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Abstract
With the gradual maturity of virtual reality (VR) technology in recent years, VR industry is in a trend of rapid growth, provid-
ing new possibilities for content design. Although VR technology has been able to provide users with excellent immersive 
experience, side effects that affect the user experience still exist, especially the cybersickness. It would cause extreme physical 
discomfort to the users and the discontinuation of use. Many researchers have tried to find the inducement of cybersick-
ness and to detect and limit the occurrence of this symptom, but most of the current detection and analysis methods rely on 
subjective questionnaires to collect users’ posterior states, such as dizziness, nausea, cold sweats, disorientation, eyestrain 
and so on. There is no mature real-time cybersickness detection system for VR developers to evaluate the susceptibility of 
their products to cybersickness so far, which has hindered the adoption of VR to some extent. The purpose of this study is to 
implement the real-time monitoring of cybersickness using physiological sensors to measure data and quantify the influence 
factors of cybersickness through deep learning model. Besides, we have developed a VR experimental platform and passive 
navigation task to induce user cybersickness. During the experiment, to train the LSTM Attention neural network model, we 
collected the user’s real-time physiological signals, including skin electrical activity (EDA) and electrocardiogram (ECG), 
as well as the position and bone rotation data of the users’ virtual avatar. The model can detect the level of users’ cybersick-
ness in real-time during VR experience. And the model has been verified by the fivefold cross-validation that the average 
accuracy of 96.85% was achieved for classification of cybersickness level, showing great performance compared with other 
relevant studies. The results show the feasibility of accurate classification of cybersickness using the model we proposed. 
Also the model can provide reference for VR researchers and developers to improve the user experience.
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1  Introduction

In recent years, with the gradual maturity of virtual reality 
(VR) technology, VR research and development is boom-
ing, and the scale of VR market is expanding. Since many 
downstream application markets have not been fully opened, 
it is expected that VR industry will still remain in a period 

of rapid growth in the next few years. According to Gold-
man Sachs, VR/AR market revenue will reach $80 billion by 
2025. At the same time, lower costs and increased availabil-
ity of VR hardware further promote its popularity. At pre-
sent, we have made great progress in VR hardware technol-
ogy. In June 2019, the wireless all-in-one Oculus Quest was 
released. Since then, HTC, Huawei, Pico and other manu-
facturers have launched VR All-in-one Headset. Before that, 
the penetration rate of consumer VR in the game market has 
been very low, with less than 1% of Steam players owning 
VR devices until the end of 2019. However, according to the 
latest data released on 5 May 2020, by the end of April 2020, 
this percentage had jumped to 1.91%. Within four months, 
the number of VR players on Steam has more than doubled, 
which marks the first time that VR to C has entered the 
positive cycle of “hardware content bicycle evolution” in 
the game and entertainment market.
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However, while providing users with immersive expe-
rience, VR also brings many unpleasant side effects, 
among which the most obvious one is cybersickness. At 
present, there are many studies on cybersickness, which 
prove that cybersickness will continue to exist in the pro-
cess of users’ VR experience, making users feel uncom-
fortable, causing users to have resistance and aversion to 
VR, which further affects their willingness to continue 
using it. It is also showed that cybersickness even caused 
a large number of users to abandon the use of VR. In 
addition, researchers focus mostly on finding causes and 
user responses to cybersickness but only a handful of 
them are working on how to prevent or predict the occur-
rence of cybersickness. Most current detection and analy-
sis methods rely on subjective questionnaires to collect 
a user’s posterior status, such as dizziness, nausea, cold 
sweat, etc (Green 2016; McCauley and Sharkey 1992; 
Harms et al. 2015). In the meantime, there is no mature 
real-time cybersickness detection system for VR devel-
opers to evaluate the susceptibility of their products to 
cybersickness. This brings up the following three research 
questions (RQ) of this paper:

•	 RQ1: Shortcomings and trends of existing detection 
methods for cybersickness

•	 RQ2: How to quantify cybersickness detection in real-
time

•	 RQ3: How to improve the accuracy of cybersickness 
detection method

Aiming at the above three RQs, this paper summarizes 
a large amount of research literature and analyzes the 
existing cybersickness detection methods to solve RQ1. 
In this way, physiological signals are used to detect the 
level of motion sickness when the user is immersed in a 
virtual environment without real-time feedback from the 
user, and solve RQ2 and RQ3. On this premise, a real-
time quantified VR cybersickness detection framework 
is proposed. Real-time physiological signals and sub-
jective feedback from users are used to train the LSTM-
ATTENTION model for cybersickness detection, which is 
integrated into the VR platform. In this way, without real-
time feedback from users, physiological signals are used 
to detect the cybersickness level when users are immersed 
in the virtual environment, so as to solve RQ2 and RQ3. 
The experiment results prove that the model proposed in 
this paper can detect the severity of users’ cybersickness 
in real-time, and the accuracy is higher than that of other 
research works. VR developers can adopt different tech-
nical measures according to the severity of user cyber-
sickness to reduce the discomfort, thereby improving the 
user’s VR experience.

2 � Related work

Aming at to solve RQ1, this paper analyzes the existing 
research literature on cybersickness detection to sum-
marize the symptoms, theories and influencing factors of 
cybersickness. We briefly describe the advantages and dis-
advantages of different detection methods in the following.

2.1 � Definition of cybersickness

Cybersickness, one of the side effects of VR, is an important 
factor affecting users’ VR experience. The term “cybersick-
ness” is used to describe motion-sickness-like experiences 
in VR, the main symptoms of which are closely similar to 
transportation motion sickness such as: dizziness, nausea, 
cold sweating, disorientation and eye strain (Green 2016; 
McCauley and Sharkey 1992; nalivaiko et al. 2015). Many 
researchers have tried to figure out cause of it, but currently, 
there is no exact theory to explain clearly why and how it 
occur. Scientists have discussions around three main possi-
ble theories: the sensory conflict theory, poison/intoxication 
theory and the postural instability theory.

2.1.1 � Sensory conflict theory

The oldest and most accepted theory is Sensory Conflict 
Theory, proposed byReason and Brand (1975). This theory 
is based on the premise that discrepancies between the 
human senses which provide information about the body’s 
orientation and motion causes a perceptual conflict which 
the body does not know how to handle. Those sensory 
conflicts arise when the sensory information is not the 
stimulus that the user expects based on his/her real world 
experience. The main disadvantages of this theory are the 
impossibility to predict the occurrence of cybersickness in 
every situation to explain why two participants do not have 
the same symptoms from the same stimulation condition 
as highlighted inlaviola (2000).

2.1.2 � Poison/intoxication theory

This theory tries to provide the explanations for the occur-
rence of cybersickness from an evolutionary standpoint. 
According to Treisman (1977), when the human body expe-
riences abnormal coordination of the visual, vestibular, and 
other sensory inputs, the nervous system mistakes these cir-
cumstances with poison digestion and responds by emptying 
the stomach. This corporal response of the nervous system 
can cause symptoms like nausea, vomiting and discomfort.
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2.1.3 � Postural instability theory

This theory refutes the sensory conflict theory. Riccio and 
Stoffregen (2010) made an argument that “one of the pri-
mary behavioral goals in humans is to maintain postural 
stability in the environment. In this case, postural stability 
is defined as the state in which uncontrolled movements of 
the perception and action systems are minimized”. Postural 
stability depends from the perception of the surrounding 
environment and the prediction of action consequences (for 
example, imagine somebody walking on concrete or on ice). 
Every time a walker encounters changes in the environment, 
he/she has to quickly adapt his/her general body behavior to 
maintain postural stability (for example, you go on concrete 
and suddenly step on the ice) laviola (2000). When such a 
situation occurs, the organism reacts as an emergency situa-
tion to prevent from falling, which increases organism stress 
condition.

In addition to the above theories of motion sickness, 
many studies have attempted to classify the causes of cyber-
sickness. According to Jin et al. (2018), Davis et al. (2014), 
Rebenitsch (2015), the factors can be categorized into hard-
ware, software, and individual factors. Based on an extensive 
literature review and prioritization of factors in the literature 
(Rebenitsch 2015), the most common factors associated with 
cybersickness are listed in Table 1. In our work, the factors 
we take into consideration are motion in the scene (Stan-
neyKay 1998) and user’s profile (Kim et al. 2019).

2.2 � Subjective and objective evaluation methods 
of VR user experience

Existing VR user experience evaluation methods include 
subjective evaluation method, objective evaluation method 
and a combination of the two methods.

The subjective evaluation method is mainly the user’s 
self-evaluation. The direct experience of various aspects 
of VR products can be evaluated through oral evaluation 
or questionnaire survey (Harms et al. 2015). Question-
naire can effectively evaluate users’ subjective experi-
ence of products of different sizes (Schrepp et al. 2017). 

Paper (Chertoff et al. 2010) designed a survey tool Virtual 
Experience Test (VET), which uses the question scoring 
mode of 1 (very disagree) to 5 (very agree) to measure the 
overall virtual environment experience, but the experiment 
was only conducted in one gaming environment. Paper 
(Kim et  al. 2018) modified the existing cybersickness 
simulator questionnaires and developed a VR cybersick-
ness questionnaire as a measurement index in VR envi-
ronment. Paper (Trindade et al. 2018) evaluates usability 
and user experience in a 3D VR environment model of a 
beach. It evaluated participants’ interactions in the virtual 
world through their behavior, and evaluated their pres-
ence and responses to cybersickness simulators through 
questionnaire.

The objective evaluation method is mainly to monitor 
the user’s brain wave, heart rate, eye movement and other 
physiological signals (Healey and Picard 2005). Heartbeat 
activity can reflect the changes of users’ emotion, so heart 
rate monitoring is generally considered as an effective 
method to measure users’ emotional state (Yao et al. 2014). 
They developed a new method to test cybersickness in VR 
game users: electrocardiogram (ECG) signals and brain 
functional connectivity (FC). The results showed that FC 
has significant difference for two VR games with different 
usability, and so does the gamma band, which proved that 
ECG is a good tool to analyze the cybersickness.

In addition, a large number of researches have focused 
on the combination of subjective and objective evalua-
tion. Since most of the user experience in immersive vir-
tual environment (IVE) can be measured by questionnaires, 
paper (Tcha-Tokey et al. 2016) focuses on the questionnaire 
method. However, researchers still believe that the best way 
to measure users’ experience in IVE is to collect the results 
of appropriate subjective and objective methods and com-
pare them. As an example, in paper (Yu et al. 2018), partici-
pants were asked to answer Igroup Presence Questionnaire 
(IPQ) after experiencing VR scenarios, so that objective 
visual performance data can be compared with subjective 
performance evaluation tools, and the combination of ques-
tionnaire surveys and heart rate can evaluate user experience 
more comprehensively and convincingly.

Table 1   Related factors of 
cybersickness

Hardware Software Individual

Head movement Motion in a scene Video game experience
Scene texture VR game experience
Color in a scene Susceptibility to motion sickness

Field of view Sitting vs. Standing Duration of VR exposure
Independent visual background Postural instability

Resolution The degree of control History of headache or migraine
Scene content Age
Change of color Gender
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Therefore, this paper chooses to use a combination of 
subjective and objective evaluation to study the relation-
ship among user characteristics, cybersickness and users’ 
experience in VR. At the same time, given that the existing 
research does not use objective methods to verify the final 
conclusion, this paper uses ECG data to objectively verify 
the user experience.

2.3 � Qualitative and quantitative research methods 
of VR cybersickness

Cybersickness estimation attracts significant research inter-
est both in industrial and academic sectors, and has obtained 
some successful results. Researchers classifies the measures 
for cybersickness into two categories: qualitative and quan-
titative (Harm 1990).

2.3.1 � Qualitative method

Qualitative test scores are used to gather psychological 
descriptions or reports of signs and symptoms from experi-
menters and test participants.There are different exist-
ing questionnaires including Pensacola Motion Sickness 
Questionnaire(MSQ), SSQ, Motion sickness assessment 
questionnaire (MSAQ), Virtual reality sickness question-
naire (VRSQ) (Kim et  al. 2018), Pensacola Diagnostic 
Criteria (PDC) based on widely used criteria of Pensacola 
Diagnostic Report Scale (PDRS) (Green 2016), 11-point 
Misery scale (MISC) or Joyfulness scale (JOSC) (Ng et al. 
2020), and other methods of sickness index calculation. 
Gavgani et al. (2018) claim that cybersickness symptoms 
are not different from motion sickness ones. Thus, SSQ, 
which excludes sopite symptoms of MSQ, may not correctly 
include relevant symptoms of cybersickness at all.

Alternatively, another method was proposed by Keshavarz 
and Hecht (2011) called Fast Motion Sickness Scale (FMS) 
which consists of requesting the participants to verbally give 
their evaluation of sickness level on a scale ranging from 
0 to 20, with zero representing no discomfort and twenty 
representing frank sickness. These kinds of questionnaires 
can prove useful as they are fast and efficient and can be per-
formed online in the virtual environments as well. According 
to Sevinc and Berkman (2020), Cybersickness questionnaire 
(CSQ) and VRSQ have better psychometric qualities for 
assessing cybersickness in Head-mounted display (HMD)-
based VR applications and provide a well-rounded approach 
to measure its symptoms and calculate its subjective aspect.

2.3.2 � Quantitative method

In parallel, quantitative assessments through physiologi-
cal body signals arising from simulator sickness pro-
vide researchers with opportunities to have precise direct 

comparisons between and within-participants in an experi-
ment. Such measurements will not be clouded by relatively 
past experiences and will provide us invaluable data about 
how the body reacts to different stimuli in a virtual environ-
ment. Moreover, a lot of research works successfully dem-
onstrate the success of such approach (Wang et al. 2019; 
Martin et al. 2018; Nam et al. 2018; Hristova et al. 2009), 
where they were able to measure different physiological sig-
nals using various methods such as ECG, EEG, EDA, GSR, 
electrogastrogram (EGG), electromyography (EMG), pho-
toplethysmogram (PPG), electrooculogram (EOG), to name 
a few. These sensors can also be used to measure various 
physical activities as well as different responses based on 
the virtual stimuli.

Methods that use bio-signals for automatic measurement 
of stress and objective data collection have achieved practi-
cal results (Cho et al. 2017; Bakker et al. 2011). Heart rate 
and blood pressure measurements are commonly used for 
analysis (Rebenitsch et al. 2016), but some research groups 
have managed to expand their horizons by integrating other 
physiological signals such as brain activity, skin reaction, 
etc. Kiryu et al. (2007) used ECG, blood pressure and res-
piration in their study to figure out the trigger factors and 
accumulation factors in cybersickness. The power frequen-
cies of the physiological signals are used to estimate the 
sensation intervals and the onset of cybersickness. Dennison 
et al. (2016) examined ECG, EGG, EOG, PPG, breathing 
rate and GSR to study the feasibility of using physiologi-
cal signals to predict cybersickness. In contrast to the eye 
and body movement data that changes according to personal 
intention, bio-signal information such as blood pressure 
and heart rate can provide a more objective and quantitative 
feedback from users.

Most current methods for assessing cybersickness use the 
various questionnaires mentioned above, which are collected 
before and after each task or immersive experience, so users 
can only report their physical state before and after the expe-
rience. A more objective measurement requires statistics on 
its continuous impact on the user’s reaction time and physi-
cal discomfort. Compared with traditional questionnaire 
method, physiological sensors can measure users’ physi-
ological state more objectively and accurately during the 
entire experience. Moreover, answering the questionnaire 
during the task execution will disturb the user’s immersive 
experience and prolong the total time. Furthermore, ques-
tionnaires answered can not accurately reflect the level of 
discomfort and cybersickness of users during the experi-
ence. On the contrary, physiological sensors can not only 
help researchers more accurately determine the physiologi-
cal variables related to cybersickness, but also can predict 
when cybersickness will occur. Based on previous research 
works (nalivaiko et al. 2015; Kim et al. 2019; Jeong et al. 
2019; Islam et al. 2020), in order to solve RQ2, this paper 
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will use skin electrical activity (EDA), electrocardiogram 
(ECG) and user’s interactive feedback in VR environment 
to measure the level of user’s cybersickness, so as to achieve 
the purpose of real-time monitoring.

2.4 � Machine learning for physiological signals

Recently, machine learning has been adopted in various 
fields such as emotion recognition and pattern analysis by 
analyzing complex physiological data (Jeong et al. 2019). 
Naive Bayes (NB), K-Nearest Neighbor (KNN) and Support 
Vector Machine (SVM) classifiers used for emotion recog-
nition were tested in Hinkle et al. (2019), among which the 
highest overall leave-one-out accuracy of 80% was achieved 
using a SVM and five features extracted from bio-signal: 
meanHR, magPPV, slopeGSR, mECGHR, HRV. In Cho 
et al. (2017), three physiological signals (PPG, EDA, and 
skin temperature (SKT)) were measured in a stressful VR 
environment. The average classification accuracy for stress 
levels was over 95% using a kernel-based extreme-learning 
machine (K-ELM) and the integrated feature including HRV, 
skin conductance (SC) and SKT.

Since cybersickness can affect the physical state of the 
user, it is suitable to use physiological data for the analysis. 
Although electroencephalogram (EEG) contains many noise 
(Kim et al. 2019; Jeong et al. 2019), some researches still try 
to use neural network to evaluate cyber sickness based on 
EEG signals. Pane et al. (2018) proposed the identification of 
cybersickness severity level using the features extracted from 
electroencephalo graph (EEG) signals. Using a rules-based 
algorithm, i.e., CN2 Rules Induction, the classification yields 
the best accuracy of 88.9%. It is outperforming other tested 
classifiers’ accuracies such as decision tree (72.2%) and SVM 
(83.3%). In Li et al. (2019), participants’ subjective evalua-
tions (mild, moderate, and severe feelings of motion sickness) 
were recorded, as well as EEG, center of pressure(COP), and 
head and waist motion trajectories. The voting classifier they 
proposed utilized four types of base classifiers: KNN, Logistic 
Regression (LR), Random Forest (RF) and Multi Layer Per-
ceptron Neural Network (MLPNN). The averaged accuracy 
of the classifier were 91.1%. Previously cybersickness analy-
sis with physiological data has been presented with machine 
learning algorithms that produce the accuracy up to 88.9% 
(Cho et al. 2017). Therefore, it is worth investigating whether 
the accuracy can be improved when measuring cybersickness 
by analyzing physiological data with deep learning algorithms, 
such as Deep Neural Network (DNN), Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN), which 
are the most commonly used deep learning algorithms for 
physiological data. Kim et al. (2017) have used the CNN deep 
learning algorithm for cybersickness studies. They applied 
the CNN algorithm to VR videos, because the abrupt motion 
within a video is an important factor to indicate cybersickness. 

Jin et al. (2018) extracted features from heterogeneous data 
sources including the VR visual input, the head movement, 
and the individual characteristics. They trained three different 
networks including the CNN, the Long Short-Term Memory 
Recurrent Neural Networks (LSTM-RNN), and the Support 
Vector Regression (SVR). The results indicated that the best 
performance of predicting cybersickness was obtained by 
the LSTM-RNN. However, neither of the works applied the 
deep learning algorithms to physiological data. Islam et al. 
(2020) used heart rate variability (HRV) and skin electrical 
response (GSR). However, they did not get users’ feedback on 
cyber sickness during the experiment, which means that their 
research results are not convincing enough.

Islam et al. (2020) considered four features (i.e., min, 
max, runningavg, and percentage of change from resting 
condition) from each of four physiological signals (HR, 
BR, HRV, and GSR). They proposed a labeled physiological 
data that can be used in a Long-short-term-memory (LSTM) 
regression analysis to predict user cybersickness. The mean 
absolute error (MAE) of the test data of the regression was 
8.7%. In Kim et al. (2019), they developed an EEG driven 
VR cybersickness level prediction model. In the first stage, 
the EEG data is transformed into multi-channel spectrogram 
which accounts for the correlation of spectral and temporal 
coefficient. Then, a CNN is applied to encode the cognitive 
representation of the EEG spectrogram. In the second stage, 
they train a cybersickness prediction model on the VR video 
sequence by designing a RNN. Here, the encoded cognitive 
representation is transferred to the model to train the visual 
and cognitive features for cybersickness prediction. The pro-
posed framework can achieve 90.48% accuracy. Jeong et al. 
(2019) applied and compared DNN and CNN deep learn-
ing algorithms for objective cybersickness measurement 
from EEG data. The experiments showed that there is no 
significant difference in terms of the accuracy between CNN 
with DNN (both around 98%), but DNN structure is bet-
ter regarding the computational cost while it still has room 
for improvement in accuracy. Therefore, in order to solve 
RQ3, we chose LSTM as the basic network component with 
an added Attention layer. To compare different results and 
choose a better structure for the whole network, three sets of 
structures are tested on the physiological data and avatar’s 
motion data separately, which are only using LSTM layer, 
putting the Attention layer in front of or after the LSTM 
layer. The three different combinations of LSTM and atten-
tion are shown in Fig. 1.

3 � Real‑time VR cybersickness detection

We proposed a combination of subjective and objective 
cybersickness detection method using the user’s subjective 
evaluation data, objective physiological signals, and the 
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user’s virtual avatar’s relative data to train the neural net-
work model to detect cybersickness in real-time and solve 
RQ2. We have developed a VR platform that can provide 
users with cybersickness experience and integrated it with 
bio-signal acquisition system (BIOPAC), also we added a 
feedback and logging modules to the platform to record 
the real-time feedback from users. Next, during the experi-
ment, physiological data (EDA and ECG), as well as features 
extracted from ECG (Heart Rate and RR interval), avatar’s 
body motion data and user’s feedback are collected. After 
that, these raw data are preprocessed and fed to the neu-
ral network model for training. Finally, the LSTM -Atten-
tion model which can detect the level of cybersickness is 
obtained to solve RQ3. And the model will be integrated 
into the real-time cybersickness prediction system described 
below.

The architecture of our proposed real-time cybersickness 
prediction system is shown in Fig. 2. When we talk about 

real-time, it means the system is able to give feedback with 
a quite low latency. The system consists in two steps:

•	 The first step: The users put the HMD and biosensors 
on and get immersed in the virtual environment, which 
allow us to collect their physiological signals during the 
immersive experience. After the data acquisition, the 
LSTM Attention model will be trained to learn the fea-
tures of the input signals and learn at which cases the 
users will likely get cybersickness. As our model is built 
with raw data (without many preprocessing) getting from 
the system directly, the model can be deployed directly 
in other immersive systems for the cybersickness predic-
tion.

•	 The second step: The pre-trained model will be deployed 
in an immersive system. Biosensors can keep tracking 
data of the user and send the information to the LSTM-
Attention model which will predict online the cybersick-

Fig. 1   Three combinations of LSTM and attention

Fig. 2   Real-time cybersickness 
detection system
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ness level according to the inputs. The system can then 
alert the user of cybersickness occurs or take possible 
measures to reduce it.

3.1 � Cybersickness detection platform

In order to solve RQ2 and RQ3, this paper designs a VR 
simulation experiment platform and intends to perform the 
experiment on various configurations of the cybersickness 
factors as shown in Table 1 and different experiment condi-
tions which may have effect on bio-signals (sitting/standing, 
active/passive motion, moving/staying still). Due to limita-
tion of time, so far we only ran a preliminary experiment on 
one of the conditions which required the participants stand 
still in the real world while doing the passive navigation 
tasks in the virtual environment. Next, we recruited partici-
pants for experiment. During the experience, we collected 
data related to cybersickness generated by participants, and 
trained the neural network with these data to establish a 
network model that could detect cybersickness in real-time 
according to user’s physiological signals and body move-
ment data. The framework for our experiment procedure is 
shown in Fig. 3.

In the main virtual environment of the system, participant 
can see their virtual avatar and its reflection in the mirror, 
showed in Fig. 4. This provides the user a visual feedback on 
what he/she is doing and allows him/her to see and interact 
with the virtual environment from a first-person viewpoint 
which may reduces the cognitive load of the participant. 
In order to animate the rigged avatar, we need to achieve 
a full body tracking while the user is in the virtual envi-
ronment. Inverse Kinematics (IK) provided by Unity 3D is 
used. There are totally six HTC Vive trackers, two for feet 
(attached to the user’s ankle), one for torso (attached on the 
back of their waist); two controllers for hands and one head-
mounted display (HMD) for head tracking. The device setup 
for the user is illustrated in Fig. 5. The six trackers are used 
to track the user’s outer skeleton in real-time and on top of 

that, IK is applied on all the inner joints to get an exact body 
motion of the user.

We induce cybersickness by adding a moving scene set-
ting based on previous literature reviews (Davis et al. 2014) 
In the experiment, we require users to perform passive 
navigation tasks to obtain the physiological data related to 
cybersickness. Besides, the virtual environment is simplified 
to limit influence on the bio-signals caused by other kinds 
of side effects, such as cognitive load and stress. Once the 
passive navigation task begins, the bio-signal recording will 
start and will set a flag on the data each time when the user 
clicks a specific button on the controller to indicate their 
level of cybersickness. After each passive navigation task, 
the avatar’s position and bone rotation will be output and 
recorded, as well as user’s interactive feedback on cyber-
sickness level.

Fig. 3   Framework for the 
experiment procedure

Fig. 4   Virtual avatar seen the mirror

Fig. 5   Setup of trackers on a user
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3.2 � User data and questionnaire design

The study was conducted on 9 healthy volunteers (average 
age of 28 from 22 to 35 years old) of both genders (2 females 
and 7 males). Before the experiment, participants filled in 
an anonymous demographic questionnaire which includes 
several simple questions. Studies have shown that the degree 
of cybersickness varies according to individual differences 
(e.g. previous experience, susceptibility, gender, age, etc.) 
(Kim et al. 2019) Therefore, we consider participant’s own 
characteristics. In the personal characteristic questionnaire, 
we collected the participants’ personal characteristic and 
specific background knowledge related to the experiment, 
including age, gender, dominant hand (left or right), 3D 
video game experience, previous VR experience and VR 
background knowledge. Among them, 3D video game expe-
rience is divided into four levels: daily, twice a week, once 
or twice a month, and almost never. VR background is also 
divided into four levels: none, understanding, intermediate 
and expert. The values of all items in the questionnaire and 
their numerical values are shown in Table 2.

During the experiment, participants were equipped with 
HTC Vive VR devices and BIOPAC biosensors to perform 
three passive navigation tasks at different speeds. The exper-
iment consisted of three phases: Welcome phase, which 
helped participants prepare for the experiment; Calibration 
phase, to achieve comprehensive tracking of participants’ 
body movements and help participants to get familiar with 
the virtual platform environment; Evaluation phase, which 
includes passive navigation tasks (each task lasts 2–3 min-
utes) and experimental data collecting.

3.2.1 � Welcome phase

Considering the Covid-19 pandemic, in order to avoid pos-
sible risks of infection, all the participants were asked to 
clean their hands with alcohol-based sanitizer before begin-
ning the experiment and wear face masks during the whole 
experiment to avoid direct skin contact with the HMD. Then 
they were required to read the instructions, sign the consent 
forms and fill in background questionnaires asking for some 
general information

3.2.2 � Calibration phase

Once the trackers were set up by the experimenter, the par-
ticipant could begin the calibration phase in Fig. 6. In the 
initial scene as shown in Fig. 7, there is a natural background 
with trees, pile of stones and grasses. The nature scene could 
help the participant to relax before the next steps (Gerber 
et al. 2017) The participant could see a virtual avatar and its 
mirrored image in the virtual environment. The participants 
had to manually walk towards the virtual avatar and align 
themselves to base position of the avatar in Fig. 8. Once 
the participants felt that the avatar’s height corresponds to 
theirs, they could click the trigger button while standing in a 
‘T’ pose. This was required because when the arms and legs 
were extended, the trackers could provide the approximate 
limb lengths of the participant. After finishing the calibra-
tion, the participant would be able to move freely in the 
virtual space, and could perform different body movements 
and observe the same movements via a properly configured 
virtual avatar shown in the mirror, shown in Fig. 9.

Table 2   Background questionnaire item value

Questionnaire Item value Numer-
ical 
value

Age 22–35
Gender Male 1

Female 0
Left or right handed Left 1

Right 0
3D video game experience Almost never 0

More than once a month 1
One or two times a week 2
Everyday 3

Previous VR experience Yes 1
No 0

VR knowledge None 0
Basic 1
Intermediate 2
Expert 3

Fig. 6   Calibration

Fig. 7   VR scene
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3.2.3 � Evaluation phase

Before the start of the evaluation phase, the participants 
were required to take off the HMD and take a short break 
until they were ready to begin, we then put the biosensors 
on their body to record the baseline of the participants’ bio-
signal. After that, participants can start the experimental 
evaluation phase independently. They are prohibited from 
speaking during the experiment, to avoid affecting physi-
ological signals. However, participants can ask any questions 
before and after each task, and they can also ask to stop the 
experiment when necessary.

Afterwards, the participants would put on the HMD again 
and the evaluation phases started. The evaluation virtual 
scene is the same as in the calibration phase but several pas-
sive navigation tasks with different speed conditions were 
included. First the participants would stand still, point at 
“Move” button, and click the trigger button on the control-
ler to start the movement in the virtual scene. During the 
passive navigation tasks, the participants could click on the 
upper part of the controller’s touchpad if they felt sick (if 
they felt worse, they could click the button several times), 
and click on the lower part of the touchpad if they felt better 
(button shown in Figure 10). However, if the participants 
felt that they could not continue, they could ask to stop the 
experiment immediately. For each task, after the partici-
pant clicked on the “Move” button, the bio-signal recording 
would start.

At the end of the evaluation phase, the participants were 
asked to fill out a subjective questionnaire. According to 
Sevinc and Berkman (2020), CSQ and VRSQ have better 
psychometric qualities for assessing HMD-based VR appli-
cations and provide a well-rounded approach to measure 
cybersickness symptoms and calculate the subjective aspect 
of cybersickness. CSQ uses a scoring method based on item 
weights while VRSQ employs a simpler scoring method. 
Besides, VRSQ proposed by Kim et al. (2018) extracts the 
types of motion sickness items from SSQ related to the VR 
headset which means it is more aligned with our experi-
mental design. Hence, we decided to use VRSQ to collect 
feedback from the participants after the experiment and 
designed Table 3.

The VRSQ items are shown in Table 4. The most promi-
nent feature of VRSQ is that it is comprised of two com-
ponents, namely the oculomotor and disorientation compo-
nents. Oculomotor component includes General discomfort, 
Fatigue, Eyestrain, Difficulty focusing. Disorientation 

Fig. 8   User operation

Fig. 9   Moving route

Fig. 10   Controller button 
configuration used in the experi-
ment
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component includes Headache, Fullness of head, Blurred 
vision, Dizzy (eyes closed) and Vertigo. Also we show the 
formula used to calculate the score of eye movement and 

orientation disorder and the final total score of VRSQ in 
Table 3. The final total score of the questionnaire is the arith-
metic mean of the scores of the two parts.

The data in the cybersickness level log file includes times-
tamp and the sickness level value from 0 to 2: 0 means no 
sickness at all, 1 means slight sickness and 2 means severe 
sickness. In the file, the first line is the timestamp for the 
start of each navigation task. The cybersickness level values 
were used to label all the data, including the avatar’s position 
and rotation as well as the physiological data. Therefore we 
needed to match its sequence length according to the data 
we used for different network layers and the timestep we set 
for each layer. It means we needed to expand or reduce the 
length of the sequence without changing its statistical prop-
erties. For example, for the avatar’s position and rotation 
data (assuming the sequence length of the data is L), we use 
LSTM as the first layer and set timestep to 257. The length 
of the cybersickness level sequence should be round L/257.

3.3 � Sensor based user data collection

As is shown in Fig. 11, physiological data including EDA 
and ECG raw data, RR interval and Heart rate was recorded 
by the BIOPAC system.

The capture of signal was not fully started from the begin-
ning. Hence, we had to remove those lines as well as abnor-
mal values in all types of signal. The unit of EDA is micro-
siemens ( �S), and normally the value ranges from 5 to 50. 
Normally the heart rate range is 60–100 bpm (corresponding 

Table 3   VR sicknesss questionnaire(VRSQ)

*Represents for the VRSQ symptom will occur in oculomotor or dis-
orientation

VRSQ symptom Oculomotor Disorientation

General discomfort *
Fatigue *
Eyestrain *
Difficulty focusing *
Headache *
Fullness of head *
Blurred vision *
Dizzy(eyes closed) *
Vertigo *
Total [1] [2]

Table 4   Computation score of VRSQ

VRSQ components Computation

Oculomotor ([1]/12)*100
Disorientation ([2]/15)*100
Total (Oculomotor+Disorientation 

score)/2

Fig. 11   Data acquisition interface of Acqknowledge software
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R–R interval is 1–0.6s). To normalize the data, we removed 
the lines with heart rate over 150 or equal to 0.

4 � LSTM‑attention based VR cybersickness 
detection

In order to solve RQ3, this paper will use neural network 
model to detect the severity of user cybersickness from the 
multi-source data combining subjective and objective. In most 
current studies, subjective questionnaires (such as CSQ and 
VRSQ) are used to analyze the severity of cybersickness expe-
rienced by users after their VR experience, which means that 
feedback and treatment cannot be provided at the first time 
when users feel uncomfortable. On the other hand, due to the 
limitation of labeled data, there are few researches to automate 
the process of cybersickness detection through deep learning 
methods (Islam et al. 2020) Therefore, in this paper, we tried 
to establish a neural network model based on recurrent neural 
network LSTM, and added ATTENTION layer to optimize 
feature extraction effect. This section mainly introduces the 
processing process of input data and the design and optimiza-
tion of LSTM-ATTENTION model structure.

4.1 � Data pre‑processing

After establishing the data set related to user cybersickness, 
we need to further preprocess the data before inputting the 
data into the neural network model we designed.According to 
Jeong et al. (2018), the learning accuracy is higher when the 
Z-score standardization is applied to the feature data than the 
min-max normalization. Also after standardization/normaliza-
tion, the speed of gradient descent to find the optimal solution 
is accelerated, and the accuracy may be improved. Hence, to 
prepare the input data for my network, Z-score is applied to 
the feature data (avatar’s position and rotation & physiological 
data). The StandardScaler class in the sklearn package is used 
to do the standardization. The advantage of using this class is 
that the standardization is done for each feature dimension, but 
not for all samples, and the parameters, e.g. mean, variance, 
in the training set can be saved and directly used to convert 
the test set data. The Z-score standardization is computed as:

We used the cybersickness level (CL) value to label the 
physiological data and avatar’s motion data (referred to as 
data below). We hypothesised that, if a participant rated 
CLt = n , at time t on a scale from [0-2], then for all the data 
within [t-1, t], the corresponding sickness level will be n. 
The data was then formulated with their corresponding CLt 
rating. An example data point at time t is shown below:

(4-1)x = (data − mean)∕standard deviation

Since the label data (cybersickness level value) are clas-
sified values of 0, 1 and 2, one-hot encoding is applied. 
One-hot encoding, also known as one bit effective coding, 
whose principle is to use N-bit status registers to encode n 
different status values. Each state has its own independent 
register bits. At any time, only one of the register bits is 
effective. One-hot encoding can convert classification vari-
ables into data formats that are easy to use by deep learning 
algorithms.

The main reason for using it is that the output layer 
of my multiclassification network uses softmax function, 
which gives a probability distribution output. Therefore, 
the input label is also required to appear in the form of a 
probability distribution. One-hot encoding can be used to 
convert discrete labels into binary vectors. For example, 
the cybersickness levels are 0 (none), 1(slight), 2(severe), 
then after converting to one-hot format, the labels are 100, 
010, 001.

4.2 � LSTM‑attention based model

Our LSTM-Attention network model is composed of two 
parts, the first dealing with two different inputs (physi-
ological data and avatar’s motion data) using two mod-
els, and the second combining the two models’ outputs to 
a single output to give the classification result. We used 
the Keras functional API to create the non-linear topol-
ogy multiple input model. One of the model structures we 
tested is shown in Fig. 12 in detail.

In the first part of the whole model, the first input (ava-
tar’s motion data) size is 6 × m, where 6 is the number of the 
dimension of avatar’s motion data, and m is the number of 
time steps. The second input (physiological data) size is 4 
× n, where 4 is the number of the feature extracted from the 
physiological data, and n is the number of time steps. There 
are 32 neurons in the LSTM unit. An Attention layer con-
sisted of several Keras layers is added in front of or after the 
LSTM layer. The output is two Dense layers both with 3 neu-
rons. For all the dense layers except the output one, relu acti-
vation function is used, and for the output dense layer, soft-
max is used. After the first Dense layer, a dropout layer with 
rate of 50% is added to overcome overfitting during training. 
It works by ignoring half of the feature detectors (leaving 
half of the hidden layer node value as 0) in each training 
batch. This method can reduce the interaction between fea-
ture detectors (hidden nodes) and make the model more 
general. Since we performed a multi-classification task, in 

[EDA,ECG,RR,HR] → CLt

[posx, posy, posz, rotx, roty, rotz] → CLt
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Fig. 12   One of the proposed 
LSTM-attention structures
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the second part of the whole model, the softmax activation 
function is used for the final output Dense layer to discrimi-
nate features onto the cybersickness level. The algorithm of 
model is shown in Algorithm 1.

5 � Experiment results

We will present and discuss the performance of our network 
model as well as the questionnaires analysis results in this 
section.

Table 5   Accuracy of different models on physiological data

The best result of test accuracy 92.48%, which is shown in bold

LSTM LSTM-Attention Attention-LSTM

Train Accuracy 80.20% 83.6% 85.07%
Test Accuracy 90.59% 92.48% 91.48%

Table 6   Accuracy of different models on avatar’s motion data

The best result of test accuracy 93.55%, which is shown in bold

LSTM LSTM-Attention Attention-LSTM

Train Accuracy 93.15% 94.54% 94.70%
Test Accuracy 93.55% 92.52% 90.25%

Algorithm 1 LSTM-Attention-based motion sickness detection algorithm
Require: D1(virtual avatar location bone & rotation), D2 (physiological data)
Ensure: y

(Detection results)
1: D ← D1, D2;

(Combine the two initial datasets into vector D by RNN)
2: for i = 1 to k do
3: h1, h2...ht ← LSTM(D);

(Enter machine readable vector D into LSTM and obtain the output of the
corresponding hidden layer.)

4: Caculate the attention probability distribution values α1,α2...αt;
5: Attention normalization;
6: v ← f(α, h);

(h are multiplied by the weight and added.)
7: d ← Dropout(v), level = 0.5;
8: end for
9: (trainSet, testSet) ← Split(dataSet);

(The dataset is splitted into two as 80% training set and 20% test set.)
10: (trainSet, validationSet) ← Split(trainSet);

(20% of the train set is reserved for the validation set.)
11: Train (trainSet);
12: (accuracyRate, loss) ← Test(testSet);
13: y ← Softmax(d);

We trained the LSTM-Attention using the Adam (a sto-
chastic optimization method) optimizer with a batch size 
of 100 examples and 50 epochs before testing the model. 
According to former experience, softmax function is 
widely used with the categorical cross entropy loss to test 
multi-classification model. However, to determine which 
estimator function was better for my model, categorical 
cross entropy and binary cross entropy loss were both 
tested. To ensure the performance validity of my model, 
the overall experimental evaluations were performed with 
the validation set using 5-fold cross-validation method. 
The model was trained based on the data of 9 participants. 
We mixed and split the entire dataset into two parts, 80% 
of the data used as training set and the remaining data 
as testing set, then split the training set randomly into 5 
folds, and fit the model using 4 folds while validated the 
model using the 1 remaining fold. We noted down the 
accuracy and loss, repeated this process until every fold 
served as the validation set. Then we took the average of 
the recorded accuracy as the accuracy of the model on the 
training set. Finally we used testing set to test the perfor-
mance of the model.

5.1 � Model performance

Table 5 shows the results using physiological data only 
to make the prediction of cybersickness level. We applied 
different combinations of LSTM and Attention on the 
model for comparison. From the results, we can see that 
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for physiological data, using LSTM-Attention obtained 
the best result of test accuracy 92.48%, which is shown 
in bold.

Table 6 shows the results using avatar’s motion data 
only to make the prediction of cybersickness level. Dif-
ferent combinations of LSTM and Attention were also 
applied on the model for comparison. From the results, 
we acknowledge that for motion data, only using LSTM 
obtained the best result of test accuracy 93.55%, which is 
shown in bold.

Table 7 shows the final results of the model with differ-
ent combinations in the first part. First, we compared the 
results in first three rows, where LSTM was applied on the 
motion data, and three different combinations of LSTM 
and Attention were applied on the physiological data. We 
find that for physiological data, using LSTM Attention 
obtained the best result of test accuracy 96.58%, which 
is shown in bold. This result consisted with the result we 
got earlier with single physiological data input, which 

supports that for physiological data, using LSTM-Atten-
tion can provide a good accuracy.

From Table 7 we can also find that using Attention before 
or after LSTM gave different results for both data. And 
among all the results, the combination of LSTM for motion 
data and LSTM-Attention for physiological data provided 
the highest accuracy of 96.58%.

5.1.1 � Questionnaire results

Pearson correlation coefficient, also known as Pearson 
product-moment correlation coefficient (PPMCC), is used 
to measure the linear correlation between two variables X 
and Y, and its value is between -1 and 1. The correlation 
coefficient can be calculated by the following formula:

Table 8 shows the Pearson correlation coefficients between 
the VRSQ score and cybersickness level (CL), decompos-
ing the VRSQ score into three categories (total, oculomotor 
and disorientation). We found the VRSQ total score was 
significantly correlated with the average CL reported by each 
participant during the experiment (the Pearson correlation 
coefficient is 0.8). The average CL was also found correlated 
with oculomotor component and disorientation component 
total sub-score. The correlation between the average CL and 
oculomotor component sub-score is 0.84, and the correlation 
between the average CL and disorientation component sub-
score is 0.71. The results indicate that oculomotor symptom 
is more related with cybersickness.

In addition, since all the correlation values range from 0.7 
to 0.9, it implies that the use of CL to label the physiologi-
cal data and avatar’s motion data in our experiment is effi-
cient. This way of obtaining labeled data not only provides 
the feasibility for the later establishment of a large-scale 
user cybersickness related database, but also provides the 
possibility for training a more accurate and reliable neural 
network model.

(4-2)Rxy =

∑n

k=1
(xi − x̄)(yi − y)

�

∑n

k=1
(xi − x̄)2

∑n

k=1
(yi − ȳ)2

Table 7   Accuracy of different combined models on whole dataset

The best result of test accuracy 96.58%, which is shown in bold

Motion data & Physiological data Train accuracy Test accuracy

LSTM&LSTM 91.88% 94.85%
LSTM&LSTM-Attention 90.04% 96.58%
LSTM&Attention-LSTM 89.63% 94.91%
LSTM-Attention&LSTM 92.54% 90.68%
LSTM-Attention&LSTM-Attention 92.08% 95.26%
LSTM-Attention&Attention-LSTM 78.07% 92.62%
LSTM-Attention&LSTM-Attention 90.40% 94.78%
Attention-LSTM&LSTM-Attention 92.40% 94.66%
Attention-LSTM&Attention-LSTM 92.13% 91.97%

Table 8   Pearson correlation coefficient between VRSQ score and 
real-time feedback

VRSQ score Oculomotor Disorientation

Cybersickness Level 0.80 0.84 0.71

Table 9   Comparison of Our 
Proposed LSTM-Attention 
Network With Previous 
Approached

The accuracy which achieves 96.58% are shown in bold italic value

References Task Signals Method Accuracy

Pane et al. (2018) Cybersickness EEG CN2 88.90%
Hinkle et al. (2019) Emotion ECG&GSR SVM 80.00%
Kim et al. (2019) Cybersickness EEG CNN+LSTM 90.48%
Sarkar et al. (2019) Cybersickness ECG DMNN 89.4%
Jeong et al. (2019) Cybersickness EEG DNN 94.02%
Ours Cybersickness ECG&EDA LSTM-Attention 96.58%
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5.2 � Results analysis

Although there are some existing works on classification of 
cybersickness based on EEG data, we decided not to take 
into consideration EEG for our experiment due to the high 
price and difficulty in integration with our VR system. In 
the study, we used ECG and EDA, which can be measured 
using simpler and less intrusive wearable devices. Table 9 
illustrates that our proposed model performs robustly when 
being compared to several other studies in the field, even 
with studies using EEG, which achieves 96.58% accuracy 
shown in bold italic value.

As we stated earlier, the information extracted by the 
Attention layer is closely related to its position in the net-
work. The Attention layer directly followed the input layer 
allows us to gain an understanding of the importance of the 
input’s feature space. The Attention layer put after LSTM 
can make the final decision of the model more focused on 
the effective features, and assign the main decision weights 
to the feature dimensions that really help on the final classi-
fication. The feature dimensions as an input to the Attention 
layer have already been abstracted by LSTM, accordingly 
the interpretability of the features is relatively poor.

Secondly, when comparing different results of the models 
using physiological data in Table 5 we find that applying 
Attention after LSTM give the best performance. For the 
physiological data, the Attention after LSTM can pay more 
attention to the potentially useful features extracted from 
raw bio-signal data at the LSTM layer, which maybe was the 
reason of the good result. However, regarding results using 
motion data in Table 6, Attention was not that useful because 
the intention of Attention is using weight parameters to filter 
out irrelevant features, while there is no difference in impor-
tance of the coordinates.

Meanwhile, we can find in Table 7 that the test accuracy 
is higher than train accuracy on almost all the models. We 
conjecture that because of the use of the dropout layer, it 
turns the neural network to a combination of a large set of 
weak classifiers. During training, dropout will randomly 
deactivate sets of classifiers, which may affect the training 
accuracy. However, when testing the model, dropout will 
be automatically ignored and all the weak classifiers will be 
allowed to work in the testing process, hence the test accu-
racy will be higher. Normally, dropout can guarantee a better 
test accuracy, sometimes even better than training accuracy.

Finally, categorical cross entropy and binary cross 
entropy (hereinafter referred to as CE and BCE) were both 
tested to find a better estimator function. Usually CE is 
used for multi-classification model, and BCE is suitable for 
two-class classification. However, BCE can also be used for 
multi-class single label classification problems. After our 
test, there is not much difference between the two and the 
performance of BCE is slightly better than CE.

6 � Conclusion

The main contribution of this paper is to propose an 
approach combining subjective and objective measurements 
to estimate cybersickness using both subjective evaluation 
data, objective physiological signal and neural network 
model. Firstly, we developed a VR platform that can provide 
users with motion sickness experience. Then we integrated 
the platform with bio-signal acquisition system (BIOPAC) 
and added a feedback and logging modules to the platform 
to record the real-time feedback from the users. Next, dur-
ing the experiment, physiological data (EDA and ECG), as 
well as features extracted from ECG (Heart Rate and RR 
interval), avatar’s body motion data and users’ feedback are 
collected. After that, these raw data are preprocessed and fed 
to the neural network model for training. Finally, the LSTM 
attention model which can detect the level of cybersickness 
is obtained, and can be integrated into the real-time cyber-
sickness prediction system described below.

A fivefold cross-validation scheme was used to evaluate 
the performance validity of our model. Average accuracy 
of 96.58% was achieved for classification of level of cyber-
sickness, showing great performance when being compared 
to other related studies (see Table 9). The results show the 
feasibility of accurate classification of cybersickness using 
our cybersickness prediction system. Although the training 
and testing of the network model are offline in this work, 
the model can be integrated into the VR platform for online 
real-time detection of motion sickness in the future.
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