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Abstract
In this paper, we introduce AutoQual, a mobile-based assessment scheme for infrastructure sensing task performance pre-
diction under new deployment environments. With the growth of the Internet-of-Things (IoT), many non-intrusive sensing 
systems have been explored for various indoor applications, such as structural vibration sensing. This indirect sensing 
approach’s learning performance is prone to deployment variance when signals propagate through the environment. As 
a result, current systems heavily rely on expert knowledge and manual assessment to achieve effective deployments and 
high sensing task performance. In order to mitigate this expert effort, we propose to systematically study factors that reflect 
deployment environment characteristics and methods to measure them autonomously. We present AutoQual that measures 
a series of assessment factors (AFs) reflecting how the deployment environment impacts the system performance. Auto-
Qual outputs a task-oriented sensing quality (TSQ) score by integrating measured AFs trained from known deployments 
as a prediction of untested system’s performance. In addition, AutoQual achieves this assessment without manual effort by 
leveraging co-located mobile sensing context to extract structural vibration signal for processing automatically. We evaluate 
AutoQual by using it to predict untested systems’ performance over multiple sensing tasks. We conduct real-world experi-
ments and investigate 48 deployments in 11 environments. AutoQual achieves less than 0.10 average absolute error when 
auto-assessing multiple tasks at untested deployments, which shows a ≤ 0.018 absolute error difference compared to the 
manual assessment approach.

Keywords  Sensing quality · Deployment characterization · Mobile sensing · Performance prediction · Structural vibration 
sensing · Task-oriented integrated score

1  Introduction

IoT systems are becoming more and more pervasive in 
people’s daily life. Due to their increasing applications and 
advantages in deployment (e.g., sparse, privacy preserving), 

many non-intrusive indirect sensing techniques are devel-
oped for indoor human information acquisition, includ-
ing RF-, vibration-, light-based methods. However, the 
indirect sensing mechanisms of these systems also induce 
large variances of the acquired data quality over deploy-
ment environment conditions and configurations, which 
reduces the system performance. We focus on structural 
vibration-based indoor sensing due to its passiveness, non-
intrusiveness, room-level sensing range enabling extraction 
of fine-grained information (Pan et al. 2014; Bales et al. 
2016; Clemente et al. 2019). The system’s information infer-
ence performance (e.g., detection rate, learning accuracy) 
is impacted by the deployment environment. To systemati-
cally understand these deployment environment impacts, we 
define sensing quality as a series of measurable factors/
models reflecting how they impact a given information 
inference task. Quantifying sensing quality allows further 

 *	 Yue Zhang 
	 yzhang58@ucmerced.edu

	 Zhizhang Hu 
	 zhu42@ucmerced.edu

	 Susu Xu 
	 susu.xu@stonybrook.edu

	 Shijia Pan 
	 span24@ucmerced.edu

1	 University of California Merced, 5200 N Lake Rd., Merced, 
CA 95340, USA

2	 Stony Brook University, 100 Nicolls Rd, Stony Brook, 
NY 11794, USA

http://orcid.org/0000-0002-9890-8935
http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-021-00073-3&domain=pdf


379AutoQual: task‑oriented structural vibration sensing quality assessment leveraging…

1 3

enhancement of deployment efficiency to improve IoT sens-
ing systems’ performance.

Compared to prior work on signal quality assessment, 
which mainly used in the domains of communication 
(Srinivasan and Levis 2006; Islam et al. 2008; Baccelli 
and Błaszczyszyn 2010; Boano et al. 2009) and computer 
vision (Van den Branden Lambrecht 1998; Li and Bovik 
2009; Wang and Bovik 2002), our proposed AutoQual 
reflects effects of deployment environment on the sensing 
task performance. The data quality assessments (Pipino 
et al. 2002; Cai and Zhu 2015) target the evaluation of the 
existing dataset and provide comparisons between multiple 
acquired datasets. However, they do not quantify the envi-
ronmental impacts to acquired data characteristics. Our 
prior work on application-oriented sensing signal qual-
ity (SSQ) proposes a system-level signal quality assess-
ment scheme with a set of metrics (Zhang et al. 2019) 
and demonstrate the possibility of using measurements of 
these metrics for optimal sensor placement selection (Yu 
et al. 2021). However, this sensing signal quality assess-
ment requires manual calibration with known excitation of 
dense coverage. As a result, the approach is labor-inten-
sive and impractical for large-scale sparse deployment 
assessment. In addition, the SSQ model combines differ-
ent factors’ measurements heuristically, which makes the 
approach difficult to generalize.

In this paper, we present AutoQual, an autonomous sens-
ing quality assessment framework to quantify impacts of 
deployment environment on IoT sensing system perfor-
mance. We take the structural vibration-based indoor human 
sensing system as an example and apply AutoQual for an 
autonomous sensing quality assessment on multiple sens-
ing tasks. The main challenges include (1) how to identify 
and quantify environmental characteristics that impact the 
system performance, (2) how to integrate these AFs to assess 
the system for a given sensing task—different sensing tasks 
may be sensitive to different AFs, and (3) how to achieve 
(1) and (2) autonomously without manual efforts. We tackle 
these challenges by (1) utilizing domain knowledge on wave 
propagation and structural properties to identify a set of AFs 
and design the measuring method accordingly (Sect. 3.1), 
(2) adopting a data-driven approach to estimate the relation-
ship between measured AFs and sensing tasks’ performance 
(Sect. 3.3), (3) automating AF measurements using human-
induced vibration signals extracted by co-located mobile 
devices (Sect. 3.2). The contributions of this work are as 
follows:

–	 We present AutoQual, a framework of autonomous task-
oriented sensing quality assessment that predicts the IoT 
system performance utilizing the mobility of ambient 
occupants.

–	 We identify a set of measurable environmental factors 
that determine the sensing quality.

–	 We propose an auto-assessment scheme via human-
induced signals enabled by co-located mobile sensing 
context.

–	 We evaluate AutoQual through real-world experiments at 
48 deployments in 11 environments on multiple sensing 
tasks.

The rest of the paper is organized as follows. First, Sect. 2 
introduces related works on IoT system quality assessment. 
Next, Sect, 3 presents the auto-assessing system design lev-
eraging the co-located mobile devices. Then, Sects. 4 and 
5 explain the evaluation experiments and result analysis. 
Furthermore, we discuss the limitation of this work and 
future directions in Sect. 6. Finally, we conclude the paper 
in Sect. 7.

2 � Related work

We consider the following aspects of related work includ-
ing cross-modal system with infrastructural and mobile 
sensing (Sect. 2.1), sensing data quality measuring metrics 
(Sect. 2.2), and CPS-IoT system performance quantification 
methods (Sect. 2.3).

2.1 � Infrastructural and mobile cross‑modality 
sensing

Prior work has been done on combining infrastructural and 
mobile sensing to acquire target information, such as human 
activity recognition (Hu et al. 2020; Fortin-Simard et al. 
2014), and air quality monitoring (Devarakonda et al. 2013; 
Gao et al. 2016; Jiang et al. 2011; Chen et al. 2020; Xu et al. 
2019a, b). The infrastructure- and mobile-based subsystems 
often provide complementary data for each other to achieve 
a higher accuracy or a finer granularity of information (Pan 
and Nguyen 2020).

Although they combine the infrastructural and mobile 
sensing to improve system performance, they are usually 
focus on a specific sensing task or application instead of 
assess sensing quality or cross-modal system characteriza-
tion. To the best of our knowledge, our work is the first 
sensing quality assessment framework that fusing the infra-
structure and mobile sensing to assess sensing quality. Our 
work utilized the event label information from the mobile 
data to achieve autonomous sensing quality assessment for 
structural sensing.
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2.2 � Signal quality metrics

Prior work on signal quality measurements mainly focuses 
on measuring general signal properties, such as signal-to-
noise ratio (SNR) (Oppenheim and Schafer 1975), signal 
structural similarity (SSIM) (Li and Bovik 2009). When it 
comes to different types of signals for particular tasks, spe-
cific metrics have been developed. For example, wireless com-
munication quality measurements include and not limited to 
Received Signal Strength Indicator (RSSI) (Srinivasan and 
Levis 2006), Carrier-to-Noise Ratio (CNR) (Islam et al. 2008), 
Signal-to-Interference-plus-Noise Ratio (SINR) (Baccelli and 
Błaszczyszyn 2010), and Link Quality Indicator (LQI)(Boano 
et al. 2009). Similarly, computer vision quality measurements 
include and not limited to image quality index  (Van den 
Branden Lambrecht 1998), Structure SIMilairty (SSIM) (Li 
and Bovik 2009), and universal image quality index (Wang 
and Bovik 2002). These metrics, when applied to structural 
vibration-based approaches inferring information indirectly, 
do not model the deployment characteristics that impacts the 
performance of tasks with different requirements. In this paper, 
we focus on modeling (1) the deployment characteristics via 
ambient sensing signal and (2) the relationship between these 
deployment characteristics and different sensing tasks (which 
we refer to as the sensing quality metrics).

2.3 � CPS/IoT performance quantification

Various frameworks or metrics have been proposed to quan-
tify CPS/IoT systems’ performance by measuring their data 
quality. For example, Karkouch et al. define the IoT data 
quality with a multi-dimensional definition including accu-
racy, confidence, completeness, data volume, and timeli-
ness (Karkouch et al. 2016). While Banerjee et al. define 
the application-driven IoT quality from the computer system 
perspective (Banerjee and Sheth 2017). Other CPS/IoT per-
formance assessments include communication performance 
and RFID-based health care application (Sellitto et al. 2007; 

van der Togt et al. 2011). However, none of these prior 
works systematically evaluate the sensing (or data acquisi-
tion) process and identify the environment characteristics 
that impact this process, and eventually determine the CPS/
IoT application performance.

3 � AutoQual system design

We present AutoQual, a cyber-physical system sensing 
quality assessment framework that leverages indoor occu-
pant mobility for automating the assessment of structural 
vibration-based indoor human sensing systems. Figure 1 
shows an overview of AutoQual, consisting of three major 
components (1) vibration sensing assessment factor meas-
urements, (2) mobile sensing context extraction for auto-
assessment, and (3) Task-oriented Sensing Quality (TSQ) 
scoring model.

When occupants walk in a target sensing area, they 
are sensed by both vibration- and mobile-based systems, 
assuming a set of sensing systems are deployed on various 
indoor environments for data acquisition. This ambient 
sensing data of occupants is then used to train a model 
that describes the deployment environment characteris-
tics and predicts sensing tasks’ performance under a new 
deployment (i.e., assessing the sensing quality of the new 
deployment).

During the assessment data collection, footstep-induced 
vibrations are detected and grouped by traces based on 
the shared-context from mobile sensing. These selected 
assessment data are then sent to the AF measurement mod-
ule and used to calculate the system’s key impact factors—
AF values. For the training deployments, the AF values 
and the system performance are sent to the TSQ scoring 
model module to establish a data-driven model that pre-
dicts the sensing tasks’ performance of new deployments.

Fig. 1   AutoQual overview. 
The dash line arrows represent 
assessment data (mobile + 
infrastructural) and the solid 
line arrows represent sensing 
task data (infrastructural only)
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3.1 � Vibration sensing quality assessment factor 
measurement

In order to quantify environmental impacts to sensing task 
performance, we use three physics models to describe the 
deployment environment characteristics. These models are 
(1) the attenuation model ( AF1,AF2 ), (2) the structural 
homogeneity model ( AF3 ), and (3) the structure-sensor 
coupling model ( AF4,AF5 ). AutoQual autonomously 
measures parameters of these models based on the tem-
poral association between mobile- and vibration-based 
sensing data.

3.1.1 � Attenuation model

When a vibration wave propagates through a solid, its attenua-
tion is determined by the combined effects of geometric wave 
spreading, intrinsic attenuation, and scattering attenuation 
(Shapiro and Kneib 1993; Stein and Wysession 2009; Fagert 
et al. 2021). These effects are modeled as a function of propa-
gation distance d

where the decay rate � = �s + �a , �a is the coefficient of 
absorption and �s is the coefficient describing mean-field 
attenuation due to scattering (Shapiro and Kneib 1993). 
Amp0 is the initial amplitude of the vibration wave created 
by an excitation.

AutoQual measures the decay rate � and the initial ampli-
tude Amp0 of a deployment. However, Eq. 1 only describes the 
ideal attenuation without taking into account ambient noise, 
which cannot be directly measured in practice. We subtract 
the logarithmic amplitude of the background noise lgAmpN 
on both side of E.q. 1 and get

The term 20 lg
(

Amp(d)

AmpN

)
 is the Signal-to-Noise Ratio (SNR) 

(Oppenheim and Schafer 1975) of the signal generated by 
excitation at distance d to the sensor, which can be directly 
measured. We estimate AF1 = −40� , and AF2 = lg

(
Amp0

AmpN

)
 

by conducting a linear fitting with SNR values measured at 
locations with multiple excitation-sensor distance d.

(1)Amp(d) =
Amp0√

d
e−2�d

(2)lg (Amp(d)) = lgAmp0 − 2�d −
1

2
lg d

(3)

20 lg

(
Amp(d)

AmpN

)
= − 40�d + 20 lg

(
Amp0

AmpN

)
− 10 lg d

3.1.2 � Structural homogeneity model

The homogeneity of the structure directly impacts the data 
distribution of sensing signals. When a vibration wave propa-
gates through a solid, the waveform distortion occurs and can 
be represented as

where � is the input force spectrum and � is the vibration 
frequency representation (i.e., the spectrum of the acquired 
signal). The function � is a frequency response function 
of the structure (Mirshekari et al. 2020). The function is 
impacted by (1) distance d due to the dispersion effects of 
the Rayleigh–Lamb waves (Viktorov 1970), and the signal 
propagation direction ��� due to the structural homogeneity 
difference. In a homogeneous structure, the structural distor-
tion effects at different directions are the same, i.e.,

A sensing system deployed in a homogeneous structure has a 
higher data efficiency because we can use signals propagated 
from any direction to establish the model �.

AutoQual measures the structural homogeneity of a 
deployment as the similarity of signals frequency response 
�(d,���) from different propagation directions dir with con-
trolled (same) input force spectrum � and sensor-excitation 
distance d. AutoQual calculates this signal similarity as,

where signals �(d,����) and �(d,����) are normalized by 
their signal energy. AF3 reflects the directional distortion of 
signal propagation media.

3.1.3 � Structure‑sensor coupling model

The structure-sensor coupling condition varies over differ-
ent deployments, especially for different surface materials. 
When there is a tight coupling between the structure and 
the sensor, the sensor captures distinct structural response 
frequencies caused by different excitation. However, for 
surfaces with a loose structure-sensor coupling, the excita-
tion’s frequency response is dominated by the interaction 
between the structure and the sensor showing a less distin-
guishable waveform for different excitation. Figure 2 dem-
onstrates an example of structural response frequency over 
different structure-sensor coupling conditions. The signals 
shown in Fig. 2a are acquired with a tight structure-sensor 
coupling condition, and the signals in (b) are acquired with 
a loose structure-sensor coupling. A tight coupling condition 
ensures that the acquired signal is dominated by the effects 
of structure-excitation interaction. These types of signals are 

(4)� = �(d, ���)�

�(d) = �(d, ���).

AF3 = max xcorr(�(d,����),�(d,����)),
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less impacted by effects induced by structure-sensor inter-
action. Therefore, a sensing system with a tight structure-
sensor coupling is more informative of different excitation 
sources, giving better sensing quality in event classification 
task.

AutoQual measures the excitation vibration signal’s fre-
quency component distribution as x% energy concentration 
bandwidth (ECB).

where the PSDnorm is the power spectral density (PSD) nor-
malized by signal energy. b0 is traversed from 0 to Fs∕2 − b . 
Fs is the sampling rate. Specifically, AutoQual measures 
AF4 = ECB(75) , AF5 = ECB(50) to reflect structural modes 
that can be excited by the excitation.

3.2 � Mobile sensing context extraction for vibration 
sensing assessment

To reduce human efforts for collecting data for assess-
ing environmental impacts (Zhang et al. 2019), AutoQual 
utilizes occupants’ mobility and shared-context between 
mobile- and vibration-sensing to achieve autonomous 
assessment.

The properties that allow pedestrian’s footstep-induced 
signals to substitute manually generated standard excitation 
are twofold: (1) the same person’s footfall generates consist-
ent excitation, which is equivalent to standard excitation for 
assessment in prior work, (2) when a pedestrian passing by, 
their footfall locations change, generating signals with differ-
ent sensor-excitation distances needed for AF measurements. 
The challenges of using ambient human footstep-induced 
vibration signals to measure AFs are twofold: (1) there are 

(5)ECB(x) = argminb

(
b0+b∑
f=b0

PSDnorm(f ) ≥ x%

)

ambient non-footstep events that can be detected and should 
not be used for AF measurement, (2) the human footfall, 
compared to the standard excitation, are less consistent (e.g., 
left/right foot difference) and more complicated (e.g., toe 
push-off induces damped free vibrations).

3.2.1 � Gait‑based mobile‑infrastructural sensing signal 
temporal association

When people walk in their natural form, their gait/footstep 
can be detected by mobile devices carried on them (Han-
lon and Anderson 2009) through the Inertial Measurement 
Unit (IMU). AutoQual leverages co-located mobile device 
to detect the timing of the footfall, which has been explored 
for position and gait cycle detection (Mokaya et al. 2013; 
Grimmer et al. 2019; Moon et al. 2019). In this work, we use 
a three-axis accelerometer sensor on the calf to measure the 
pedestrian’s footstep timing. AutoQual conducts peak detec-
tion on the accelerometer signal by finding local maxima as 
footfall timestamp. This is done on the axis with the highest 
signal amplitude. For vibration signals, AutoQual conducts 
the anomaly detection to extract the excitation event signal 
segments (Pan et al. 2014).

Fig. 2   Frequency response 
over different structure-sensor 
coupling conditions. a, b show 
the vibration signals (normal-
ized by signal energy) induced 
by different types excitation 
with different structural-sensor 
coupling condition. The excita-
tion frequency responses in 
tight structural-sensor coupling 
environment are more distin-
guishable
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The challenge to associate the footstep timing between 
the structural vibration and accelerometer data is that the 
detectable gait patterns have a cycle offset between these 
two sensing modalities, illustrated in Fig. 3. The initial strike 
of the investigated leg (marked in the orange circle) would 
induce a footstep-induced vibration signal event at time 
Tvib . However, the calf motion that induces the cycle phase 
shift from the initial strike to the mid stance would induce a 
detectable peak in the acceleration measurement at time Tacc . 
As a result, the gait phase detected by the IMU is slightly 
( ∼150ms) lagged compared to that of the vibration signal.

To rectify this gait cycled offset for robust event signal 
association (e.g., when there are detectable ambient events 

occur at a similar time of the footstep), AutoQual utilizes 
the average of the gait cycle offset between event timing of 
two modalities within a trace.1 AutoQual first associates the 
IMU footstep timing to the vibration footstep event with the 
closest timing. Given qth detected vibration event, we find 
the pth IMU event argminp|Tacc(p) − Tvib(q)| as a pair. For 
the Q pairs of associated IMU and vibration event in a trace, 
AutoQual estimates the gait cycle offset as

Then, AutoQual rectifies the Tacc as Tacc − Toffset . Figure 4 
shows an example of the two modalities event timing respec-
tively as well as the rectified timing.

Toffset =
1

Q

Q∑
i=1

Tacc(q) − Tvib(p).

Fig. 4   Multi-modal gait-cycle-
based timing rectification
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3.2.2 � Signal processing for AF measurements

Unlike the standard excitation, using footstep-induced vibra-
tion signals is challenging because of the following reasons 
(1) the randomness of human behavior makes the excitation 
less consistent compared to that of the standard excitation. 
(2) the footstep-sensor distance d used in the attenuation 
model is unknown. (3) the footstep-induced vibration signal 
has a heavy damped free vibration due to the toe push-off 
motion, which may directly impact the signal’s frequency 
characteristics for the structure-sensor coupling model cal-
culation. As shown in Fig. 5b, the footstep-induced vibration 
signal contains strong damped free vibration components, 
i.e., the tail of the signal (Shi et al. 2019), which makes the 
ECB measurements ambiguous for different structure-sensor 
coupling conditions.

To address the first challenge, AutoQual leverages the 
associated information from IMU data to identify corre-
sponding footstep-induced vibration signals to calculate 
the AFs. To address the second challenge, we consider an 
average foot stride length strLen of people approximately 
2 ft at a normal walking speed for men and women between 
20 and 39 years old (Öberg et al. 1993). When a pedestrian 
passes by, AutoQual first conducts the event detection with 
an anomaly detection algorithm (Pan et al. 2014). Then the 
system selects the detected footstep signal with the highest 
signal energy as the reference footstep and assign a fixed 
reference distance dref  . For a footstep that is k step away 
from the reference footstep, we consider its distance to the 
target sensor dk can be calculate as

We use the estimated distances and the footstep induced 
vibration signals to further calculate the attenuation model 
factors as discussed in Sect. 3.1. For the associated events 
of a sequence of footstep-induced vibration signals, Auto-
Qual calculates the AF values and estimates the TSQ score. 
For the deployment that no events are associated, AutoQual 
reports as not a valid assessment. To address the third chal-
lenge, we only extract the onset of the footstep signal to 
avoid the push-off induced damped free vibration when cal-
culating the structure-sensor coupling model factors.

3.3 � Task‑oriented sensing quality (TSQ) scoring 
model

Different sensing tasks are sensitive to different environ-
mental factors and have distinct requirements. To ensure 
the fairness of system sensing quality comparison, a Task-
oriented sensing quality score is necessary. Compared to 

(6)dk =
√

d2
ref

+ (k ∗ strLen)2

conventional once-for-all models, the TSQ score provides 
a fine-grained representation of how AFs influence the sys-
tem performance under different tasks. It further enables a 
comprehensive understanding of sensing system qualities 
under different task scenarios and thus achieves a more pre-
cise prediction of system performance on a set of tasks. To 
calculate the TSQ score, we first model the projection from 
the individual raw AF measurements to a saturation func-
tion ranged between 0 and 1 (Sect. 3.3.1). Then we integrate 
all AF’s saturation functions as the TSQ score (Sect. 3.3.2).

3.3.1 � Saturation function for individual AF

The impacts of AFs on the sensing task performance are often 
constrained. For example, AF1 is calculated from the signal 
decay rate AF1 = −40� . For the same excitation, the higher 
the decay rate (the lower the AF1 value), the lower the event 
detection rate. When AF1 is lower than a threshold, there will 
be no footstep-induced vibration signal detected, and the sens-
ing task performance’s decreasing trend flattens. Similarly, 
when the value of AF1 is higher than a threshold, the detec-
tion rate increase in the target sensing range is no longer obvi-
ous. In both cases, we consider the impact of AF1 is saturated, 
which we model with a saturation function—sigmoid.

As shown in E.q. 7, we quantify the impact of individual 
AF on system performance in the range of 0 to 1. In addi-
tion, we further constraint the saturation range by setting an 
upper and lower threshold ( Tu and Tl ) on the AF measure-
ment where S(Tu) = 0.9 and S(Tl) = 0.1.

3.3.2 � Task‑oriented integration model

A holistic model is built to integrate all AFs and provide 
an overall assessment (TSQ score) of the deployment. Dif-
ferent AFs may have different impacts on the sensing task 
performance. For example, the attenuation model AFs may 
play more important roles for the event detection task than 
the structure-sensor coupling model. The integration model 
should configure a unique weight for each AF. On the other 
hand, the same AF has different impacts for different sensing 
tasks. For example, the attenuation model AFs may have a 
more essential influence on event detection than event classi-
fication. The weight of each AF should varies for different 
tasks.

To enable a uniform and quantified sensing quality assess-
ment criteria, we build a task-oriented integration model to 
calculate the TSQ score. In real-world scenarios, there are 
often a limited number of sensing system deployments as 
well as noisy AF measurements to train the integration model. 

(7)S(AF) =
1

1 + e(aAF+b)
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Therefore, a model with high capacity and complexity is easy 
to get over-fitting with limited training sets and results in low 
performance of final TSQ score prediction. Meanwhile, the 
interpretability of the integration model is important for people 
to understand how different AFs impact the system perfor-
mance and response accordingly. Therefore, we choose linear 
regression model (Wang et al. 2004) on top of the saturation 
function for individual AFs to build the integration model. 
Given a deployment environment j, the TSQ score of j is mod-
eled as

where AFj
i
 is the ith AF of the deployment environment j, 

wi is the weight of AFj

i
 , and the c is the estimated constant 

offset, M is the number of all AFs.
The goal is to predict the real-world sensing system per-

formance. The least squares approach is employed here to 
estimate the parameters. The objective function for obtaining 
an optimal TSQ score model is as follows:

where pj is the sensing task performance (classification 
accuracy, detection rate, etc.) at deployment j. T

l
 and T

u
 is 

a vector consists of the lower and upper thresholds of the 
saturation function. N is the number of training deployments.

We use the gradient descent algorithm (Boyd et al. 2004) 
to find the optimal solution of the objective function 9. To 
avoid the local minimum, we randomly select the initial 
point multiple times and select the best loss solution as the 
final optimal solution. Two stopping conditions are set to 
exit the iteration, (1) when the difference between two con-
secutive objectives is less than a given threshold �o ; (2) when 
the Euclidean distance between two consecutive solutions is 
less than a given threshold �s . The selection of �o and �s are 
described in Sect. 4.2.

(8)TSQj =

M∑
i=1

wiS
(
AF

j

i

)
+ c,

(9)min
w,c,T

l
,T

u

N∑
j=1

[(
M∑
i=1

wiS(AF
j

i
) + c

)
− pj

]2

4 � Experiments

Experiments are conducted to evaluate the introduced 
assessment framework, including two sensing tasks over 48 
deployments at 11 different environments. We obtain sens-
ing task datasets (Sect. 4.1) and sensing quality assessment 
datasets (Sect. 4.2) separately.

AutoQual consists of two sensing modalities, a structural 
vibration sensing system and a wearable system. Figure 6 
shows the two system hardware implementation—(b) dem-
onstrates the mobile sensing system with an three-axis accel-
erometer and (c) illustrates the infrastructural sensing system 

Fig. 6   Hardware and an example deployment

Fig. 7   Experiment deployment environments and configurations. a 
Deployment configuration. The cylinders represent sensor locations, 
the circles with crosses indicate excitation locations. b–i Deployment 
environment examples

Table 1   Deployment environment details

Environment 
ID

Floor material Layout

1 Epoxy Rooms
2 Carpet (hard) Hallway
3 Epoxy Bridge (connect two second floor)
4 Epoxy Hallway
5 Epoxy Hallway (with beam)
6 Carpet (soft) Rooms
7 Carpet (soft) Rooms (with mounting device)
8 Concrete Rooms
9 Concrete Open space
10 Epoxy Rooms
11 Epoxy Open space



386	 Y. Zhang et al.

1 3

with structural vibration sensor geophone SM-24 (SM-24 
Geophone Element 2006). The mobile sensing node consists 
of the accelerometer module ADXL 337 (Small, Low Power 
2010) to capture the footfall motion, and an Arduino Feather 
M0 board (Adafruit feather m0 bluefruit le 2021) to digitize 
the signal and store the data. We sample the three axes of the 
accelerometer at 800 Hz to ensure the high temporal resolu-
tion of the signals. The infrastructural sensing node consists 
of an operational amplifier LVM385 (LMV3xx Low-Voltage 
2020) and an Arduino board with a 32-bit ARM Cortex-
M0+ processor and a 10–12 bit ADC module (Sparkfun 
samd21 mini breakout 2021). We sample the geophone at a 
sampling rate of 6500 Hz.

We conduct experiments at 11 different environments 
varying over floor materials (e.g., concrete, carpet, epoxy), 
and layout (e.g. hallways, rooms, and open space). Table 1 
lists the characteristics of each deployment environment. We 
setup in total 48 deployments at 11 environments over dif-
ferent locations. Figure 7a shows an example deployment 
configuration, where the sensor and relative locations of 
excitation used for assessment are marked. Since the narrow-
est hallway we deploy has a width of 5 ft, we set the relative 
location of the excitation in the environment with W = 1 ft. 
In addition, because people’s strike length is approximately 
2 ft, we set L = 2 ft. We define a set of excitation across the 
sensing area as one trace, e.g., the set of five excitation at 
eA1 , eA2,…,eA5 is considered as one trace referred to as trace 
eA.

4.1 � Sensing task dataset collection and processing

We collected floor vibration signals when people walk 
through sensing areas to establish the sensing task dataset. 
For each participant, we collect her/his footstep-induced 
floor vibration with two types of shoes—sneakers (soft-
soled) and hiking shoes (hard-soled) over every deployment. 
In each deployment, the task dataset contains four types of 
footstep-induced excitation from two participants with two 
shoe types each. For each scenario (distinguished by person, 
shoe type, environment, sensor), a 3-min vibration signal is 
collected and in total we collect more than 9 h (576 min) 
worth of floor vibration data. To demonstrate the task-ori-
ented assessment, we evaluate AutoQual over two common 
sensing task representatives: event detection (Sect. 4.1.1) 
and event classification (Sect. 4.1.2).

4.1.1 � Event detection

The event detection task is to detect footstep-induced vibra-
tion signal events from ambient floor vibration. We apply 

an anomaly detection based algorithm to achieve the event 
detection (Pan et al. 2014). The anomaly detection is done 
on the sliding window (with a window size of 0.415 s and 
an offset size of 0.015 s). For each noise window, we cal-
culate the signal energy and build a Gaussian noise model 
N(�, �2 ). For each testing window, the algorithm compares 
the sliding windows’ signal energy to the Gaussian noise 
model. If the signal energy is higher than a threshold (here 
set to 8� empirically), we consider the testing window con-
tains a detected event.

We acquire the label for each footstep occurred during 
the experiment with the accelerometer on the mobile device 
(placed on the calf). A peak detection algorithm (Ying et al. 
2007) is used to detect the timestamp of a footfall with the 
time series data of accelerometer. In total, more than 27,000 
individual footstep events are collected in the task dataset. 
F1 score is used as the evaluation metric to measure the 
event detection performance. For each labeled timestamp 
Tgt , if an event is detected within the time window Tgt ± Thgt , 
we consider it as a true positive (TP), otherwise a false nega-
tive (FN). If an event is detected outside the time window of 
Tgt ± Thgt , we consider it a false positive (FP). The threshold 
Thgt is empirically set as 0.0769 s (500 samples). The preci-
sion and recall are calculated as

The F1 score is a function of precision and recall

Figure 8 shows the detection F1 score in different deploy-
ment environments. The F1 score of event detection over 48 
deployments vary from 0.044 to 0.777, with an average of 
0.600 and a standard deviation of 0.186.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2 ⋅ Precision ⋅ Recall

Precision + Recall
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Fig. 8   F1 scores of event detection in 11 different deployment envi-
ronments. The x-axis is the deployment environment ID. The y-axis 
is the event detection F1 score. The event detection task shows vary-
ing performances in different environments
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4.1.2 � Event classification

The event classification task is a multi-class classification 
task to recognize four types of footsteps, i.e., two partici-
pants’ footstep-induced vibration wearing two types of 
shoes. In order to mitigate the impact of the classification 
algorithm and enable a fair comparison between deploy-
ments, we apply eight commonly used classification algo-
rithms, including Support Vector Machine (SVM) with 
Linear Kernel (LSVM) and RBF Kernel (RSVM), Gaussian 
Naive Bayes (GNB), Random Forest (RF), Extra Trees (ET), 
K-nearest Neighbors (k-NN), Logistic Regression (LR), and 
XG-Boost (Boser et al. 1992; Rish 2001; Kleinbaum et al. 
2002; Liaw and Wiener 2002; Freund et al. 1999; Chen et al. 
2016; Goldberger et al. 2005; Geurts et al. 2006; Chen et al. 
2015). The classifier inputs are the frequency components 
ranging from 10 to 400 Hz of a 1000-sample window con-
taining the investigated signal, which is a 391 dimension 
feature. The model is trained with bootstrap aggregating. 
The training and evaluation is conducted in a nested 5-fold 
cross-validation fashion. In each fold, we randomly sample 
80% data from the training set each time, and aggregate the 
learned models to obtain the final model hyperparameters. 
The ground truth of event classification is the type of exci-
tation distinguished by the pedestrian identities and their 
footwear types, which are labeled manually. The averaging 
F1-score is employed as the metric to evaluate the perfor-
mance of multi-class classification tasks (Schütze et al. 
2008). Figure 9 shows the classification F1 score of each 
algorithm in different environments. Different algorithms 
have different performances using the same dataset. To elim-
inate the performance variation induced by the classifica-
tion algorithm, the event classification performance at each 
deployment is calculated as the mean value of the averaging 
F-1 scores of eight different classification algorithms. In this 
way, we can eliminate the assessment bias introduced by 

algorithms. The event classification performance over 48 
deployments varies from 0.302 to 0.780, with a mean value 
of 0.555 and a standard deviation of 0.125.

4.2 � Sensing quality assessment

The goal of the sensing quality assessment is to provide a 
fair and comparable measurement of the deployment envi-
ronments regardless of the applications/tasks. As a result, 
the data used for assessment should be independent of the 
sensing tasks, so we collected the assessment dataset sepa-
rately from the sensing task dataset. In order to compare 
to prior work on manual sensing signal quality assessment 
(Zhang et al. 2019), we collect both the manual assessment 
dataset with standard excitation (tennis ball drops from a 
consistent height) and AutoQual assessment dataset with 
ambient footstep excitation.

The locations of excitation are marked as circles with 
crosses in Fig. 7a. For the manual assessment dataset, we 
collected 10 excitation samples at each marked excitation 
location. For human excitation, we collected 18 traces 
(people walking by) including six along eA , eB , and eC 
respectively.

4.2.1 � AutoQual auto‑assessment via ambient footstep 
excitation

In order to calculate a stable TSQ score of a deployment, 
we use 18 traces from the sensing quality assessment data-
set at each deployment to calculate the AFs. The AFs are 
calculated as follows. (1) Attenuation Model ( AF1,AF2 ): 
AutoQual selects the footstep-induced vibration signal with 
the highest SNR in each trace as the reference footstep and 
set the parameter dref = 2ft in Eq. 6 to estimate each signal’s 
sensor-excitation distance. Then we use Eq. 3 to conduct lin-
ear regression. We remove outliers beyond 2� of the model 
expectation, where the � is the standard deviation of the 
model variance. (2) Structural Homogeneity Model AF3 : 
AutoQual selects pairs of footstep-induced signal that have 
the same distance to the reference footstep signal to calculate 
AF3 . We report the maximum of all the calculated values as 
the measurement of AF3 in this deployment. (3) Structure-
sensor Coupling Model ( AF4,AF5 ): AutoQual uses the refer-
ence footstep signal in each trace to calculate ECB(x), where 
x = 75%, 50% to calculate the 3rd quartile, 2nd quartile of 
the energy distribution. We use the average value over mul-
tiple traces as the final AF4 , AF5 of this deployment.

For each training deployment, we calculate its AFs and 
acquire the corresponding ground-truth system performance 
p. Given N training deployments, the data-driven model is 
calculated by solving the objective function in Eq. 9. We 
apply the gradient descent algorithm to obtain the optimal 
TSQ score model parameters. The stopping conditions are 
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Fig. 9   F1 scores of event classification using eight learning algo-
rithms in 11 different deployment environments. The x-axis is the 
deployment environment ID. The y-axis is the event classification 
F1 score. Different color bars represent results using different algo-
rithms. The event classification task shows varying performance in 
different environments
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setup as: �o = 10−6 and �s = 10−10 . To avoid overfitting, we 
set the maximum number of iterations to 200. The gradi-
ent descent algorithm exits the iteration if one of the stop-
ping conditions is satisfied. We randomly select 50 initial 
points and report the solution with the lowest loss as the 
final solution.

4.2.2 � Baseline 1 manual assessment vs. auto assessment

To understand the efficiency of AutoQual with mobile-
enabled assessment, we conduct a manual assessment with 
standard excitation as a baseline. In each deployed envi-
ronment, we drop tennis ball at the marked 15 locations 
in Fig. 7a as the standard excitation to calculate the AFs. 
(1) Attenuation Model AFs: we use the mean SNR of all 
excitations at each locations as the SNR of each location, 
and then calculate the distance between each location and 
the vibration sensor. Finally, SNR and distance values to 
calculate AF1 and AF2 . (2) Structural Homogeneity Model 
AF: we select pairwise signals with the same distance to the 
sensor in each trace and calculate their waveform similarity. 
The highest value from all traces in a deployment is used as 
AF3 . (3) Structure-sensor Coupling Model AFs: we utilizes 
signals with the shortest excitation-sensor distance in a trace 
( eA3 , eB3 , or eC3 in Fig. 7a) to calculate AF4 and AF5.

4.2.3 � Baseline 2 AF saturation function: sigmoid v.s. 
piecewise

AutoQual utilizes data-driven approaches to determine the 
saturation bound of each AF, i.e., when an AF value is out of 
the saturation bound, its impact on the system performance 
is saturated. To demonstrate the efficiency of the data-driven 
approach adopted by AutoQual, we compare AutoQual ’s 
saturation function to a piecewise function as the baseline

where Tmin and Tmax are the minimum and maximum values 
of each AF from the training deployments.

4.2.4 � Baseline 3 assessment factor selection

To understand the effectiveness of the AFs for represent-
ing the sensing quality, we predict the system performance 
using the same framework with two traditional signal quality 
metrics: SNR (Yi et al. 2012) and SSIM (Clifton et al. 1938; 

(10)

f (AF) =

⎧⎪⎨⎪⎩

1 Tmax < AF�
AF − Tmin

�
∕(Tmax − Tmin) Tmin ≤ AF ≤ Tmax

0 AF < Tmin

.

Chen and Bovik 2011). For the SNR, we calculate the mean 
SNR value of all footstep-induced signals in a deployment. 
For the SSIM, we calculate the mean value of all signal pairs 
with equal distance to the sensor in a deployment. The SSIM 
value of two signals x and y is calculated as

where �x is the mean value and �x is the standard deviation 
of the signal x, respectively. �xy is the the covariance of x 
and y; C1 = (K1L)

2 , C2 = (K2L)
2 , and C3 = C2∕2 are con-

stants that ensure stability when the denominator approaches 
zero; L is the dynamic range of the digitized signal val-
ues. In our implementation, We select SSIM parameters 
K1 = 0.01,K2 = 0.02 based on recommended parameter 
ranges (Chen and Bovik 2011). The dynamic range of the 
signal values is L = 210 for a 10-bits ADC module. We 
project the SNR and SSIM values in the training set to 
the range of 0 and 1 linearly, and predict the TSQ score 
as TSQSNR = f (SNR) and TSQSSIM = f (SSIM) , where f (⋅) is 
defined in Eq. 10, Tmin and Tmax are the minimum and maxi-
mum of SNR or SSIM values from the training set.

4.2.5 � Baseline 4 integration methods: task oriented vs. 
equal weight

AutoQual provides a task-oriented integration model by 
selecting different weights for different AFs. We consider 
a non-task-oriented and non-data-driven integration model 
(Equal Weight) as the baseline to evaluate the efficiency 
of our integration model. For each deployment, we use the 
mean value of all AFs to calculate the TSQ score, which is 
calculated as

The TSQ score is calculated as

where f (⋅) is defined in Eq. 10, Tmin and Tmax are the mini-
mum and maximum of AFavg from the training set.

5 � AutoQual evaluation

We conduct a detailed performance analysis on AutoQual 
over baselines from multiple perspectives in this section. 
Implementation details and multiple types of baseline meth-
ods are first presented. We further compare our framework 

SSIM(x, y) =

(
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)(
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with baseline methods and characterize relationships 
between assessment factors, optimal weights of each factor, 
and final assessment performance. Finally, a robustness test 
is conducted to evaluate how the performance varies with 
multiple human objects.

Since the TSQ score represents the prediction of the 
system performance at a given deployment, we calculate 
the absolute error between the predicted TSQ score and the 
task performance of each testing deployment to evaluate the 
performance of AutoQual. For each analysis, we randomly 
sample some deployments as the training deployments from 
the aforementioned datasets (Sect. 4) to train the TSQ scor-
ing model, and use all the other deployments as the test-
ing deployments to evaluate the model performance. The 
final result of each analysis is the evaluation of 2000 testing 
deployments. We repeat the random sample of the train-
ing and testing multiple times until the testing deployments 
number is not less than 2000. The default training size is 24.

5.1 � AutoQual  Comparisons to manual assessment 
(Baseline 1)

We compare AutoQual ’s performance to the manual assess-
ment approach using standard excitation as described in 
Sect. 4.2.2. Figure 10 shows these two approaches perfor-
mance with absolute error of task performance prediction. 
The grey bars present manual assessment results using 
standard excitation, and the green bars present our Auto-
Qual results with ambient footstep excitation. The manual 
assessment achieves an average absolute error of 0.093 and 
0.129 for the two sensing tasks—event classification and 
event detection. AutoQual achieves a similar performance 
compared to the manual assessment using standard excita-
tion, where it achieves an average absolute error of 0.096 
and 0.099 for the two sensing tasks.

In order to further illustrate the advantage of AutoQual, 
we compare the time duration needed for manual assess-
ment and using AutoQual to achieve autonomous assessment 
with ambient footstep excitation. For the manual assess-
ment using standard excitation, the user needs to mark the 
excitation locations on the floor (Fig. 7a) and generate the 
standard excitation (e.g., drop a tennis ball) at each location. 
We time the manual deployment assessment procedure five 
times, which reaches an average of 622 s ( ∼ 10 min) with a 
standard deviation of 23.4 s. On the other hand, AutoQual 
does not require additional time for assessment data collec-
tion. In summary, AutoQual demonstrates the robustness of 
the assessment accuracy over different sensing tasks and the 
efficiency in terms of time consumption.

Fig. 10   AutoQual evaluation with manual assessment and mobile-
enabled auto assessment. The mobile-enabled auto assessment 
method has a similar performance comparing with the manual assess-
ment. The x-axis is the sensing task. The y-axis is the absolute error 
between the predicted sensing quality score and the task performance 
of the testing deployment Fig. 11   AF impact quantification analysis. The x-axis is the number 

of training deployments that we used to select the parameters. The 
y-axis is the absolute error between the TSQ score and task perfor-
mance of the testing deployments. a, b Identification the performance 
of two methods for event classification and event detection, respec-
tively

Fig. 12   Analysis on error distribution of our method and the base-
line method when only use eight deployments as the training deploy-
ment. a, b Show the result for event classification and event detection, 
respectively. The x-axis is the error between the TSQ score and the 
task performance of the testing deployment. The y-axis is the per-
centage of the error range in all errors. The error distribution of our 
method is more concentrated than the baseline method for in (a, b), 
which identifies that our method has a better performance than the 
baseline method
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5.2 � AF saturation function: sigmoid vs. piecewise 
(Baseline 2)

In order to verify the effectiveness of the non-linear pro-
jection for AutoQual, we compare our non-linear model to 
the Min–Max baseline as discussed in Sect. 4.2.3. Figure 11 
demonstrates the absolute error of our approach (green 
bars) and the baseline method (grey bars). The x-axis is 
the training size for event classification and event detec-
tion assessment shown in (a) and (b), respectively. Auto-
Qual achieves a lower error rate than the baseline method, 
especially when the number of training deployments is less 
than 10. With eight training deployments, the mean abso-
lute error decreased 35% and 38% for event classification 
and event detection, respectively. When the training size 
increased from 8 to 24, the mean absolute error of our 
method decreased less than 0.031, which is 3X better than 
the decrease of the baseline method (0.081).

To further understand the performance of these two 
approaches with limited training deployments, we also ana-
lyze their error distribution. Figure 12a, b show the error dis-
tribution of the two methods with eight training deployments 
for event classification and event detection task performance 
prediction, respectively. We observe that our approach has 

fewer outliers and presents a more concentrated distribution, 
which leads to a lower absolute error. The performance is 
improved due to two reasons. First, when the training size is 
small, the maximum and minimum measurements of each 
AF in the training set may not be sufficient to represent the 
model. Second, the baseline approach assumes that the rela-
tionship between each AF and system performance is linear 
in all ranges, which is not true as discussed in Sect. 3.3.1.

5.3 � Assessment factor selections (Baseline 3)

We compare the AFs used in AutoQual to the traditional 
signal quality metrics SNR and SSIM as discussed in 
Sect. 4.2.4. Figure 13 shows the absolute error of the system 
performance prediction over different assessment metrics. 
The results for baseline metrics are marked in grey bars, 
and the results for AutoQual are marked in green bars. We 
observe that for the event classification, the mean absolute 
error for AutoQual is 0.096, and the corresponding mean 
absolute error for event detection task is 0.99, which is 2X 
better than those of the SNR (0.27 and 0.22) and SSIM 
(0.207 and 0.25). In addition, when using AutoQual to pre-
dict the system performance, the standard deviation of the 
prediction is also lower than those of the baselines. In sum-
mary, AutoQual achieves a more accurate and stable sensing 
quality estimation compared to the baseline methods.

We further investigate the impact of each AF on the sens-
ing task. To do so, we use single AF to implement AutoQual. 
Figure 14 shows the absolute error between the TSQ score 
and the task performance. We observe that, for the event 
classification task, AF2 and AF3 demonstrate lower error 
compared to other AFs. For the event detection task, AF2 
achieves the best performance, which indicates that AF2 has 
the strongest impact. AF2 measures the ratio of the initial 
amplitude of the signal over the amplitude of background 
noise. The event detection algorithm is based on the sig-
nal to noise ratio (SNR). As a result, it is more sensitive to 

Fig. 13   Comparing with SNR and SSIM baseline methods, the abso-
lute error of AutoQual is at least 2X lower than them for the two sens-
ing tasks. The x-axis is the sensing task. The y-axis is the absolute 
error between the predicted sensing quality score and the task perfor-
mance of the testing deployment

Fig. 14   Single AF model analysis. The x-axis is the AF and the 
y-axis is the absolute error between the predicted TSQ score and 
sensing task F1 score. The models are trained with 24 deployments. 
AF

2
 and AF

3
 have a stronger impact for event classification than other 

AFs. AF
2
 has a stronger impact for event detection than other AFs

Fig. 15   Multiple AFs integration model analysis. Our task-oriented 
data-driven model achieves at least 2.5X lower absolute error than 
the baseline method. The x-axis is the sensing tasks. The y-axis is 
the absolute error between the TSQ score and the sensing task perfor-
mance over the testing deployments
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the SNR related AFs, i.e., AF1 and AF2 . AF3 measures the 
directional distortion of signal propagation media. A higher 
AF3 value indicates that the same type of signals collected 
from different directions have less variation. This may lead 
to less structure variance induced data distribution shift 
within each class for the event classification task. In addi-
tion, when compared between tasks, the event classification 
task is more sensitive to AF1 , AF4 and AF5 compared to 
the event detection task. This is because the event detection 
task does not require the signal to contain rich frequency 
components that reflect the structural mode excitation for 
fine-grained characterization.

5.4 � Integration methods: task‑oriented vs. equal 
weight (Baseline 4)

In order to evaluate the efficiency of the AFs integration 
model, we compare our task-oriented data-driven integra-
tion model to the Equal Weight baseline as introduced 
in Sect. 4.2.5. Figure 15 shows the absolute error of our 
approach (green bars) and the baseline method (grey bars). 
For event classification assessment, the mean absolute error 
of our method (0.092) is near 3X lower than the baseline 
method (0.306); For event detection assessment, the mean 

absolute error of our method (0.102) is near 2.5X lower than 
the baseline method (0.254). On the other hand, the standard 
deviation of our method also lower than the baseline method 
for both sensing tasks, which indicates that our approach 
is more stable. In summary, the task-oriented data-driven 
integration model is more stable and at least 2.5X better than 
the baseline method.

We further analyze the selected parameters of our integra-
tion model for these two sensing tasks. The weight values 
of the integration model (Eq. 8) reflect the contribution of 
different AFs to the assessment of sensing tasks. Figure 16 
presents the weight values of the integration model with 
a training size of 24. We observe that different AFs have 
different weights for the same task. This indicates that the 
deployment characteristics (AF) affect the system perfor-
mance. On the other hand, most AFs have different weights 
for different tasks. This indicates that different tasks favor 
distinct criteria for assessing sensing quality.

5.5 � Assessment robustness over different users

The human variation experiment evaluates the robustness of 
AutoQual when it utilizes multiple persons’ footstep exci-
tation for assessment. Prior work on structural vibration-
based human sensing indicates that different people’s foot-
step excitation have distinct characteristics (Pan et al. 2015, 
2017). To validate the robustness of AutoQual using dif-
ferent people’s footstep excitation, we collect two persons’ 
footstep excitation in each deployment for auto-assessment. 
Figure 17 shows the assessment performance of AutoQual 
for event classification and event detection with two people’s 
footstep excitation. We observe that AutoQual has a similar 
performance when using different people’s footstep excita-
tion as the assessment excitation. The mean absolute error 
of event classification assessment is 0.0096 and 0.0094 from 
human #1 and human #2, respectively. The mean absolute 
error of event detection assessment is 0.0098 and 0.0102 
from human #1 and human #2, respectively. The difference 
of mean absolute error between two people’s assessment 
performance is 0.002 and 0.004 for event classification 
and event detection, respectively. In summary, AutoQual is 
robust when using different people’s footstep excitation to 
achieve the assessment.

6 � Discussion

In this section, we further discuss the limitation of this work 
and possible future directions.
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Fig. 16   Analysis on task-oriented integration model variation over 
different tasks. The x-axis is the AFs and the y-axis is the weight val-
ues. The models are trained with 24 deployments. The weight values 
of the same AF varies over different tasks, and the different AFs have 
varying weights for the same task

Fig. 17   Analysis on human variation. The x-axis is the sensing task, 
and the y-axis is the absolute error between the TSQ score and sens-
ing task performance. AutoQual demonstrate similar performance 
when the assessment is done on Human #1 and Human #2, which 
indicates robustness over different users
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6.1 � Robust gait cycle detection and gait‑based 
temporal association

In this work, we rely on a mobile device on the calf for 
gait-based temporal association between different sensing 
modalities. However, mobile devices or wearables may 
come in various form factors, e.g., smartwatch (Genovese 
et al. 2017), earable (Prakash et al. 2019), on-cloth/limbs 
(Mokaya et al. 2013). Because these form factors are placed 
on different body parts, they may be sensitive to capturing 
different phases of gait cycles. In our future work, we plan 
to explore schemes that allow automatic calibration of this 
gait cycle phase offset between mobile devices/wearables 
and infrastructural sensors for robust temporal association. 
Furthermore, for some form factors, the detecting gait cycle 
phase may change over different contexts (e.g., smartwatch 
detecting people walking with/without carrying loads). To 
ensure robust gait-based temporal association, the system 
may adapt or selectively conduct temporal association based 
on the context.

6.2 � Assessing a group of sensors on collaborative 
tasks

In this work, we only investigated applications/sensing tasks 
done by an individual sensor. However, there are sensing 
tasks that require multiple sensors to conduct collabora-
tive computation, such as multilateration based localiza-
tion (Mirshekari et al. 2018; Fagert et al. 2021). We plan 
to extend the current Assessment Factor (AF) concepts for 
individual sensors to sensor groups. This can be done by 
measuring the group factors over multiple devices assigned 
for the collaborative task. The group factors could be clock 
synchronization resolution, environment-circuit interference 
over different locations, etc. The TSQ score model will take 
both group and individual factors into account for collabora-
tive task’s sensing quality assessment.

6.3 � Integration model

In this paper, we focus on individual AF’s modeling, i.e., 
the saturation function. The individual AF model reflects 

the specific causes of high/low learning accuracy. However, 
the linear regression model we adopted is limited in terms of 
representing the relation and dependency between different 
AFs. The advantage of our linear integration model is the 
selected parameters (weight) intuitively reveal the relation-
ship between the AF and the task performance. The limita-
tion of the linear relationship is that it may not be the precise 
representative for the relationship between individual AF 
and task performance. When two AFs are dependent, the 
relationship between the task performance and two AFs is no 
longer a linear combination, even the relationship between 
the task performance and the individual AF may be linear. 
To further improve the robustness of the integrated score, we 
plan to explore more approaches to estimate the integration 
models, such as kernel-based regression, general regression 
neural network, etc. in our future work.

7 � Conclusion

In this paper, we present AutoQual, a sensing quality assess-
ment framework. We introduce our Task-oriented Sensing 
Quality (TSQ) assessment model as well as the auto-assess-
ment scheme that utilizes a co-located mobile sensing sys-
tem to assess the performance of structural vibration sensing 
systems. Ambient human-induced signals are combined to 
infer the deployment’s environmental and hardware factors 
that impact system performance. Real-world experiments are 
conducted with 48 deployments at 11 environments. Auto-
Qual achieves less than 0.10 absolute error, which is an 2× 
improvement to baselines. Our auto-assessment approach 
predicting multiple tasks’ performance at untested deploy-
ments shows a ≤ 0.018 absolute error difference to the man-
ual assessment.

1. F1 Score of the sensing tasks in Sect. 4.1

See Table 2.
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Table 2   Sensing task F1 score 
in 48 deployments

Env-
ID

Dep-
ID

Event Classification Event
Det.

LSVM RSVM RF LR GNB XG-
Boost

K-NN ET

1 1 0.87 0.75 .88 0.81 0.48 0.82 0.74 0.88 0.68
2 0.79 0.71 0.81 0.76 0.43 0.81 0.67 0.79 0.62
3 0.71 0.68 0.77 0.71 0.46 0.71 0.58 0.74 0.62
4 0.81 0.74 0.82 0.77 0.48 0.78 0.73 0.80 0.62

2 5 0.60 0.54 0.61 0.59 0.46 0.69 0.48 0.63 0.46
6 0.70 0.67 0.74 0.68 0.46 0.75 0.49 0.71 0.72
7 0.72 0.68 0.73 0.73 0.47 0.74 0.51 0.66 0.76
8 0.59 0.56 0.52 0.59 0.45 0.48 0.31 0.46 0.37

3 9 0.72 0.64 0.66 0.69 0.53 0.71 0.38 0.74 0.78
10 0.64 0.63 0.67 0.62 0.44 0.71 0.49 0.64 0.71
11 0.71 0.66 0.69 0.74 0.48 0.66 0.43 0.70 0.68
12 0.73 0.63 0.69 0.70 0.48 0.71 0.42 0.62 0.61

4 13 0.70 0.65 0.74 0.73 0.39 0.70 0.42 0.72 0.68
14 0.64 0.59 0.66 0.62 0.42 0.71 0.35 0.68 0.64
15 0.75 0.69 0.80 0.74 0.56 0.73 0.52 0.76 0.58
16 0.73 0.66 0.73 0.72 0.50 0.72 0.45 0.68 0.62

5 17 0.42 0.41 0.44 0.46 0.29 0.44 0.39 0.46 0.36
18 0.51 0.46 0.42 0.51 0.34 0.47 0.36 0.47 0.43
19 0.44 0.42 0.46 0.45 0.37 0.45 0.33 0.50 0.45
20 0.47 0.43 0.47 0.50 0.43 0.43 0.36 0.48 0.33

6 21 0.46 0.44 0.45 0.54 0.30 0.50 0.38 0.47 0.67
22 0.54 0.52 0.47 0.59 0.28 0.56 0.44 0.44 0.73
23 0.47 0.46 0.44 0.48 0.26 0.46 0.41 0.47 0.68
24 0.59 0.56 0.51 0.62 0.32 0.62 0.41 0.52 0.68

7 25 0.49 0.43 0.46 0.50 0.25 0.48 0.44 0.47 0.60
26 0.47 0.47 0.48 0.49 0.29 0.52 0.44 0.48 0.59
27 0.56 0.50 0.48 0.54 0.33 0.53 0.40 0.49 0.59
28 0.47 0.42 0.41 0.45 0.28 0.43 0.35 0.43 0.48

8 29 0.84 0.78 0.69 0.82 0.37 0.77 0.64 0.72 0.71
30 0.83 0.81 0.75 0.82 0.35 0.84 0.71 0.79 0.66
31 0.87 0.77 0.81 0.83 0.41 0.83 0.65 0.83 0.63
32 0.84 0.77 0.72 0.83 0.38 0.71 0.68 0.75 0.65

9 33 0.67 0.68 0.67 0.69 0.34 0.74 0.55 0.76 0.76
34 0.75 0.71 0.69 0.72 0.34 0.68 0.56 0.67 0.72
35 0.74 0.70 0.73 0.75 0.29 0.69 0.59 0.65 0.73
36 0.80 0.73 0.71 0.78 0.33 0.72 0.66 0.70 0.72

10 37 0.56 0.45 0.57 0.55 0.38 0.59 0.41 0.57 0.61
38 0.52 0.48 0.55 0.53 0.39 0.64 0.35 0.54 0.63
39 0.62 0.55 0.63 0.64 0.40 0.70 0.42 0.58 0.64
40 0.53 0.43 0.55 0.55 0.39 0.54 0.39 0.55 0.64
41 0.63 0.58 0.74 0.66 0.47 0.68 0.54 0.69 0.62
42 0.56 0.52 0.48 0.58 0.31 0.53 0.35 0.49 0.18

11 43 0.45 0.44 0.41 0.49 0.39 0.43 0.36 0.41 0.30
44 0.54 0.49 0.48 0.53 0.36 0.44 0.35 0.47 0.31
45 0.32 0.30 0.32 0.34 0.28 0.33 0.26 0.26 0.16
46 0.40 0.36 0.32 0.41 0.30 0.35 0.31 0.36 0.10
47 0.41 0.42 0.43 0.45 0.32 0.44 0.38 0.45 0.29
48 0.37 0.34 0.31 0.37 0.25 0.36 0.29 0.29 0.04
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