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Abstract
This paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, 
policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspec-
tive. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical 
study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques 
for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with 
the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology 
is applied for analysis and modelling the connections and interdependencies between edge components and automation in 
cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic clas-
sifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation 
in cyber-physical systems from a technical and social level.
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1  Introduction

Artificial intelligence (AI) and the Internet of Things (IoT) 
are the driving forces for industrial automation and the con-
cept of smart factory. The industrial automation is shofting 
towards predictive maintenance and quality, human–robot 

integrations, and adaptive supply chains. While the indus-
trial world is slowly getting used to the Industry 4.0 idea, 
the world is already evolving in the industry 5.0 (Sarfraz 
et al. 2021). This study reviews a juxtaposition of related 
systems and technologies, including IoT; Industrial Inter-
net of Things (IIoT); Cyber-physical systems (CPS); and 
Industry 4.0 (I4.0). We briefly explain these related systems 
and technologies. The IIoT represents an evolved and con-
nected distributed control system, using sensor, and other 
connected devices for data collection, exchange and analysis 
for improved productivity, energy management and other 
economic benefits (Boyes et al. 2018). The I4.0 is a generic 
designation for sets of strategic frameworks and initiatives, 
and a technical term to relate to new emerging digitalisa-
tion of business assets, processes and services. Different 
terms are used depending on the country, but all represent 
the same idea, which is ‘The Fourth Industrial Revolution’ 
(Carruthers 2016).

The IoT represents many different connected devices, 
using different connection protocols, performing data col-
lection, for cloud storage, real-time analytics, among many 
other functions that create value (Nicolescu et al. 2018). 
On the other hand, the term CPS represents ‘smart’ sys-
tems that are built and depend on the interaction between 
physical and computational components (Craggs and Rashid 
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2017). CPS emerges from the interconnection of physical 
components in complex software to form new network and 
systems capabilities. While IoT focuses on interconnectiv-
ity, interoperability and integration of physical components 
in the Internet. Integration of IoT and CPS is what defined 
the IIoT and is expected to lead to developments of I4.0 
in automation, real-time platforms, and automation guiding 
workers in production environment.

The research questions this study investigates are related 
to identifying the networked connection of people, pro-
cesses, data, and things. The study is investigating the con-
cepts that unites the cyber-physical world with the social 
aspects of the environment in which this technology is 
deployed. Also, a crucial question of interest for the study, 
is to review all available resources and identify the future 
cognitive makeup of I4.0. The terms ‘artificial intelligence’, 
‘artificial cognition’, ‘cognition’, and ‘cognitive CPS’, in the 
context of this article are used interchangeably. These terms 
cohere to existing literature discussion on the effect from the 
evolving coupled systems and social networks in intercon-
nected industrial systems. This article discusses major new 
initiatives in the industrial and manufacturing space in rela-
tion to privacy preserving and cyber risks in cyber-physical 
systems.

2 � Cyber‑physical systems in Industry 4.0

The engagement of AI in the cyber world and the human 
engagements in the physical world have been studied exces-
sively in isolation, but the roadmap to I4.0 is still unclear 
(Caiado et al. 2021) and little attention has been given to the 
combination of AI and the cyber-physical world (Hollebeek 
et al. 2021). The world leading Industry 4.0 frameworks 
(Table 1)—identified from (Radanliev et al. 2020a, b, c, d, 
e) are analysed in a (a) comparative empirical study that cor-
relates (b) hierarchical cascading based on the (c) grounded 

theory approach to determine (d) taxonomic classifications. 
A comparative empirical study (Murray-Rust et al. 2014; 
Van Kleek et al. 2018) is used to establish a design process 
(Lee et al. 2019a, 2019b) for integrating present CPS tech-
niques and literature review for the future CPS techniques 
in Industry 4.0.

The results of the comparative empirical study on Indus-
try 4.0 frameworks, are presented in detail in (Figure, Fig-
ure, and Figure) to determine the present and future mecha-
nisms for artificial intelligence automation in cyber-physical 
systems. The complete findings of the comparative empirical 
study, correlated with hierarchical cascading of the taxo-
nomic classifications from the grounded theory method, are 
presented in the Figure. The integrated framework in Fig-
ure compensates for shortcomings in each of the individual 
frameworks reviewed, calling for a standardised framework 
(Radanliev et al. 2020). For example, not all frameworks 
provide mechanisms for policy development.

Hence, our architecture (in Figs. 1 and 2) derives inte-
grated recommendations and mechanisms that are directly 
related to increasing cognition in CPS. The methodology 
for designing our architecture (in Figs. 1 and 2) is related 
to from proof-of-concept (Wang et al, 2019), graph based 
visual analysis (Böhm et al. 2018), for ensuring data confi-
dentiality (Zhang et al. 2018).

The architecture framework in Figure makes direct rec-
ommendations for elements of action, through integrating 
best practices from the empirical analysis. Figure integrates 
taxonomic grouping techniques (Figure node 1:1) from aca-
demic literature, to establish the CPS integration framework 
(in Figure node 1.2), with practical initiatives (in Figure 
node 1:3) from empirical studies data and consolidates these 
techniques with a cascading framework (in Figure node 1.4) 
that relates artificial intelligence with CPS technologies. A 
taxonomic grouping of future and present techniques is 
conceptualised with existing hierarchical cascading design 
(Radanliev 2016). By doing this, the leading initiatives are 

Table 1   Industry 4.0 national 
frameworks

Industry 4.0 frameworks

Germany—Industrie 4.0
USA—(1) Industrial Internet Consortium; (2) Advanced Manufacturing Partnership
UK—(3) Digital Catapults; (4) UK Digital Strategy; (5) Made Smarter
Japan—(6) Industrial Value Chain Initiative (IVI, 2017); (7) New Robot Strategy (NRS) and (8) RRI
France—(9) New France Industrial (NFI)
Nederland—(10) Smart Industry
Belgium—(11) Made Different
Spain—(12) Industrie Conectada 4.0
Italy—(13) Fabbrica Intelligente
China—(14) Made in China 2025
G20—(15) New Industrial Revolution (NIR)
Russia—(16) National Technology Initiative (NTI)
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Fig. 1   Architecture for future cyber-physical systems

Fig. 2   Direction of the logical flow of cognitive CPS design
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aggregated in integration areas. The integration framework 
in Figure follows taxonomic approach, in the formulation of 
encompassing principles for the integration across all initia-
tives (Figure node 1:3).

The argument of this process is that the integration of 
artificial cognition in CPS is not a selective process. Rather, 
it requires the synchronisation and harmonisation, which 
requires evaluation principles. The first stage of this study 
identified the related elements and principles from academic 
literature. These are grouped (from Figure nodes 1.1, to 1.4) 
and combined with present and future challenges from recent 
literature. To avoid duplication of abbreviations, the figure 
node 1:4 and the full list of abbreviations are borrowed from 
(Radanliev et al. 2020). The remaining Figure nodes emerge 
from this study. This presents the state-of-the-art in current 
understanding on the integration of artificial cognition in 
CPS. The arrows in Figs. 1 and 2, stand for the direction of 
the logical flow of cognitive CPS design.

In the second stage (Figure nodes 1.6 to 1.8), the hierar-
chical cascading process is shaped by practical initiatives. 
In the hierarchical cascading we designed, there is a reflex-
ion on the knowledge that a supply chain view is necessary 
for obtaining the industry 4.0 values, and that organisa-
tions need to first integrate culturally in the industry 4.0 
concept, before the supply chain is digitalised, and the 
implementation needs to be a phased approach (Shao et al. 

2021). These postulates are integral part of the architecture 
we designed in Fig. 1, and are based on the knowledge 
that the main values of industry 4.0 is in the supply chain 
(Fatorachian and Kazemi 2021).

The empirical study builds upon the Figs. 1 and 2 and 
is presented in Figs. 3, 4, 5, 6, 7, where Fig. 3 analyses the 
integration aspect (vision and principles) of all practical 
initiatives in the empirical study (building upon the con-
cept from Figure node 1.5).

The Figure details the results of the comparative empir-
ical study on Industry 4.0 frameworks, to determine the 
present mechanisms for artificial intelligence automation 
in cyber-physical systems. The empirical study considers 
CPS as similar to social machines (Mons 2019), with per-
ceived moral scale (Banks 2019), for algorithmic regula-
tion (Radanliev et al. 2020). This connection was based on 
the notion that social machines and the IoT are interrelated 
(Smart et al. 2019), and we found the archetypal narrative 
(Tarte et al. 2015) in observing the social aspect (De Roure 
et al. 2015) of CPS’s, for the emergence of a cyber-physi-
cal social machine (Madaan et al. 2018). In Figure, we use 
this approach to identify the hierarchy of the taxonomy 
from the comparative empirical study. This results with a 
cascading hierarchy (Figure) for integration policies based 
on imperative elements, design building blocks, design 

Fig. 3   Principles for cyber-physical systems in Industry 4.0
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actions, and key projects for the design and prototype of 
AI-enabled cyber-physical systems.

Building upon the cascading hierarchy in Figure, in Fig-
ure the same methodology was applied to derive the key 
technologies, key tech sectors, key tech networks, key test-
beds, key industries and markets and guiding principles, for 
the design and prototype of AI-enabled cyber-physical sys-
tems. This cascading hierarchy mechanism is the result of 
a conceptual method to integrate the I4.0 initiatives into a 
logical sequence of cognition. The design follows findings 

that such integrations must consider the value created, while 
focusing on understanding the risk, including future risks. 
Most peculiar finding from the empirical study is that apart 
from the Japanese NRS and RRI, all other world initiatives 
have failed to provide clarification on how artificial intelli-
gence (AI) would be integrated in their I4.0 strategies. The 
cognitive feedback mechanism provides a logical sequence 
that includes the NRS core technologies specification for 
the integration of AI and automated behaviour in the NFI 
key technologies list. While with the evolution of other ele-
ments will emerge, in Figure node 1.8, the current building 
blocks for artificial cognition in CPS are extracted from the 
requirements of the imperative elements as presented in the 
leading initiatives and policies for reducing the associated 
cyber risk.

The imperative elements (in Figure node 1:8) are fol-
lowed by the design building blocks. The design building 
blocks represent more specific concepts and can serve as 
guidance and feedback mechanisms for the future artificial 
cognition in CPS. Building block concepts, such as: infor-
mation transparency and open access facilities provide guid-
ance to national regulators and industry network architects. 
The process provides feedback mechanisms from national 
strategies towards standardisation strategy. For example, 
one feedback mechanism could be the NTI’s initiative to 
build a block for electronic open submission of recommen-
dations for changing or editing. Some of the building blocks 
seem conflicting, e.g. loosely defined standards vs. stand-
ardisation. The reason is that I4.0 is continuously evolv-
ing, and standardisation must accommodate for changes as 
this evolution occurs. This situation is very different from 
the incumbent industries, where standardisation normally 
refers to a fixed set of rules and regulations within a well-
defined domain. In the cyber world, standardisation needs 
to be adaptive, hence the process of standardisations must 
anticipate constant future changes. This process includes a 
certain initial degree of continually evolving loosely-defined 
standardisation.

3 � Discussion: alternative testing 
and validation of the framework

Research on CPS requires development of testbeds to vali-
date the proposed solutions (Hahn et al. 2013). Some ele-
ments of cognition in CPS are still futuristic and require 
virtual validation in the design stages (Leitão et al. 2016). 
In different types of CPS (ex. autonomous vehicles) the 
futuristic elements discussed have already been applied. 
Examples include virtual evaluation, validation and design 
platforms (Feth et al. 2015), unmanned network naviga-
tion and autonomous navigation (Berger and Rumpe 2014), 
context aware CPS with Cloud Support (Wan et al. 2014), 

Fig. 4   CPS policies
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autonomous energy management and integration of CPS in 
the cloud (Radanliev et al. 2020). The verification problem 
of the architecture model in this study could be attempted 
for example through fuzzy verification that involves a 
sequence of Boolean questions and decisions meant to pro-
vide a level of confidence for a correct implementation of 
specific elements. But this verification would hardly pro-
vide a reasonable level of confidence for various systems of 
systems let alone for the entire system, also because some 
of the technologies discussed are not even invented, such 
as AI brain (Ministry of Economy Trade and Industry of 
Japan 2015). Alternatively, industrial developers can test 
the framework by applying object oriented layered archi-
tecture for the cyber–physical components (Thramboulidis 

2015). However, to introduce performance measurements, 
this method over-simplifies the process. Continuous experi-
mentation method can also be applied in automated virtual 
testing, using simulations and data recordings from CPS 
(Giaimo et al. 2016). However, this method presents seri-
ous weaknesses in terms of safety guarantees, hardware con-
straints and lack of supportive instruments.

4 � Conclusions

The framework identifies significant advancements in the 
past 10 years, that are missing the individual framework 
analysed in the literature survey. For example, in current 

Fig. 5   CPS elements and building blocks
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literature AI in CPS is represented only as simple decision 
support system, with a single focus on manufacturing pro-
cesses. These capabilities can, and have been achieved in 
various ways that are not related to AI. The new framework 
presented in this review paper, integrates AI with much more 
than a simple decision support system, touching upon areas 
in social machines, connected devices, knowledge develop-
ments, among new cognitive concepts, emerging from indi-
vidual Industry 4.0 frameworks. The complexities of cogni-
tive automation are organised in a hierarchical cascading 
structure in the new integration framework, enabling the 
management of collaborative systems safely and securely 
while using resources efficiently.

This paper presents a future vision for AI evolution in 
cognitive automation mechanisms, based on AI-enabled 
cyber-physical systems. The paper also identifies a meth-
odological design for specific challenges, such as AI in I4.0. 

The framework produces a taxonomy of common basic ter-
minology, common approaches, and existing world leading 
initiatives into a proposition of AI-enabled cyber-physical 
systems. The review paper also suggests the need to formu-
late compositional ways to reason about the emerging cyber 
risks in an CPS context. The framework enables the current 
efforts to integrate in a larger perspective, in the develop-
ment of cyber policy.

Finally, the contribution of this paper is two-fold. Firstly, 
the paper developed a method for aggregating evidence on the 
emerging advancements in the field of cognitive mechanisms 
for design and prototype of AI-enabled cyber-physical sys-
tems. The review paper combines approaches to incorporate 
existing standards into new design for cognition in CPS. Sec-
ondly, the paper captures some of the best practices in industry 
and develops a step-by-step process design and prototype of 
AI-enabled cyber-physical systems. The new framework can 

Fig. 6   CPS design actions
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be used by governments for improving existing national strate-
gies, or designing new national strategy, especially by develop-
ing countries. The framework can also be used as guidance in 
cyber policy design for AI-enabled cyber-physical systems. 
Private sector enterprises can use the framework for determin-
ing future changes in national strategy and policies.

5 � Limitations of this study

Future research should give consideration of system soci-
ology because the conceptual model presented does not 
address the question of skilled job losses. The study accepted 

the argument that the associated social disruptions will be 
significant as the technologically driven labour market tran-
sitions are likely to take considerable time, especially in sit-
uations when AI accelerates the pace of automation. The 
study accepted the counter argument is that skilled and edu-
cated jobs will be created to control and maintain machines, 
as automation optimises the manufacturing competitive edge 
in high-wage countries (Brettel et al. 2016), and enables a 
better work-life-balance in a high-wage economy. We believe 
that elements in this article would contribute to the ongoing 
debates on the two opposing viewpoints.
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