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Tensor methods have gained increasingly a�ention from various applications, including machine learning,
quantum chemistry, healthcare analytics, social network analysis, data mining, and signal processing, to name
a few. Sparse tensors and their algorithms become critical to further improve the performance of these methods
and enhance the interpretability of their output. �is work presents a sparse tensor algorithm benchmark
suite (PASTA) for single- and multi-core CPUs. To the best of our knowledge, this is the �rst benchmark suite
for sparse tensor world. PASTA targets on: 1) helping application users to evaluate di�erent computer systems
using its representative computational workloads; 2) providing insights to be�er utilize existed computer
architecture and systems and inspiration for the future design. �is benchmark suite will be publicly released.

ACM Reference format:

Jiajia Li, Yuchen Ma, Xiaolong Wu, Ang Li, and Kevin Barker. 2016. PASTA: A Parallel Sparse Tensor Algorithm
Benchmark Suite. 1, 1, Article 1 (January 2016), 25 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Tensors draw increasing a�ention from various domains, such as machine learning, quantum
chemistry, healthcare analytics, social network analysis, data mining, and signal processing, to
name a few. Tensor methods have been noted for their ability to discover multi-dimensional inherent
relationships from underlying application logic. A tensor is a multi-dimensional array, generalized
matrices and vectors to more dimensions. In data-oriented tensor applications [22, 50, 54, 106, 121],
sparse tensors are o�en found, where most of its entries are zeros.

High-performance computing (HPC) now enters the era of extreme heterogeneity. As many
general purpose accelerators, such as Graphics Processing Unit (GPUs), Intel Xeon Phi, and Field-
Programmable Gate Array (FPGAs), and domain-speci�c architectures, such as near-memory,
thread migratory architecture Emu [49] and Google Tensor processing unit (TPU) [63], emerge, it
is natural to ask whether the critical sparse-tensor based algorithms can be e�ciently executed on
these platforms, with their non-regular parallelism to be e�ectively exploited. However, the lack of
a concrete, comprehensive, and easy to use sparse tensor algorithm benchmark suite prevents us
from answering this question easily.

In this paper, we �ll this gap by proposing a PArallel Sparse Tensor Algorithm benchmark
suite called PASTA. PASTA incorporates various sparse tensor algorithms and operations, serving
as a handy tool for application developers to assess di�erent platforms, in terms of their tensor
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1:2 J. Li et al.

processing capability. Consisting state-of-the-art sequential and parallel versions, while adopting
the most popular sparse tensor format COO, PASTA can also supply a fair baseline for evaluating
performance improvement brought by new sparse tensor methods. Application developers seeking
to exploit tensor sparsity for further performance speedup may also �nd it useful as a good reference.

�is paper makes the following contributions:
• We show the importance of sparse tensor operations and tensor methods in diverse tensor

applications. (Section 3)
• We extract 12 computational sparse tensor operations as PASTAworkloads: Tensor Element-

Wise operations – Tew-eq (addition/subtraction/multiplication/division) and Tew (addi-
tion/subtraction/multiplication), Tensor-Scalar operations – Ts addition/multiplication,
Tensor-Times-Vector operation (Ttv), Tensor-Times-Matrix operation (Ttm), and Matri-
cized Tensor Times Khatri-Rao Product (Mttkrp). (Section 4)
• We implement sequential and multicore parallel algorithms for all workloads, based on the

most popular coordinate (COO) sparse tensor format. Our experiments and analysis show
the usefulness of PASTA on single- and multi-core CPUs. (Section 5, 6, 7)

2 MOTIVATION

�is work is motivated by �rst demonstrating the challenges of sparse tensor algorithms and then
illustrating that existed libraries or toolsets cannot meet the requirements of a benchmark suite
from diversity, timeliness, research support, and dataset four aspects.

2.1 Challenges of Sparse Tensor Algorithms

We summarize the challenges of sparse tensor algorithms into �ve points:
�e curse of dimensionality refers to the issue that the number of entries of an intermediate or

output tensor can grow exponentially with the tensor order, resulting in signi�cant computational
and storage overheads. Even when the tensor is structurally sparse, meaning it consists mostly of
zero entries, the execution time of one important tensor method, CP decomposition introduced
in Section 3.1, generally grows quadratically with the number of non-zeros [7, 8]. And there is
an increasing interest in applications involving a large number of dimensions [34, 79, 97], which
makes this problem more di�cult.

Mode orientation refers to the issue of a particular storage format favoring the iteration of tensor
modes in a certain sequence, which is of particular concern in the sparse case. Since most methods
of interest require more than one sequence, being e�cient for every sequence generally requires
storing the tensor in multiple formats, thereby trading extra memory for speed. A question arises,
that is whether one can achieve both a neutral mode orientation and compact storage which also
helps reduce memory footprint.

Tensor transformation(s) refers to a common pa�ern for a�aining speed in some implementations
of tensor algorithms, which starts by reorganizing the tensor into a matrix and then perform
equivalent matrix operations using highly tuned linear algebra libraries. Done naı̈vely, this approach
appears to require an extra memory copy, which can even come to dominate the overall running
time. We observe instances in which such a copy consumes 70% or more of the total running time
(in the case of a Ttm operation).

Irregularity refers to two issues. �e �rst is that a tensor may have dimension sizes that vary
widely; the second is that a sparse tensor may have an irregular non-zero pa�ern, resulting in
irregular memory references.
Arbitrary tensor orders generate various implementations of a tensor operation. For the sake of

performance, programmers usually implement and optimize third-order tensor algorithms apart
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from higher-order ones. �ese implementations makes no one optimization method can �t all
variations, e.g., di�erent number of loops and diverse memory access behavior.

�ese challenges bring non-trivial computational and storage overheads, and some of them are
even harder to overcome than their counterparts in classical linear algebra. To overcome these
challenges, it is necessary to build a sparse tensor benchmark suite to evaluate diverse algorithms
and computer systems.

2.2 Requirements for a Benchmark Suite

By surveying some benchmark suites [12, 20, 35, 73, 80, 111, 151], we present the following four
requirements for a benchmark suite.
Diversity. We analyze diversity from two aspects: application diversity and platform diversity.

Application diversity means a benchmark suite should represent a broad and representative applica-
tions. For example, EEMBC benchmark suite [111] is developed for autonomous driving, mobile
imaging, the Internet of �ings, mobile devices, and many other applications; PARSEC benchmark
suite [12] covers computer vision, video encoding, �nancial analytics, animation physics and image
processing, etc.. Sparse tensor methods have a broad application domains (refer to Section 3.2),
the workloads in our benchmark suite also need to represent the diversity of these domains.
Platform diversity is that a benchmark suite should support di�erent computer architectures and
platforms, especially the emerging ones. For example, SPEC benchmarks [35] supports scienti�c
applications on diverse platforms: CPUs, distributed platforms, accelerators, web servers, cloud
platforms, etc. A recent Tartan benchmark [82] collected kernels from machine learning, data
analysis, high performance simulation, molecular dynamics and so on and optimized them on
multi-GPU platforms.
Timeliness. A benchmark suite should be kept updated by including the state-of-the-art data

structures, algorithms, and optimization techniques. Especially for sparse data, the data structure
is closely relevant to the performance of its algorithm. �is phenomenon has been observed
from sparse matrices, where di�erent sparse formats behave quite di�erently on diverse input
matrices [87, 119, 139, 163]. As mentioned in the work [12], an outdated algorithm cannot well
re�ect the current status of an application. �is can easily mislead the researchers using this
benchmark suite to test a machine’s behavior. As the computer architectures keep evolving, an
under-optimized code, e.g., sequential benchmark programs for a multicore machine, cannot be a
fair measurement. Optimized implementations for architectures have to be taken account.
Research support. Research support also includes two aspects: support of domain research and

benchmarked workload research. �e former requires a benchmark suite to be compatible, while
the la�er requires it to be extensible. Since some workloads are still open research problems in
an application domain, a compatible workload should be able to do easy comparison with other
research work by supporting uni�ed input/output format and interface to high-level applications.
�e workload research mainly develops its high performance, power or other e�ciency. An
extensible workload is easy to be assembled with new data structures, algorithms, and optimization
techniques.

Dataset. Data becomes essential to data-intensive applications and their workloads which widely
exist in real world. Traditionally, two types of dataset are considered:synthetic and real data. Real
data comes directly from real-world applications, which can best re�ects the application features.
However, due to some factors such as information protection, sensitive data, etc., researchers
are usually short of data. �us, synthetic data are generated according to some regulations and
scenarios from applications.
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Domains Tensor Methods Workloads

Machine Learning Cpd, Tpm, Tucker, TT, hTucker Ts, Mttkrp, Ttv, Ttm, Ttt
Healthcare Analytics Cpd Mttkrp
Social Network Analysis Cpd, Tucker Ttm
�antum Chemistry Cpd, Tucker Ts, Tew, Ttm, Mttkrp, Ttt
Brain Signal Analysis Cpd Mttkrp
Personalized web search Cpd, Tucker Mttkrp, Ttm
Recommendation systems Cpd, Tucker Mttkrp, Ttm
Signal Processing Cpd Mttkrp
Direct Numerical Simulation Tucker Ttm
Power Grid Cpd, Tucker Mttkrp, Ttm

Table 1. The relationship between tensor domains, tensor methods, and workloads.

2.3 PASTA in Need

Some tensor libraries or toolsets have existed for sparse tensor algorithms. �e most popular
libraries are Tensor Toolbox [8] and TensorLab [147]. �ey are both implemented using MATLAB.
�e main shortcoming is that these two libraries are hard to be implemented on various platforms,
such as multicore CPUs and GPUs, which violates the platform diversity requirement. Besides, their
performance e�ciency is low because of MATLAB environment. Recently, many other highly per-
formance e�cient libraries emerge, such as SPLATT [130], Cyclops Tensor Framework (CTF) [132],
DFacTo [24], GigaTensor [65], HyperTensor [69], GenTen [110], to name a few. However, these
libraries are speci�c to one or two particular sparse tensor operations, this violates the application
diversity requirement. Beyond these, the requirements of timeliness, research support, and dataset
are barely met by these libraries. Our PASTA is proposed to meet all the requirements from our
continuous e�ort.

3 TENSOR METHODS AND APPLICATIONS

�is section describes the broad applications of tensors methods in diverse domains, along with the
tensor methods and their computational operations. �e summarized form is presented in Table 1.

3.1 Tensor Methods

In this section, we summarize tensor methods in three categories: tensor decompositions, tensor
network models, and tensor regression. �ough tensor network models also belong to tensor
decomposition methods, because of their network format and more emphasizing on high-order
tensors, we discuss them separately.

3.1.1 Tensor Decompositions. We introduce three low-rank tensor decompositions which have
applications for sparse data.

Cpd. �e CP decomposition (Cpd) was �rst introduced in 1927 by Hitchcock [51], and inde-
pendently introduced by others [18, 47]. Cpd decomposes an N th-order tensor into a sum of
component rank-one tensors with di�erent weights [74]. In a low-rank approximation, a tensor
rank R is chosen to be a small number less than 100. From a data science standpoint, the results
can be interpreted by viewing the tensor as being composed of R latent rank-1 factors. Cpd has
proven both scalable and e�ective in many applications in Section 3.2.

Other variants of Cpd exist by restructuring of the factors or their constraints to accommodate
diverse situations, such as INDSCAL [18], CANDELINC [19], PARAFAC2 [48, 109], and DEDI-
COM [47]. Many Cpd methods have been proposed in a broad area of research, such as Alternating
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Least Squares (ALS) based methods [47, 68, 69, 74], block coordinate descent (BCD) based meth-
ods [88, 93], Gradient Descent based methods [11, 113, 128, 138], quasi-Newton and Nonlinear Least
Squares (NLS) based methods [22, 45, 57, 117, 138, 145, 154], alternating optimization (AO) with
the alternating direction method of multipliers (ADMM) based methods [13, 124], exact line search
based methods [112, 137], and randomized/sketching methods [9, 21, 104, 115, 136, 148]. Sparse
Cpd comes from two aspects: the sparse tensor from applications [7, 22–24, 65, 70, 74, 83, 84, 86, 89,
110, 113, 121, 126, 129, 130] and the constrained sparse factors from some Cpd models [50, 54, 106].

�e computational bo�leneck of Cpd is the matriced tensor-times-Khatri-Rao product (Mttkrp)
(will be described in Section 4.6).

Tucker. Tucker decomposition, �rst introduced by Ledyard R. Tucker [146], provides a more
general decomposition. It decomposes an N th-order tensor into a small-sized N th-order core tensor
along with N factor matrices that are all orthogonal. �e core tensor models a potentially complex
pa�ern of mutual interaction between tensor modes. Its size determined by N ranks which can be
chosen according to the work [72]. In a low-rank approximation, the rank sizes are usually less
than 100.

Some variants of Tucker decomposition are PARATUCK2 [46], lossy Tucker decomposition [164],
and so on. Methods for Tucker decomposition include higher-order SVD (HOSVD) [32], truncated
HOSVD [32], Alternating Least Squares (ALS) based methods [66], the popular higher-order
orthogonal iteration (HOOI) [33], Newton��Grassmann optimization [36]. Sparse Tucker also
comes from two aspects: the sparse tensor from applications [83, 89, 90, 127] and the constrained
sparse factors.

�e computational tensor kernel of Tucker decomposition is the Tensor-Times-Matrix operation
(Ttm) (will be described in Section 4.4).

Tpm. Tensor power method [5, 33] is an approach for orthogonal tensor decomposition, which
decomposes a symmetric tensor into a collection of orthogonal vectors with corresponding positive
scalars as weights. Some variations have been proposed [5, 158]. When the tensor is sparse, we
need to use sparse method correspondingly.

�e computational tensor kernel of tensor power method is the Tensor-Times-Vector operation
(Ttv) (will be described in Section 4.3).

3.1.2 Tensor Network Models. Cpd and Tucker decompositions assume a model in which all
modes interact with all the other modes, which ignores the situations where modes could interact
in subgroups or hierarchies. Tensor network models decompose a tensor in tensor networks which
expose more localized relationships between modes. Tensor networks have �exibility in modeling
and compute/storage e�ciency especially for high-order tensors.

TT. Tensor Train (TT) decomposition, also called Matrix Product State (MPS) in quantum physics
community [27, 43], was �rst proposed by Ivan Oseledets in the work [101]. TT decomposes a
high-order tensor into a linear sequence of tensor-times-tensor/matrix products. �e contraction
modes are in small rank sizes in low-rank approximation.

�e variants of TT include tensor chain (TC), tensor networks with cycles: Projected Entangled
Pair States (PEPS) [100], Projected Entangled Pair Operators (PEPO) [38], Honey–Comb La�ice
(HCL) [40], Multi-scale Entanglement Renormalization Ansatz (MERA) [100].

�e computational tensor kernels of TT are the Tensor-Scalar (Ts), Tensor-Times-Matrix (Ttm)
and Tensor-Times-Tensor (Ttt) operations. Ts and Ttm will be described in Section 4.2 and 4.4
respectively, and Ttt will be one of our future work.
hTucker. Hierarchical Tucker (hTucker) decomposition, also called hierarchical tensor represen-

tation, was introduced in [27, 42–44]. hTucker recursively splits the set of tensor modes, resulting
a binary tree containing a subset of modes at each node. �is binary tree is called dimension tree,
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and the modes from di�erent nodes do not overlap. TT decomposition is a special case of hTucker
while the dimension tree is linear and extremely unbalanced.

Variants of hTucker include the Tree Tensor Network States (TTNS) model [95], multilayer multi-
con�guration time-dependent Hartree method (ML-MCTDH) [150]. Sparsity has been considered
by Perros et al. in the work [108].

�e computational tensor kernels of hTucker are the Tensor-Scalar (Ts), Tensor-Times-Matrix
(Ttm) and Tensor-Times-Tensor (Ttt) operations. Ts and Ttm will be described in Section 4.2 and
4.4 respectively, and Ttt will be one of our future work.

3.1.3 Tensor Regression. Tensor regression is an extension of classical regression model, but
using tensors to represent input and covariates data. Tensor regression approximates coe�cient
tensor with a low-rank decomposition, thus tensor decomposition methods introduced above can
be easily adopted here. Some tensor regression methods have been proposed [116, 123, 153, 157,
158, 162, 165].

3.2 Tensor Applications

Tensor methods can be used in applications to expose the inherent relationship in the observed
data and to represent the data in a more compressed way. �is section does not keen to give a
thorough survey of tensor applications but emphasizes on showing the broad application scenarios
tensor methods can be applied and useful in. Please refer to these surveys for more complete tensor
applications [5, 26–28, 31, 74, 121].

3.2.1 Machine Learning. �e diversity needs of machine learning algorithms have promoted
the exploitation of various tensor-based decompositions, regressions, and techniques from this
community. In particular, the latent variable model, where hidden factors are assumed to express
structure in observed data, has been frequently expressed using Cpd [55], tensor power method [5],
hTucker [135], and other formats [58].

Cpd, Tucker and TT decompositions have been leveraged in the context of neural networks [56,
59, 79, 96, 97, 120, 131, 156, 159], with the weight matrix of a fully-connected layer or a convolu-
tional layer stored compressedly in a low-rank tensor, thus reducing redundancies in the network
parameterization. As concerns improving theoretical aspects and understanding of deep neural
networks through tensors, Cohen et al. [29] analyzed the expressive power of deep architectures
by drawing analogies between shallow networks and the rank-1 Cpd, as well as between deep
networks and the hTucker decomposition. Novikov et al. applied TT in Google’s TensorFlow [1, 96]
which expresses a wide variety of algorithms as operators (graph nodes) that communicate tensor
objects through the graph’s edges.

Other Machine Learning applications include using TT to improve Markov Random Field (MRF)
inference problem [98] and extending standard Machine Learning algorithms such as Support
Vector Machines and Fisher discriminant analysis to handle tensor-based input [144]. Tensor
methods involving other machine learning tasks such as feature selection and multi-way clustering
will be discussed in other applications below.

3.2.2 Healthcare Analytics. �e work on tensor-based healthcare data analysis has been driven
by the need of improving the interpretability and the robustness of underlying methods, with the
goal that healthcare professionals may eventually use consulting tools based on these methods.
As a result, recent work has focused on modifying traditional tensor methods like Cpd by adding
constraints that be�er describe the underlying data and exploit domain knowledge. One particular
focus is handling sparsity, which is particularly important when handling event-recording tensors
describing healthcare data [52–54, 92, 108, 152, 165].
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3.2.3 Social Network Analysis. Some studies have been done on DBLP authorship data [102]
by using dynamic/static tensor analysis (include Cpd, Tucker decompositions and their variants)
to demonstrate clustering [76, 141], �nd interesting events (or anomalies) in the users’ social
activities [104, 105]. Jiang et al. identi�ed pa�erns in human behavior through a dynamic tensor
decomposition of user interactions within a microblogging service [61]. Sun et al. demonstrated a
sampling-based Tucker decomposition [140], to jointly model the sender-recipient interaction and
share content within business networks. �e work in [10] utilizes tensors to model higher-order
structures, such as cycles or feed-forward loops in a graph clustering framework.

3.2.4 �antum Chemistry. Tensors have a long history in quantum chemistry because of the
nature of high-dimensional data there [71]. Hartree–Fock (HF) is a method of approximation for
the energy of a quantum many-body system and large-scale electronic structure calculations. Koppl
et al. proposed sparsity using local density ��ing in Hartree–Fock calculations, which heavily
involves Ttt and Ttm operations [77]. Lewis et al. introduced a clustered low-rank tensor format to
exploit element and rank sparsities [81]. Block sparsity has been utilized in coupled-cluster singles
and doubles (CCSD) in the work [15, 37, 64, 91, 107]. Scaled opposite spin second order Mller-
Plesset perturbation theory (SOS-MP2) method uses tensor hypercontraction (Thc), approximating
a electron Coulomb repulsion integrals (ERI) tensor by decomposing into lower order tensors, with
sparsity [133].

3.2.5 Data Mining. Tensor decompositions have become a standard approach in brain signal
analysis due to multiple heterogeneous data sources. Some recent methods have been surveyed
in [17, 25]. Electroencephalogram (EEG) and fMRI data are treated as tensors and analyzed by
di�erent tensor decompositions (e.g., Cpd) to study the structure of epileptic seizures [2, 3], be�er
understand the active brain regions and their behavior [30, 78], do feature selection [16], and
model neuroimaging data [94]. BrainQ is a widely available tensor dataset consisting of a sparse
tensor with (subject, brain-voxel, noun) as dimensions and a matrix (noun, properties), which are
measured from brain activity where individual subjects are shown nouns. Factorizing this is known
as a coupled factorization [4], and Papalexakis, et al. demonstrated a scalable method using random
sampling [103]. On the supervised learning se�ing, F. Wang et al. used fMRI data and adapted the
Sparse Logistic Regression to accept tensor input that consequently avoided the loss of correlation
information among di�erent orders [149].

Personalized web search tailors the results of a search query for a particular user by utilizing
the click history of this user’s previous search results. Researchers constructed tensors from (user,
query, webpage) information and used Cpd [75] and Tucker decompositions [142] to tackle this
problem.

Recommendation systems have also found tensor methods e�ective to resolve overloaded tags.
Some approaches have been explored using Cpd and Tucker decompositions and their variants on
collaborative �ltering [155], a tag-recommendation engine [67, 114, 143], personalized tags [39],
and sparse international relationships [118].

3.2.6 Signal Processing. �ere has been an extensive research from the Signal Processing commu-
nity, which examines theoretical aspects of tensor methods [62] such as identi�ability, or improves
existing decompositions [14, 122]. A tutorial addressing signal processing applications can be found
in [28]. Please refer to the survey [121] for more complete applications in signal processing.

3.2.7 Other Areas. �e usage of tensors and tensor decompositions as tools facilitating the
extraction of useful information out of complex data is not limited to the categories mentioned
above. For example, Benson, et al. used Tucker decomposition to compress scienti�c data obtained
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by Direct Numerical Simulation (DNS) [6]. Song et al. applied Cpd to forecast of the power
demand and detect anomalies in smart electrical grid [134]. A variant of Tucker decomposition
was used in AC optimal power �ow in the work [99]. TT was used in the hierarchical uncertainty
quanti�cation to reduce the computational cost of circuit simulation [161]. Electronic design
automation (EDA) problems employed Cpd, Tucker, and TT decompositions to ease the su�er of
the curse of dimensionality [160]. Motion control problems in the context of robotics took TT into
consider for its compressed representations [41].

4 BENCHMARKWORKLOADS

�is section we describe the workloads in PASTA, which includes element-wise addition/subtraction/
multiplication/division, tensor-scalar, tensor-times-vector, tensor-times-matrix, and tensor-times-
matrix sequence operations. We referred to the surveys [5, 26–28, 31, 74, 121] and papers [83] for
these de�nitions.

A tensor, abstractly de�ned, is a function of three or more indices. In computational data analytics,
one may regard a tensor as a multidimensional array, where each of its dimensions is also called a
mode and the number of dimensions or modes is its order. For example, a scalar is a tensor of order
0; a vector is a tensor of order 1; and a matrix, order 2, with two modes (its rows and its columns).
Notationally, we represent tensors as calligraphic capital le�ers, e.g., X ∈ RI×J×K ; matrices by
boldface capital le�ers, e.g., U ∈ RI×J ; vectors by boldface lowercase le�ers, e.g., x ∈ RI ; and
scalars by lowercase le�ers, such as xi jk for the (i, j,k) element of a third-order tensor X. A slice
is a two-dimensional cross-section of a tensor, achieved by �xing all mode indices but two, e.g.,
S::k = X(:, :,k) in MATLAB notation. A �ber is a vector extracted from a tensor along some mode,
selected by �xing all indices but one, e.g., f :jk = X(:, j,k).

A tensor can be reshaped to a matrix, which is called matricization. For a tensorX ∈ RI1×···×In×···×IN ,
its matricized tensor along with mode-n is X(n) ∈ RI1 · · ·In−1In+1 · · ·IN ×In . A matrix can be also reshaped
to a tensor by spli�ing one mode into two or more.

4.1 Tensor Element-Wise Operations

Tensor element-wise (Tew) operations include addition, subtraction, multiplication, and division
operations, which are applied to every corresponding pair of elements from two tensor objects if
they have the same order and shape (dimension sizes). For example, element-wise tensor addition
of X,Y ∈ RI1×···×IN is Z = X. + Y, where

zi1 · · ·iN = xi1 · · ·iN + yi1 · · ·iN . (1)

Similarly for element-wise tensor subtraction Z = X. − Y, multiplication Z = X. ∗ Y, and division
Z = X./Y. When the two input tensors have exactly the same non-zero distribution, element-wise
operations can be easily implemented by iterating all non-zeros of the two sparse tensors and doing
the corresponding operation for each element. �e tricky cases are when the non-zero pa�erns
of tensors X and Y are di�erent and even worse they could be in di�erent shapes. For these two
cases, we cannot easily predict the output tensor Z’s storage space before computation. �ese two
cases we use dynamic vectors and an optimization strategy for parallel algorithms.

4.2 Tensor-Scalar Operations

A Tensor-Scalar (Ts) operation is the addition (Tsa) /subtraction (Tss) /multiplication (Tsm) /division
(Tsd) of a tensor X ∈ RI1×IN with a scalar s ∈ R for every non-zero entry. It is denoted by Y = X×s .
For example, the Tsm operation is de�ned as

yi1 · · ·in−1r in+1 · · ·iN = s × xi1 · · ·in−1in in+1 · · ·iN . (2)
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Since Y = X × s is the same with Y = X/s−1 and Y = X + s is the same with Y = X − (−s), so
implementing Tsa and Tsm is enough.

4.3 Tensor-Times-Vector Operation

�e Tensor-Times-Vector (Ttv) in mode n is the multiplication of a tensor X ∈ RI1×···×In×···×IN
with a vector v ∈ RIn , along mode n, and is denoted by Y = X ×n v. �is results in a I1 × · · · ×
In−1 × In+1 × · · · × IN tensor which has one less dimension. Its operation is de�ned as

yi1 · · ·in−1in+1 · · ·iN =
In∑

in=1
xi1 · · ·in−1in in+1 · · ·iNvin . (3)

4.4 Tensor-Times-Matrix Operation

�e Tensor-Times-Matrix (Ttm) in mode n, also known as the n-mode product, is the multiplication
of a tensor X ∈ RI1×···×In×···×IN with a matrix U ∈ RIn×R , along mode n, and is denoted by
Y = X×n U.1 �is results in a I1 × · · · × In−1 ×R × In+1 × · · · × IN tensor, and its operation is de�ned
as

yi1 · · ·in−1r in+1 · · ·iN =
In∑

in=1
xi1 · · ·in−1in in+1 · · ·iNuinr . (4)

Ttm is a special case of tensor contraction. We consider Ttm speci�cally because of its more
common usage in tensor decompositions for data analysis, such as the Tucker decomposition. Also,
note that R is typically much smaller than In in such decompositions, and typically R < 100.

Ttm is also equivalent to a matrix-matrix multiplication in the following form:

Y = X ×n U ⇔ Y(n) = UX(n). (5)

�erefore, one feasible way to implement an Ttm is to �rst matricize the tensor, then use an
optimized matrix-matrix multiplication to compute the matricized output Y, and, �nally, tensorize
to obtain Y. However it has the tensor-matrix transformation as the extra overhead and does not
work well for sparse tensors.

4.5 Kronecker and Khatri-Rao Products

Kronecker and Khatri-Rao products are both matrix products. �e Kronecker product generalizes the
outer product for matrices. Given U ∈ RI×J and V ∈ RK×L , the Kronecker product U ⊗ V ∈ RIK×JL
is

U ⊗ V =


u11V u12V · · · u1JV
u21V u22V · · · u2JV
...

...
. . .

...
uI1V uI2V · · · uI JV


(6)

�e Khatri-Rao product is a “matching column-wise” Kronecker product between two matrices
with the same number of columns. Given matrices A ∈ RI×R and B ∈ RJ×R , their Khatri-Rao
product is denoted by A � B ∈ R(I J )×R ,

A � B = [a1 ⊗ b1, a2 ⊗ b2, . . . , aR ⊗ bR ] , (7)

where ar and br , r = 1, . . . ,R, are columns of A and B.

1Our convention for the dimensions of U di�ers from that of Kolda and Bader’s de�nition [74]. In particular, we transpose
the matrix modes U, which leads to a more e�cient Ttm under the row-major storage convention of the C language.
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Kronecker and Khatri-Rao products appear frequently in tensor decompositions that are formu-
lated as matrix operations. However, such formulations typically also require redundant computa-
tion or extra storage to hold matrix operands, so in practice these operations are tend to be not
implemented directly but rather integrated into tensor operations.

4.6 Tensor-Times-Matrix Sequence Operation

�ere are two types of tensor-times-matrix sequence operations, Ttm chain and Mttkrp. Ttm
chain is a sequence of Ttm operations with one’s output as the next one’s input. An alternative
way to think Ttm chain is a matriced tensor times the Kronecker product of matrices. Mttkrp,
matricized tensor times Khatri-Rao product, is a matricized tensor times the Khatri-Rao product of
matrices. For an N th-order tensor X and given matrices U(1), . . . ,U(N ), the mode-n Mttkrp is

Ũ
(n)
= X(n)

(
�i,ni=1, ...,NUi

)
= X(n)

(
U(N ) � · · · � U(n+1) � U(n−1) � · · · � U(1)

)
, (8)

where X(n) is the mode-n matricization of tensor X, � is the Khatri-Rao product.

4.7 Others

We also provide the transformation between tensors and matrices and some sorting algorithms for
sparse tensors.

5 DATA STRUCTURES, ALGORITHMS, AND IMPLEMENTATIONS

5.1 Data Structures

Since COO [74] is the simplest and arguably de facto standard way to store a sparse tensor, and it
is mode generic, we only support COO format in this work. Other state-of-the-art formats will
be included as our future work. We use inds and val to represent the indices and values of the
non-zeros of a sparse tensor respectively. val is a size-M array of �oating-point numbers, inds is
a size-M array of integer tuples. Figure 1 shows a 4 × 4 × 3 sparse tensor in COO format. �e
indices of each mode are represented as i , j, and k . Observe that some indices in inds repeat, for
example, entries (1, 0, 0) and (1, 0, 2) have the same i and j indices. �is redundancy suggests some
compression of this indexing metadata should be possible, as proposed in some work [89, 130].

i j k val

0 0 0 1

0 1 0 2

1 0 0 3

1 0 2 4

2 1 0 5

2 2 2 6

3 0 1

3 3 2

7

8

Fig. 1. COO format of an example 4 × 4 × 3 tensor.

5.2 Algorithms

�is section describes the sequential algorithms for the workloads in Section 4. All algorithms
directly operates on the input sparse tensor(s) without explicit tensor-matrix transformation.
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Algorithm 1 Sequential COO-Tew-eq-Addition algorithm for tensors in the same order and shape.
Input: A third-order sparse tensor X,Y ∈ RI×J×K with M non-zeros;
Output: Sparse tensor Z ∈ RI×J×K ;

. Z = X. + Y

1: Allocate Z space with M non-zeros; . Pre-allocation space.
2: form = 1, . . . ,M do

3: inds1
z (m) = inds1

x (m), inds2
z (m) = inds2

x (m), inds3
z (m) = inds3

x (m);
4: valz (m) = valx (m) + valy (m);
5: return Z;

5.2.1 Tew. As mentioned in Section 4.1, Tew operation has two cases: one is between two
tensors in exactly the same shape and non-zero distribution; the other only requires the two tensors
are in the same tensor order.

For the �rst case, we show Tew addition as an example in Algorithm 1. �e output tensor has
the same shape and non-zero distribution with the two input tensors, thus it can be pre-allocated.
�en the calculation simply does addition by looping all non-zeros.

Algorithm 2 Sequential COO-Tew-Addition algorithm for general tensors.
Input: A third-order sparse tensor X ∈ RI1×J1×K1 with M1 non-zeros, Y ∈ RI2×J2×K2 with M2 non-zeros;
Output: Sparse tensor Z ∈ RI3×J3×K3 ;

. Z = X. + Y

1: I3 =max{I1, I2}, J3 =max{J1, J2}, K3 =max{K1,K2} . Unify the tensor shape.
2: Sort X and Y in the same dimension order.
3: m1 = 1,m2 = 1
4: whilem1 < M1 andm2 < M2 do

5: if indsx == indsy then

6: Append(inds1
z , inds1

x (m1)); Append(inds2
z , inds2

x (m1)); Append(inds3
z , inds3

x (m1));
7: Append(valz , valx (m1) + valy (m2));
8: if indsx > indsy then

9: Append(inds1
z , inds1

y (m1)); Append(inds2
z , inds2

y (m1)); Append(inds3
z , inds3

y (m1));
10: Append(valz , valy (m2));
11: if indsx < indsy then

12: Append(inds1
z , inds1

x (m1)); Append(inds2
z , inds2

x (m1)); Append(inds3
z , inds3

x (m1));
13: Append(valz , valx (m1));
14: if m1 < M1 then

15: Append(inds1
z , inds1

x (m1, :)); Append(inds2
z , inds2

x (m1, :)); Append(inds3
z , inds3

x (m1, :));
16: Append(valz , valx (m1, :))
17: if m2 < M2 then

18: Append(inds1
z , inds1

x (m2, :)); Append(inds2
z , inds2

x (m2, :)); Append(inds3
z , inds3

x (m2, :));
19: Append(valz , valx (m2, :))
20: return Z;

For the second case, its algorithm is shown in Algorithm 2. �e output tensor size is set by
the maximum dimension size of the two input tensors. Since we do not know the number of the
output non-zeros, we cannot pre-allocate the space of the output tensor Z but using dynamic
allocation to append non-zeros. First, we need to sort tensors X and Y in the order of mode
1 � 2 � 3, then compare the indices in lexicographical order for each non-zero pair-to-pair, e.g.,
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indices (2, 1, 1) > (1, 1, 2) > (1, 1, 1). If two indices are the equal, then we append the indices and
the sum of the two non-zero values to the output Z. Otherwise, we append the smaller indices and
its corresponding value to Z. Only if we run out of non-zeros in either X or Y, we append the rest
indices and values of the other one to Z.

Algorithm 3 Sequential COO-Tsm algorithm.
Input: A third-order sparse tensor X ∈ RI×J×K with M non-zeros;
Output: Output sparse tensor Y ∈ RI×J×K ;

. Y = X × s
1: Allocate Y space with M non-zeros; . Pre-allocation space.
2: form = 1, . . . ,M do

3: inds1
y (m) = inds1

x (m), inds2
y (m) = inds2

x (m), inds3
y (m) = inds3

x (m);
4: valy (m) = s × valx (m);
5: return Y;

5.2.2 Ts. Ts algorithm is simple. �e output Y can be pre-allocated and computed by looping
all non-zeros. Algorithm 3 shows the Tsm algorithm.

Algorithm 4 Sequential COO-Ttv algorithm.
Input: A third-order sparse tensor X ∈ RI×J×K , dense vector V ∈ RK , mode n = 3;
Output: Sparse tensor Y ∈ RI×J ;

. Y = X ×n v
1: Pre-process to obtain MF: the number of mode-n �bers of X and fptr: the beginnings of each X mode-n

�ber, sized MF.
2: Allocate Y space with MF non-zeros; . Pre-allocation space.
3: for f = 1, . . . ,MF do

4: inds1
Y (f ) = inds1

X (fptr(f )), inds2
Y (f ) = inds2

X (fptr(f ))
5: form = fptr(f ), . . . , fptr(f + 1) − 1 do

6: k = inds3
X (m)

7: valY (f )+ = valX (m) × u(k)
8: Return Y;

5.2.3 Ttv. Ttv algorithm in mode-n is shown in Algorithm 4. It �rst pre-compute the number
of �bers MF of input tensor X and the beginning positions of each �ber. �en we can pre-allocate
the output tensor Y with MF , because this product does not in�uence the non-zero layout for I and
J modes. �e algorithm loops all the �bers of X, and a reduction happens for all non-zeros in each
�ber.

5.2.4 Ttm. Ttm algorithm is illustrated in Algorithm 5. Similarly to Ttv algorithm, we obtain
the number of �bers MF and the beginning positions of each �ber then MF × R space are allocated
for the output tensor Y. �e algorithm loops all the MF �bers and does a reduction between
sized-R vectors. �is Ttm algorithm directly operates on the input sparse tensor by avoiding tensor
transformation. �e explanation of Algorithm 5 can be found in the work [85, 90].

5.2.5 Mttkrp. Mttkrp algorithm is shown in Algorithm 6, the output matrix of which is
initialized before and only needs to be updated. �is algorithm loops all non-zeros of the tensor X
and times the corresponding two matrix vectors, to update the designated output matrix vector.
Readers can refer more details of this algorithm in [7].
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Algorithm 5 Sequential COO-Ttm algorithm [85].
Input: A sparse tensor X ∈ RI×J×K , a dense matrix U ∈ RK×R , and an integer n = 3;
Output: Sparse tensor Y ∈ RI×J×R ;

. Y = X ×n U
1: Pre-process to obtain MF: the number of mode-n �bers of X and fptr: the beginnings of each X mode-n

�ber, size MF.
2: Allocate Y space with MF × R non-zeros; . Pre-allocation space.
3: for f = 1, . . . ,MF do

4: i = inds1
X (fptr(f )), j = inds2

X (fptr(f ))
5: for r = 1, . . . ,R do

6: inds1
Y (f × R + r ) = i , inds2

Y (f × R + r ) = j, inds3
Y (f × R + r ) = r

7: form = fptr(f ), . . . , fptr(f + 1) − 1 do

8: k = inds3
X (m)

9: value = valX (m)
10: for r = 1, . . . ,R do

11: valY (f × R + r )+ = value × u(k × R + r )
12: Return Y;

Algorithm 6 Sequential COO-Mttkrp algorithm ([7]).
Input: A third-order sparse tensor X ∈ RI×J×K , dense matrices B ∈ RJ×R ,C ∈ RK×R ;
Output: Updated dense matrix Ã ∈ RI×R ;

. Ã← X(1)(C � B)
1: form = 1, . . . ,M do

2: i = inds1(m), j = inds2(m), k = inds3(m);
3: value = val(m)
4: for r = 1, . . . ,R do

5: Ã(i × R + r )+ = value ×C(k × R + r ) × B(j × R + r )
6: return Ã;

Table 2. The analysis of data storage and their algorithms for third-order cubical tensors (X ∈ RI×I×I ). We
consider all input tensors withM nonzero entries andMF fibers, I � MF � M . The indices use 32 bits, and
values are single-precision floating-point numbers with 32 bits.

Workloads Storage Work Memory Arithmetic
(Bytes) (Flops) Access (Bytes) Intensity (AI)

Tew 48M M 36M 1/36
Ts 32M M 32M 1/32

Ttv (16M + 12MF) 2M (12M + 20MF) ∼ 1/6
Ttm (16M + 16MFR + 4IR) 2MR 4MR + 8M + 12MFR + 8MF ∼ 1/2

Mttkrp (16M + 12IR) 3MR 12MR + 16M ∼ 1/4

According to the above algorithms, we compute the storage, the number of �oating-point
operations (Flops), the amount of memory access in bytes, and the arithmetic intensity (the ratio of
#Flops/#Bytes) in Table 2. For simplicity, we use a cubical third-order sparse tensor X ∈ RI×I×I
with M non-zeros and MF �bers as an example. Because of the irregular access pa�ern of sparse
tensors, the memory access does not consider the cache e�ect. All workloads have arithmetic
intensity less than 1, thus it is hard to easily achieve good performance on common architectures.
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While Mttkrp has the most Flops and memory access, its arithmetic intensity is smaller than Ttm,
which it ∼ 1/2. Tew and Ts have the smallest arithmetic intensity and the largest storage due to the
output tensor. Despite of di�erent algorithm behavior, these algorithms are generally considered
memory intensive, which demonstrates the emphasis of our PASTA.

5.3 Multicore Implementations

Some workloads are easy to parallelize. We parallelize the loop of all non-zeros in Tew-eq (Algo-
rithm 1) and Ts (Algorithm 3). For Ttv (Algorithm 4) and Ttm (Algorithm 5), the loop of �bers is
parallelized because each �ber computation is independent.
Tew (Algorithm 2) is di�cult to be parallelized because of its dynamic append operations and

no pre-allocation available. We partition the two tensors in such a way that there is no overlap
between their indices, then we run Tew algorithm locally for a sub-tensor in each thread and
append the results to a local output bu�er. �e partitioning �rst split one of the two tensors (say X)
by slices and meanwhile tend to evenly distribute its non-zeros. �is makes sure that all non-zeros
of a slice cannot be split into two partitions. �en the partitioning of the other tensor (say Y) is
according to this slice partitioning strategy. In this case, we assure every partition does not overlap
with each other, thus they can independently computed in parallel.

We parallelize the loop of all non-zeros of Mttkrp (Algorithm 6) as well, but Line 4 may have
data race by writing into the same location of Ã. We implemented two solutions: 1) Use atomics to
protect the correctness, but the performance su�ers much; 2) Employ privatization approach to
allocate a thread-local bu�er. �e data is �rst wri�en to this bu�er by each thread privately, then a
global reduction for the bu�ers is used to get the �nal results. In this case, we can generally get
be�er performance than using atomics.

For these parallel implementations, we have not considered the NUMA e�ect, which will be
another piece of our future work.

6 DATASET

PASTA now only considers real-world data as input. �e sparse tensors derived from real-world
applications, that appear in Table 3, ordered by decreasing non-zero density separately for third-
and fourth-order tensors. Most of these tensors are included in �e Formidable Repository of
Open Sparse Tensors and Tools (FROSTT) dataset (Refer to the details in [125]). �e darpa (source
IP-destination IP-time triples), fb-m, and fb-s (short for “freebase-music” and “freebase-sampled”,
entity-entity-relation triples) are from the dataset of HaTen2 [60], and choa is built from electronic
health records (EHRs) of pediatric patients at Children’s Healthcare of Atlanta (CHOA) [109].

7 EXPERIMENTS

We tested these schemes experimentally on a Linux-based Intel Xeon E5-2698 v3 multicore server
platform with 32 physical cores distributed on two sockets, each with 2.3 GHz frequency. �e
processor microarchitecture is Haswell, having 32 KiB L1 data cache and 128 GiB memory. �e
code artifact is wri�en in the C language using OpenMP parallelization, and was compiled using
icc 18.0.1. All experiments use 32 threads for parallel code except being pointed out otherwise. �e
execution time are all averaged by �ve runs. For Ttm and Mttkrp, we set the rank R = 16.

We demonstrate the sequential and multicore parallel performance for every workload on the
dataset (Table 3).
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Table 3. Description of sparse tensors.

Tensors Order Dimensions #Non-zeros Density
vast 3 165K × 11K × 2 26M 6.9 × 10−3

nell2 3 12K × 9K × 29K 77M 2.4 × 10−5

choa 3 712K × 10K × 767 27M 5.0 × 10−6

darpa 3 22K × 22K × 24M 28M 2.4 × 10−9

fb-m 3 23M × 23M × 166 100M 1.1 × 10−9

fb-s 3 39M × 39M × 532 140M 1.7 × 10−10

deli 3 533K × 17M × 2.5M 140M 6.1 × 10−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1 × 10−13

crime 4 6K × 24 × 77 × 32 5M 1.5 × 10−2

nips 4 2K × 3K × 14K × 17 3M 1.8 × 10−6

enron 4 6K × 6K × 244K × 1K 54M 5.5 × 10−9

flickr4d 4 320K × 28M × 1.6M × 731 113M 1.1 × 10−14

deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3 × 10−15

7.1 Tew

Figure 2 and 3 show the execution time of the two cases of Tew addition (Algorithm 1 and 2): in the
same non-zero pa�ern and only in the same tensor order, on all third- and fourth-order tensors. We
use the same tensor for the two input for Tew-eq and Tew to be�er show the algorithm e�ect. We
observe for both cases, parallel Tew outperforms sequential Tew. However, the speedup of Tew-eq
is 3.64 − 5.18×, while the speedup of Tew is much smaller, which is 1.13 − 1.70×. �is is because:
1) the parallel strategy of Tew could have a lot more load imbalance than Tew-eq’s even non-zero
parallelization; 2) some tensors cannot fully use all 32 threads due to the slice partitioning (a heavy
slice cannot be further partitioned in Algorithm 2). Besides, due to the dynamic append operation,
the sequential Tew is tens of times slower than sequential Tew-eq. From our experiments, Tew
subtraction, multiplication, and division behave very similar to Tew addition in execution time.

Ti
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e 
(s

ec
)

0.00

0.03

0.06

0.09

0.12

0.15
omp

seq

deli4d�ickr4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

0.005
0.001

0.002
0.001

Fig. 2. Tew-eq-addition for sparse tensors in the same shape and non-zero pa�ern.

7.2 Ts

Figure 4 plots the sequential and parallel execution time of Tsm. Parallel Tsm achieves 2.17 − 5.92×
speedup over sequential Tsm, this is comparable to Tew-eq in Figure 2. �e sequential Tsm executes
faster than the sequential Tew, which veri�es the analysis in Table 2 and that these two algorithms
are memory-bound. (Because they have the same #Flops, compute-bound algorithms should have
similar execution time.) From the experiments, the execution times of sequential and parallel Tsa
are very close to Tsm.
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Fig. 3. Tew-addition for sparse tensors in the same order.
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Fig. 4. Tsm execution time.

7.3 Ttv

We illustrate sequential and parallel Ttv time in Figure 5. Parallel Ttv outperforms sequential case
by 5.21 − 12.45×, this is much higher than the speedup of Tew-eq, Tew, and Tsm. �is behavior
again matches the analysis in Table 2 that Ttv has higher arithmetic intensity. Since higher
arithmetic intensity potentially generates less memory contention, thus multicore parallelization
could bene�t more.
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Fig. 5. Ttv: the sum of execution time of all the modes.

7.4 Ttm

Figure 6 shows the sequential and parallel execution time of Ttm. �e speedup of parallel Ttm over
sequential case is 4.09 − 15.67× which is comparable with Ttv’s. �is also veri�es the analysis that
Ttm has the highest arithmetic intensity. Sequential Ttm is 4.91 − 11.11× slower than sequential
Ttv, that shows the di�erent behavior of timing a dense vector versus a dense matrix.
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Fig. 6. Ttm: the sum of execution time of all the modes.

7.5 Mttkrp

We use privatization technique for parallel Mttkrp, because it performs be�er than atomics
technique on most of tensors. �e execution time of sequential and parallel Mttkrp is shown in
Figure 7, where the parallel case gains 0.77− 9.49× speedup. For tensor darpa, the only case parallel
Mttkrp is slower than sequential one because of its large thread-local bu�er which consumes a
large portion of time to do reduction. �e atomics parallel approach could be be�er in this case,
7.93 versus 7.32 (sequential Mttkrp), but there is still not speedup for this tensor. Mttkrp obtains
smaller speedup than Ttm and Ttv mainly because data race exists in the output. Even we use
privatization technique to avoid the data race, the extra reduction still take nontrivial amount of
time.
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Fig. 7. Mttkrp: the sum of execution time of all the modes.

From our experiments and analysis above, these relatively simple workloads can well re�ect
some architecture characteristics. �is can help architecture designers and application users to
evaluate computer systems.

8 CONCLUSION

�is work presents a sparse tensor algorithm benchmark suite (PASTA) for single-core and multi-
core CPUs, which is the �rst sparse tensor benchmark to the best of our knowledge. PASTA consists
of Tew, Ts, Ttv, Ttm, Mttkrp workloads to represent sparse tensor algorithms from di�erent
tensor methods in a various application scenarios. Besides, these workloads can re�ect computer
architecture features di�erently from our analysis.

As a benchmark suite, PASTA already processes good properties such as application and ma-
chine diversity, state-of-the-art data structures, algorithms, and optimization techniques included,
compatibility for research support, and real-world data set. Some future work should be done to
make PASTA more complete and robust: 1) more computer systems support, such as GPUs, FPGAs,
and distributed systems; 2) more workloads especially tensor-times-tensor product (Ttt); 3) more
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state-of-the-art sparse tensor formats, e.g., hierarchical COO (HiCOO) and compressed sparse �ber
(CSF) format; 4) synthetic data generation for more precise machine performance measurement.

ACKNOWLEDGMENTS

�is research was partially funded by the US Department of Energy, O�ce for Advanced Scienti�c
Computing (ASCR) under Award No. 66150: ”CENATE: �e Center for Advanced Technology
Evaluation”. Paci�c Northwest National Laboratory (PNNL) is a multiprogram national laboratory
operated for DOE by Ba�elle Memorial Institute under Contract DE-AC05-76RL01830.

REFERENCES

[1] Martı́n Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
[2] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent Yener. 2007. Multiway Analysis of Epilepsy

Tensors. Bioinformatics 23, 13 (July 2007), i10–i18. h�ps://doi.org/10.1093/bioinformatics/btm210
[3] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. 2011. Scalable tensor factorizations for

incomplete data. Chemometrics and Intelligent Laboratory Systems 106, 1 (2011), 41–56.
[4] Evrim Acar, Tamara G. Kolda, and Daniel M. Dunlavy. 2011. All-at-once Optimization for Coupled Matrix and Tensor

Factorizations.
[5] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. 2014. Tensor Decompositions

for Learning Latent Variable Models. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 2773–2832.
[6] W. Austin, G. Ballard, and T. G. Kolda. 2016. Parallel Tensor Compression for Large-Scale Scienti�c Data. In 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). 912–922. h�ps://doi.org/10.1109/IPDPS.2016.67
[7] Bre� W. Bader and Tamara G. Kolda. 2007. E�cient MATLAB computations with sparse and factored tensors. SIAM

Journal on Scienti�c Computing 30, 1 (December 2007), 205–231. h�ps://doi.org/10.1137/060676489
[8] Bre� W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Tensor Toolbox (Version 3.0-dev). Available online. h�ps:

//www.tensortoolbox.org
[9] Casey Ba�aglino, Grey Ballard, and Tamara G. Kolda. [n. d.]. A Practical Randomized CP Tensor Decomposition.

SIAM J. Matrix Anal. Appl. 39, 2 ([n. d.]), 876–901.
[10] Austin R Benson, David F Gleich, and Jure Leskovec. 2015. Tensor Spectral Clustering for Partitioning Higher-order

Network Structures. arXiv preprint arXiv:1502.05058 (2015).
[11] Alex Beutel, Abhimanu Kumar, Evangelos Papalexakis, Partha Pratim Talukdar, Christos Faloutsos, and Eric P Xing.

2013. FLEXIFACT: Scalable Flexible Factorization of Coupled Tensors on Hadoop. In NIPS 2013 Big LearningWorkshop.
[12] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. �e PARSEC benchmark suite: Characteriza-

tion and architectural implications. In Proceedings of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 72–81.

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 3, 1 (Jan. 2011),
1–122. h�ps://doi.org/10.1561/2200000016

[14] R. Bro, N. D. Sidiropoulos, and G. B. Giannakis. 1999. A fast least squares algorithm for separating trilinear mixtures.
In Independent Component Analysis.

[15] Justus A. Calvin and Edward F. Valeev. 2016. TiledArray: A massively-parallel, block-sparse tensor framework
(Version v0.6.0). Available from h�ps://github.com/valeevgroup/tiledarray.

[16] Bokai Cao, Lifang He, Xiangnan Kong, Philip S. Yu, Zhifeng Hao, and Ann B. Ragin. 2014. Tensor-Based Multi-view
Feature Selection with Applications to Brain Diseases. In Data Mining (ICDM), 2014 IEEE International Conference on.
40–49. h�ps://doi.org/10.1109/ICDM.2014.26

[17] Bokai Cao, Xiangnan Kong, and Philip S. Yu. 2015. A review of heterogeneous data mining for brain disorders. CoRR
abs/1508.01023 (2015). h�p://arxiv.org/abs/1508.01023

[18] J. Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual di�erences in multidimensional scaling via
an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 3 (01 Sep 1970), 283–319. h�ps:
//doi.org/10.1007/BF02310791

[19] J. D. Carroll, S. Pruzansky, and J. B. Kruskal. 1980. CANDELINC: A general approach to multidimensional analysis of
many-way arrays with linear constraints on parameters. Psychometrika 45 (1980), 3–24.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S. Lee, and K. Skadron. 2009. Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE International Symposium on Workload Characterization (IISWC). 44–54.
h�ps://doi.org/10.1109/IISWC.2009.5306797

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://doi.org/10.1093/bioinformatics/btm210
https://doi.org/10.1109/IPDPS.2016.67
https://doi.org/10.1137/060676489
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://doi.org/10.1561/2200000016
https://github.com/valeevgroup/tiledarray
https://doi.org/10.1109/ICDM.2014.26
http://arxiv.org/abs/1508.01023
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://doi.org/10.1109/IISWC.2009.5306797


PASTA: A Parallel Sparse Tensor Algorithm Benchmark Suite 1:19

[21] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. 2016. SPALS: Fast Alternating Least Squares via Implicit
Leverage Scores Sampling. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garne� (Eds.). Curran Associates, Inc., 721–729. h�p://papers.nips.cc/paper/
6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf

[22] Eric C Chi and Tamara G Kolda. 2012. On tensors, sparsity, and nonnegative factorizations. SIAM J. Matrix Anal.
Appl. 33, 4 (2012), 1272–1299.

[23] Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. 2018. Blocking Optimization Techniques for Sparse Tensor
Computation. 568–577. h�ps://doi.org/10.1109/IPDPS.2018.00066

[24] Joon Hee Choi and S. Vishwanathan. 2014. DFacTo: Distributed Factorization of Tensors. In Advances in Neural
Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger (Eds.).
Curran Associates, Inc., 1296–1304.

[25] Andrzej Cichocki. 2013. Tensor Decompositions: A New Concept in Brain Data Analysis? arXiv preprint
arXiv:1305.0395 (2013).

[26] Andrzej Cichocki. 2014. Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions.
CoRR abs/1403.2048 (2014).

[27] A. Cichocki, N. Lee, I. V. Oseledets, A. Phan, Q. Zhao, and D. Mandic. 2016. Low-Rank Tensor Networks for
Dimensionality Reduction and Large-Scale Optimization Problems: Perspectives and Challenges PART 1. ArXiv
e-prints (Sept. 2016). arXiv:cs.NA/1609.00893

[28] A. Cichocki, D. Mandic, L. De Lathauwer, Guoxu Zhou, Qibin Zhao, C. Caiafa, and H.A. Phan. 2015. Tensor
Decompositions for Signal Processing Applications: From two-way to multiway component analysis. Signal Processing
Magazine, IEEE 32, 2 (March 2015), 145–163. h�ps://doi.org/10.1109/MSP.2013.2297439

[29] Nadav Cohen, Or Sharir, and Amnon Shashua. 2015. On the Expressive Power of Deep Learning: A Tensor Analysis.
CoRR abs/1509.05009 (2015). h�p://arxiv.org/abs/1509.05009

[30] Ian Davidson, Sean Gilpin, Owen Carmichael, and Peter Walker. 2013. Network Discovery via Constrained Tensor
Analysis of fMRI Data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’13). ACM, New York, NY, USA, 194–202. h�ps://doi.org/10.1145/2487575.2487619

[31] Lieven De Lathauwer. 2008. Decompositions of a Higher-Order Tensor in Block Terms—Part I: Lemmas for
Partitioned Matrices. SIAM J. Matrix Anal. Appl. 30, 3 (2008), 1022–1032. h�ps://doi.org/10.1137/060661685
arXiv:h�p://dx.doi.org/10.1137/060661685

[32] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. A multilinear singular value decomposition. SIAM
J. Matrix Anal. Appl 21 (2000), 1253–1278.

[33] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. On the Best Rank-1 and Rank-(R1,R2,. . .,RN)
Approximation of Higher-Order Tensors. SIAM J. Matrix Anal. Appl. 21, 4 (March 2000), 1324–1342. h�ps://doi.org/
10.1137/S0895479898346995

[34] Lieven De Lathauwer, Nico Vervliet, Martijn Bouss, and O�o Debals. 2017. Dealing with curse and blessing of
dimensionality through tensor decompositions.

[35] Kaivalya M Dixit. 1991. �e SPEC benchmarks. Parallel computing 17, 10-11 (1991), 1195–1209.
[36] L. Eldn and B. Savas. 2009. A Newton��Grassmann Method for Computing the Best Multilinear Rank-$(r 1,$ $r 2,$

$r 3)$ Approximation of a Tensor. SIAM J. Matrix Anal. Appl. 31, 2 (2009), 248–271. h�ps://doi.org/10.1137/070688316
arXiv:h�ps://doi.org/10.1137/070688316

[37] Evgeny Epifanovsky, Michael Wormit, Tomasz Ku, Arie Landau, Dmitry Zuev, Kirill Khistyaev, Prashant
Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I. Krylov. [n. d.]. New implementation of high-level
correlated methods using a general block tensor library for high-performance electronic structure calcula-
tions. Journal of Computational Chemistry 34, 26 ([n. d.]), 2293–2309. h�ps://doi.org/10.1002/jcc.23377
arXiv:h�ps://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23377
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