the trained
distribution.

e Update the coin parameters using the classical optimizer with the mean square
error(MSE) and KL-divergence to quantify the difference between the trained
probability distribution from the targeted probability distribution.

® [terate n times until converge to the targeted distribution

3 Results

3.1 Performances with daily return distributions of stocks

We conducted an extensive simulation to gauge the effectiveness of the multi-SSQW
framework with daily return distributions of various stocks. Our results indicate that
this approach successfully leverages the advantages of quantum computation within
the financial arena.

A daily return distribution offers a statistical portrayal of a financial asset’s daily
returns, such as shares or commodities. It’s the day-to-day value change in percent-
age terms for the asset. This distribution illustrates the frequency of different return
values, enabling investors to evaluate the associated risks and potential returns of
an investment. Typically presented as a histogram, the x-axis represents the return
percentage, while the y-axis indicates probability frequency. To create a daily return
distribution, we initially collect real stock data from Yahoo Finance every day over
a specified duration(2022-01 2022-03). We then categorize these daily returns into 16
distinct groups based on their respective percentages. These data are then transformed
into a frequency distribution bar chart to provide a more visual and intuitive under-
standing of the returns distribution. Afterward, we employ the multi-SSQW approach
to simulate these outcomes, yielding a more realistic probability distribution of the
market. Our study involves simulating the daily return distribution over a quarter of
various stocks or indices. Initially, we performed simulations 100 times, experiment-
ing with num(the number of walkers) within a range from 1 to 10 and step = 1.
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This allows us to analyze the error statistically, observe the convergence behavior, and
document the computation time for each scenario. Subsequently, we introduce ran-
dom parameters to execute optimization simulations. These simulations enable us to
generate the resultant data and the status of error convergence, thereby validating
the efficacy and reliability of our approach. This structured and systematic procedure
helps to provide a comprehensive understanding of the daily return distribution for
different financial assets.
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Fig. 5: The performances of the multi-SSQW method on Johnson and Johnson (JNJ)
across various aspects: (a) the distribution of daily returns( Num = 4), (b) the
progression of error, (c) a boxplot representation of the error, and (d) the average
computational time required for the analysis.

In Fig. 5, we conducted an evaluation of the efficacy of the multi-SSQW method
with respect to Johnson & Johnson (JNJ). Our investigation involved the utilization of
multi-SSQW to generate a simulation of the distribution of daily returns for JNJ over
a quarter. The results indicate a strong correspondence when the number of walkers
is set to 4, with the simulated and actual distributions closely aligning.

From a financial perspective, JNJ is a multinational corporation based in the
United States that manufactures pharmaceuticals and consumer packaged goods and
is often viewed as a defensive sector because the demand for healthcare products and
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services remains relatively steady, regardless of economic cycles. This characteristic
makes JNJ an attractive option for conservative investors seeking stable returns. In
our simulation, the findings display a strong alignment when the number of walkers is
set to 4. This pattern suggests the prevalence of less sentiment-driven investors, which
can be interpreted from a financial perspective as a tendency towards stability and
predictability in the stock’s performance.

Daily Return Distribution for SP500
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Fig. 6: The performances of the multi-SSQW method on SP500 across various aspects:
(a) the distribution of daily returns(Num = 4), (b) the progression of error, (c) a
boxplot representation of the error, and (d) the average computational time required
for the analysis.
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In Fig 6, we simulate the distribution of S&P500. The Standard & Poor’s
500(S&P500) is a stock market index that measures the stock performance of 500
large companies listed on stock exchanges in the United States. The index includes
companies from all sectors of the economy. For large companies such as those in the
S&P 500, stable operations, good corporate governance, clear future planning, and
strong performance all attract long-term investors. Given the relatively homogeneous
investor base, fewer numbers are required for the simulation results to converge to an
optimal outcome.
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Daily Return Distribution for Nasdaq100

=@= target
0.20 . trained Error Plot_MSE_Loss for Nasdaq100

0.4

0.3

Probability

Error
o
o

The| best Error = 0.0024

0.0

. 0 25 50 75 100 125 150 175 200
return in % Iteration
(a) (b)
Range of error for different num values Average Computation Time per Num Value
i 3 MSE & 101 —— mse
08 ] BN KL divergence 3 —— KL
o 9 S
o o o &8
0.6 go o 3 2
o F
= o £ 6
s o o S
5 0.4 o s
o ° 9 é
d o 8t
02 o8 2 @
E B & 3 ; ]
g 2
£ :
0.0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Num Value Num Value
(c) (d)

Fig. 7: The performances of the multi-SSQW method on Nasdaql00 across various
aspects: (a) the distribution of daily returns(Num = 7), (b) the progression of error,
(c) a boxplot representation of the error, and (d) the average computational time
required for the analysis.

The development of the technology sector is highly dependent on innovation, which
often makes the prospects of tech companies full of uncertainty. A breakthrough tech-
nology or product can swiftly disrupt the market dynamics and are more prone to
sentiment. This tends to draw in a significant number of noise investors who do not
trade on the basis of information and make irrational investment decisions. Conse-
quently, this causes the stock prices of some companies to experience dramatic swings.
Tech stocks are usually significantly influenced by market sentiment. In Fig.7, the
simulation shows the behavior could indicate a larger proportion of sentiment-driven
investors.

Apple and Microsoft stand among the world’s leading technology giants. They have
a major influence on global technology trends and garners significant attention from
investors globally. However, it is important to note that its distribution diverges from
the typical normal distribution, escalating the complexity involved in its simulation.
In Fig. 8 and 9, we demonstrate the robust simulation capabilities of the multi-SSQW
methodology, specifically applied to complex entities such as Apple and Microsoft.
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Daily Return Distribution for AAPL
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Fig. 8: The performances of the multi-SSQW method on APPLE (APPL) across
various aspects: (a) the distribution of daily returns(Num = 7), (b) the progression
of error, (¢) a boxplot representation of the error, and (d) the average computational
time required for the analysis.

In this section, we demonstrate the ability of multi-SSQW to function as an effec-
tive financial simulator. It is capable of accurately modeling intricate financial systems
and providing reliable simulations. One of the highlights of this approach is its inherent
capability to exhibit convergence and provide rapid results, which makes it a power-
ful tool in financial analytics and modeling. The boxplots reflect simulation outcomes
that measure the multi-SSQW?’s fidelity in financial market modeling. They suggest
that as the diversity of quantum walkers —representative of market participants—
increases, the precision of the simulations improves, marked by lower MSE and KL
divergence values. This relationship underscores the robustness of the multi-SSQW
approach in capturing the complex dynamics of financial markets, providing a com-
pelling tool for analysts. The methodology’s reliable convergence indicates its utility
in producing accurate market simulations, affirming its value in enhancing financial
analysis and forecasting. In machine learning, integrating more parameters can boost
accuracy without imposing a substantial computational load. Crucially, the method
demonstrates steady convergence, highlighting this approach’s efficacy.
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Daily Return Distribution for MSFT
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Fig. 9: The performances of the multi-SSQW method on Microsoft (MSFT) across
various aspects: (a) the distribution of daily returns(Num = 7), (b) the progression
of error, (¢) a boxplot representation of the error, and (d) the average computational
time required for the analysis.

3.2 Performances of the binomial distribution

The binomial distribution is a probability distribution that describes the number of
successes in a fixed number of independent Bernoulli trials with the same probability
of success. A common example of a binomial distribution is a coin toss, where the
outcome can be either heads (success) or tails (failure), and each toss of the coin is an
independent event.

Probability theory[42, 43], the mathematical study of randomness, is built upon
the concept of probability distributions and the random variables they describe. Every
distribution has a specific application and is characterized by certain parameters which
help to define the shape and probabilities of the distribution. We demonstrate the
utilization of multi-SSQW for the simulation of binomial distributions, shown in Fig.
10-12. These are accomplished by adjusting the coin operator coefficient and the walker
count to mirror the success probability and fine-tuning the number of control steps
to match the characteristics of the binomial distribution. We present three distinct
binomial distributions, each with a success probability of 0.3, undergoing 31, 63, and
127 trials, respectively. The outcomes, derived via the multi-SSQW approach, validate
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our ability to use two quantum walks, incorporating six parameters each and a suit-
able number of steps, to depict the binomial distribution. The multi-SSQW approach
enables us to procure a statistical approximation of the binomial distribution with
control steps of 3, 5, and 10, respectively.
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Fig. 10: The performances of the binomial distribution across various aspects: (a)
the binomial distribution ( p = 0.3, n= 31, num =2, step = 3), (b) the progression
of error, (¢) a boxplot representation of the error, and (d) the average computational
time required for the analysis.

3.3 Application: European call option price

The logarithmic normal distribution is a probability distribution of a random variable
whose logarithm is normally distributed. One of the main properties of the log-normal
distribution is that the values are skewed to the right, meaning that the tail of the
distribution is on the right side, representing large values. It also has thicker tails than
a normal distribution, meaning extreme events are more likely. This is why it helps
model variables that fluctuate widely, such as stock prices. The log-normal distribution
also can be used to price options by assuming that the underlying asset’s price follows
a geometric Brownian motion, which means that the logarithm of the asset’s price
follows a normal distribution. This assumption is the basis of the Black-Scholes model,
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Fig. 11: The performances of the binomial distribution across various aspects: (a)
the binomial distribution ( p = 0.3, n= 63, num = 3, step = 5), (b) the progression
of error, (c) a boxplot representation of the error, and (d) the average computational
time required for the analysis.

which is a widely used method for pricing options. This is evidenced by its practical
application in financial derivative pricing and the simulation of financial markets. In
the following, we demonstrated that the multi-SSQW scheme enables the exploitation
of the potential quantum advantage in finance, such as European call option pricing.

The Black-Scholes (BS) model[44] is widely used in the financial industry to
value options and other financial derivatives. It is used to determine the theoretical
value of an option using specific parameters such as the underlying asset’s price(5),
strike price(K'), the time to expiration(T), the risk-free interest rate(r) and the
volatility (vol). The BS model calculates the option value by assuming that the under-
lying asset’s price follows a geometric Brownian motion, a continuous-time stochastic
process. Considering this, the BS model can calculate the probability distribution of
the underlying asset’s price at expiration.

We approximate the trained probability distribution, leveraging multi-SSQW with
num = 3 and step = 4, and compare it with the targeted probability distribution
for the parameters by plotting them together, as shown in Fig. 13. Now, the trained
probability distribution can be used to evaluate the expectation value of the option’s
payoff function. We can see that the analytically calculated expected payoff is 0.1739
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Fig. 12: The performances of the binomial distribution across various aspects: (a) the
binomial distribution ( p = 0.3, n= 127, num = 3, step = 10), (b) the progression
of error, (c) a boxplot representation of the error, and (d) the average computational
time required for the analysis.

when using the targeted distribution, and 0.1460 when using the trained distribution.
Therefore, when the trained probability distribution is more accurate, resulting in a
more favorable outcome after calculation.

Drawing on previous experience, we concurrently adjust the num and step param-
eters to model the log-normal distribution. We construct an approximation of the
trained probability distribution, employing multi-SSQW with num = 3 and step = 4.
This approximation is juxtaposed against the targeted probability distribution for
parameters Sop = 6,K =7, vol = 0.4, r = 0.04 and T = 90. The comparison is visual-
ized in Fig. 13. The trained probability distribution is subsequently used to evaluate
the expected value of the option’s payoff function. The analytical computation reveals
an expected payoff of 0.1739 when using the targeted distribution and 0.1460 when
employing the trained distribution. Hence, the more precise the trained probability
distribution, the more favorable the result after calculation.
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4 Discussions

In our research, we present preliminary theoretical exploration and practical appli-
cations that illustrate the effectiveness of our approach in conducting quantum
financial simulations and quantum state preparation. Our strategy harnesses the
unique strengths of quantum computation, and the multi-SSQW can accurately model
intricate financial distributions and scenarios. This offers fresh insights and tools for
financial analysis, decision-making, and quantum state preparation. The multi-SSQW
algorithm offers several notable benefits:

Flexibility in Modeling: Multi-SSQW boasts exceptional adaptability to mod-
eling complex systems, including those in the financial domain. It exhibits remarkable
versatility by enabling adjustments to variables such as the number of walkers and
steps and optimizing parameters in the coin space. This adaptability allows it to accu-
rately depict a wide range of complex systems, making it a potent and flexible tool
for applications in financial simulations and beyond.

Stable Convergence: A vital characteristic of the multi-SSQW is its stable con-
vergence - a critical requirement for a resilient financial simulator. This feature ensures
that the quantum walks consistently attain a stable state over time. Our results demon-
strate that multi-SSQW can produce more accurate simulations. For instance, when
approximating the binomial and log-normal distributions, we found that the error
could be effectively minimized by increasing the number of walkers.

Efficient Computation: Multi-SSQW leverages efficiency by skillfully navigating
the complex quantum state space. The simultaneous progression of multiple walkers in
this space fosters swift exploration and convergence to the targeted state or solution.
The fundamental principles of quantum computation, quantum superposition, and
entanglement enhance this capability, permitting parallel processing and exponential
computational speed-ups compared to classical approaches. This means the multi-
SSQW not only operates faster but also utilizes resources in a markedly more efficient
manner, offering a significant advantage in tackling complex problems quickly and
effectively.
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Further, by appropriately tuning the number of walkers, steps, and coin operator
parameters, multi-SSQW can be optimized for swift convergence, thereby enhancing
efficiency. It is important to note, however, that achieving efficiency necessitates a deep
understanding of system dynamics and careful selection and tuning of parameters, a
potentially challenging task.

There appears to be an inherent trade-off between the quantum circuit’s complexity
and the optimizer’s efficiency in the Variational Quantum Algorithms (VQA). As we
increase the depth and intricacy of our quantum circuits, the state space we can
explore expands, potentially leading to better solutions. However, this also means
that the landscape of the cost function can become more intricate, possibly making
optimization more challenging. Recognizing and managing this balance is crucial to
harnessing the full potential of VQA and achieving practical and meaningful results.
Using a multi-SSQW quantum circuit to simulate financial stock distributions can be
seen as employing well-orchestrated circuits. The multi-SSQW approach is designed
to navigate complex quantum state spaces efficiently, aiming for rapid exploration and
convergence to a desirable state or solution through the controlled evolution of multiple
walkers. The advantages of multi-SSQW, such as its rapid modeling and prediction
capacity, make it highly beneficial for financial simulations in fast-paced and volatile
financial markets.

In summary, using quantum computing techniques, the multi-SSQW model is
promising for advancing our grasp of market dynamics. Anticipated research will focus
on enriching the model’s forecasting prowess for stock price trends by merging it with
macroeconomic data and assessing the nuanced interactions between different stocks
using entanglement to develop joint probability distributions. These efforts aim to
yield a more intricate understanding of the financial markets’ interconnectivity.
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