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Abstract Heterogeneous many-cores are now an in-
tegral part of modern computing systems ranging from

embedding systems to supercomputers. While heteroge-
neous many-core design offers the potential for energy-
efficient high-performance, such potential can only be

unlocked if the application programs are suitably paral-

lel and can be made to match the underlying heteroge-

neous platform. In this article, we provide a comprehen-

sive survey for parallel programming models for hetero-

geneous many-core architectures and review the compil-
ing techniques of improving programmability and porta-
bility. We examine various software optimization tech-

niques for minimizing the communicating overhead be-

tween heterogeneous computing devices. We provide a

road map for a wide variety of different research areas.

We conclude with a discussion on open issues in the area

and potential research directions. This article provides

both an accessible introduction to the fast-moving area

of heterogeneous programming and a detailed bibliog-

raphy of its main achievements.

Keywords Heterogeneous Computing · Many-Core

Architectures · Parallel Programming Models

1 Introduction

Heterogeneous many-core systems are now common-

place [159, 160]. The combination of using a host CPU
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together with specialized processing units (e.g., GPG-

PUs, XeonPhis, FPGAs, DSPs and NPUs) has been

shown in many cases to achieve orders of magnitude

performance improvement. As a recent example, Google’s

Tensor Processing Units (TPUs) are application-specific

integrated circuits (ASICs) to accelerate machine learn-

ing workloads [162]. Typically, the host CPU of a het-

erogeneous platform manages the execution context while

the computation is offloaded to the accelerator or copro-
cessor. Effectively leveraging such platforms not only
enables the achievement of high performance, but in-
creases energy efficiency. These goals are largely achieved

using simple, yet customized hardware cores that use

area more efficiently with less power dissipation [69].

The increasing importance of heterogeneous many-

core architectures can be seen from the TOP500 and

Green500 list, where a large number of supercomputers

are using both CPUs and accelerators [23,44]. A closer

look at the list of the TOP500 supercomputers shows

that seven out of the top ten supercomputers are built

upon heterogeneous many-core architectures (Table 1).

On the other hand, this form of many-core architectures
is being taken as building blocks for the next-generation
supercomputers. e.g., three US national projects (Au-

rora [36], Frontier [38], and El Capitan [37]) will all

implement a heterogeneous CPU-GPU architecture to

deliver its exascale supercomputing systems.

The performance of heterogeneous many-core pro-

cessors offer a great deal of promise for future comput-

ing systems, yet their architecture and programming

model significantly differ from the conventional multi-

core processors [59]. This change has shifted the bur-

den onto programmers and compilers [132]. In particu-

lar, programmers have to deal with heterogeneity, mas-

sive processing cores, and a complex memory hierarchy.
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Table 1 The on-node parallel programming models for the top10 supercomputers (as of November 2019).

Rank Name Compute node architecture Heterogeneous? Programming models

#1 Summit
IBM POWER9 22C CPU (x2)+
NVIDIA Volta GV100 (x6)

YES CUDA/OpenMP

#2 Sierra
IBM POWER9 22C CPU (x2)+
NVIDIA Volta GV100 (x4)

YES CUDA/OpenMP

#3 TaihuLight Sunway SW26010 260C YES Athread/OpenACC

#4 Tianhe-2A
Intel Xeon E5-2692v2 12C CPU (x2)+
Matrix-2000 (x2)

YES OpenCL/OpenMP

#5 Frontera Xeon Platinum 8280 28C CPU NO OpenMP

#6 Piz Daint
Xeon E5-2690v3 12C CPU (x1)+
NVIDIA Tesla P100 (x1)

YES CUDA

#7 Trinity
Intel Xeon E5-2698v3 16C CPU &
Intel Xeon Phi 7250 68C

NO OpenMP

#8 ABCI
Intel Xeon Gold 6148 20C CPU (x2)+
NVIDIA Tesla V100 SXM2 (x4)

YES CUDA

#9 SuperMUC-NG Intel Xeon Platinum 8174 24C CPU NO OpenMP

#10 Lassen
IBM POWER9 22C CPU (x2)+
NVIDIA Tesla V100 (x4)

YES CUDA/OpenMP

Thus, programming heterogeneous many-core architec-

tures are extremely challenging.

How to program parallel machines has been a sub-

ject of research for at least four decades [122]. The

main contextual difference between now and the late

80s/early 90s is that heterogeneous parallel processing

will be shortly a mainstream activity affecting standard

programmers rather than a high-end elite endeavour

performed by expert programmers. This changes the

focus from one where raw performance was paramount

to one where programmer productivity is critical. In

such an environment, software development tools and

programming models that can reduce programmer ef-

fort will be of considerable importance.

In this work, we aim to demystify heterogeneous
computing and show heterogeneous parallel program-

ming is a trustworthy and exciting direction for sys-

tems research. We start by reviewing the historical de-

velopment and the state-of-the-art of parallel program-

ming models for heterogeneous many-cores by exam-

ining solutions targeted at both low-level and high-

level programming (Section 2). We then discuss code
generation techniques employed by programming mod-
els for improving programmability and/or portability

(Section 3), before turning our attention to software

techniques for optimizing the communication overhead

among heterogeneous computing devices (Section 4).

Finally, we outline the potential research directions of

heterogeneous parallel programming models (Section 5).

2 Overview of Parallel Programming Models

Parallel programming model acts as the bridge between

programmers and parallel architectures. To use the shared
memory parallelism on multi-core CPUs, parallel pro-
gramming models are often implemented on threading

mechanisms such as the POSIX threads [47]. When it

comes to heterogeneous many-cores, we have to deal

with the heterogeneity between host and accelerators.

And parallel programming models have to introduce

relevant abstractions of controlling them both, which is

the focus of this survey work.

Figure 1 summarizes the family of parallel program-
ming models for heterogeneous many-core architectures.

Based on the performance-programmability tradeoff, we

categorize them into low-level programming models (Sec-

tion 2.1) and high-level programming models (Section 2.2).

The expected application performance increases from

high-level programming models to low-level program-

ming models, whereas the programmability decreases.

The low-level programming models are closest to

the many-core architectures, and expose the most hard-

ware details to programmers through data structures

and/or APIs. These models are typically bound to spe-

cific hardware architectures, and are also known as na-

tive programming models. In contrast, the high-level

programming models raise the languages’ abstraction

level, and hide more architecture details than the low-

level models. Thus, the high-level models often enable

better programmability.

Skeleton-based Programming Model

(e.g., SkePU, SkelCL, Boost)

Directive-based Programming Model

(e.g., OpenMP, OpenACC)

C++-based Programming Model

(e.g., SYCL, C++ AMP, PACXX)

Domain-specific Programming Model

(e.g., TensorFlow, Halide, OP2)

CUDA

(NVIDIA GPU)

Level-Zero

(Intel GPU)

Renderscript

(ARM, GPU)

DirectX

(GPU w/ Win)

ROCm

(AMD GPU)

Vivado C++

(Xilinx FPGA)

libSPE

(Cell/B.E.)

Athread

(SW26010)

Low-level Programming Models

High-level Programming Models

P
e

rfo
rm

a
n

ce

P
ro

g
ra

m
m

a
b

il
it

y

Fig. 1 The family of parallel programming models for het-
erogeneous many-core architectures.
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2.1 Low-level Parallel Programming Models

2.1.1 Prelude of GPGPU Programming

The GPU Shading Lanuages At early 2000s, com-

modity graphics hardware was rapidly evolving from a

fixed function pipeline into a programmable vertex and

fragment processor. Originally, these programmable GPUs

could only be programmed using assembly language.

Later, Microsoft and NVIDIA introduced their C-like

programming languages, HLSL and Cg respectively, that

compile to GPU assembly language [14,144]. The shad-

ing languages make it easier to develop programs in-

crementally and interactively. This is achieved by using

a high-level shading language, e.g., Cg, based on both

the syntax and the philosophy of C.

Although these shading languages can hide details
of the graphics pipeline (e.g., the number of stages or

the number of passes), they are specialized for real-time

shading and remain very graphics-centric [64]. In partic-

ular, these high-level shading languages do not provide

a clean abstraction for general-purpose computing on

graphics hardware. Programs operate on vertices and

fragments separated by a rasterization stage; memory

is divided up into textures and framebuffers; the inter-

face between the graphics hardware and host is through

a complex graphics API. This often prevents applying

the graphics hardware onto new applications.

Brook for GPGPUs The graphics processors feature

instruction sets general enough to perform computation

beyond the rendering domain. Applications such as lin-

ear algebra operators [131], numerical simulation [111],

and machine learning algorithms [176] have been ported

to GPUs and achieved a remarkable speedup over tradi-

tional CPUs. These research works demonstrate the po-

tential of graphics hardware for more general-purpose

computing tasks, i.e., GPGPUs.

The first work to explore this idea is the Brook

programming system [64]. By introducing the concepts

of streams, kernels and reduction operators, Brook ab-

stracts the GPU as a streaming processor. This abstrac-

tion is achieved by virtualizing various GPU hardware

features with a compiler and runtime system.

The Brook language is an extension to the stan-

dard ANSI C and is designed to incorporate the idea

of data parallel computing and arithmetic intensity. A

Brook program consists of legal C code plus syntactic
extensions to denote streams and kernels. The Brook
programming system consists of BRCC and BRT. BRCC

is a source-to-source compiler which translates Brook
codes (.br) into C++ codes (.cpp). BRT is a runtime

software which implements the backend of the Brook

primitives for target hardware. We regard Brook as an

origin work for programming GPGPUs, and other par-

allel programming models for heterogeneous many-cores

inherit many features from it.

2.1.2 Vendor-Specific Programming Models

Vendor-specific programming models are bound to ven-

dors and their manufactured hardware. The typical het-

erogeneous many-core architectures include Cell/B.E.,

NVIDIA GPU, AMDGPU, Intel XeonPhi, FPGA, DSP,

and so on [63]. Hardware vendors introduces their unique

programming interfaces, which are restricted to their

own products. This section examines each many-core

architecture and its native programming models.

libSPE for IBM Cell Broadband Engine The Cell

Broadband Engine Architecture (CEBA) and its first

implementation Cell/B.E. is a pioneering work of het-

erogeneous computing [105, 121]. Cell/B.E. [163] was

designed by a collaboration effort between Sony, Toshiba,

and IBM (STI), and takes a radical departure from con-

ventional multi-core architectures. Instead of integrat-

ing identical commodity hardware cores, it uses a con-

ventional high performance PowerPC core (PPE) which

controls eight simple SIMD cores (i.e., Synergistic Pro-
cessing Elements, SPEs). Each SPE contains a syner-
gistic processing unit (SPU), a local store, and a mem-

ory flow controller (MFC). Prior works have demon-

strated that a wide variety of algorithms on the Cel-

l/B.E. processor can achieve performance that is equal

to or significantly better than a general-purpose pro-

cessor [52, 69, 173, 199]. Its architecture variant, i.e.,

PowerXCell 8i, has been used to build the first peta-

scale supercomputer, Roadrunner [55, 128,130].

Programming the CEBA processor is challenging [74].

IBM developed IBM SDK for Multicore Acceleration

with a suite of software tools and libraries [50]. The

SDK provides various levels of abstractions, ranging

from the low-level management library to the high-level

programming models, to tap the Cell’s potential. Man-

aging the code running on the SPEs of a CEBA-based
system can be done via the libspe library (SPE run-

time management library) that is part of the SDK pack-
age [50]. This library provides a standardized low-level

programming interface that manages the SPE threads,

and enables communication and data transfer between

PPE threads and SPEs. Besides, the SDK contains high-

level programming frameworks to assist the develop-
ment of parallel applications on this architecture.

CUDA for NVIDIA GPUs NVIDIA implemented

the unified shader model, where all shader units of graph-

ics hardware are capable of handling any type of shad-

ing tasks, in the Tesla and its subsequent designs [13].

Since G80, NVIDIA’s GPU architecture has evolved

from Tesla [141,200], Fermi [2], Kepler [7], Maxwell [6],



4 J. Fang et. al

Pascal [8], Volta [10], to Turing [15]. Each generation

of NVIDIA’s microarchitecture introduces new features

based on its previous one, e.g., the Volta architecture

features tensor cores that have superior deep learning

performance over regular CUDA cores.

NVIDIA introduces CUDA to program its comput-

ing architecture for general-purpose computation [29].
The CUDA programming model works with program-
ming languages such as C, C++, and Fortran. A CUDA
program calls parallel kernels, with each executing in

parallel across a set of threads. The programmer orga-

nizes these threads in thread blocks and grids of thread

blocks. The GPU instantiates a kernel program on a

grid of parallel thread blocks. Each thread within a
thread block executes an instance of the kernel, and has
a thread ID within its thread block, program counter,

registers, and per-thread private memory. This accessi-

bility makes it easier for us to use GPU resources.

With CUDA, NVIDIA GPUs have been used to

speed up both regular applications [99,182] and irregu-

lar ones [117, 150], with an impressive performance in-

crease over multi-core CPUs. Nevertheless, Lee et al.

argue that the performance gap can be narrowed by

applying optimizations for both CPUs and GPUs [135].

Table 1 shows that five of the top ten supercomput-

ers use NVIDIA GPUs as the accelerators. The GPU-

enabled architectures will continue to play a key role in
building future high-performance computing systems.

CAL/ROCm for AMD GPUs AMD/ATI was the

first to implement the unified shader model in its TeraS-

cale design, leveraging flexible shader processors which

can be scheduled to process a variety of shader types [13].

The TeraScale is based upon a very long instruction
word (VLIW) architecture, in which the core executes
operations in parallel. The Graphics Core Next (GCN)

architecture moved to a RISC SIMD microarchitecture,

and introduced asynchronous computing [12]. This de-

sign makes the compiler simpler and leads to a better

utilization of hardware resources. The RDNA (Radeon

DNA) architecture is optimized for efficiency and pro-
grammability, while offering backwards compatibility
with the GCN architecture [16]. As the counterpart to

the gaming-focused RDNA, CDNA is AMD’s compute-

focused architecture for HPC and ML workloads.

Close-To-the-Metal (CTM) is a low-level program-

ming framework for AMD’s GPUs. This framework en-

ables programmers to access AMD GPUs with a high-

level abstraction, Brook+ [1], which is an extension

to the Brook GPU specification on AMD’s compute

abstraction layer (CAL) [3]. Then AMD renamed the

framework as AMD APP SDK (Accelerated Parallel

Programming) built upon AMD’s CAL, with an OpenCL

programming interface. In November 2015, AMD re-

leased its “Boltzmann Initiative” and the ROCm open

computing platform [34]. ROCm has a modular de-
sign which lets any hardware-vendor drivers support
the ROCm stack [34]. It also integrates multiple pro-

gramming languages, e.g., OpenCL and HIP, and pro-

vides tools for porting CUDA codes into a vendor-neutral

format [25]. At the low level, ROCm is backed by a

HSA-compliant language-independent runtime, which

resides on the kernel driver [35].

On AMD GPUs, a kernel is a single sequence of

instructions that operates on a large number of data

parallel work-items. The work-items are organized into

architecturally visible work-groups that can communi-

cate through an explicit local data share (LDS). The

shader compiler further divides work-groups into mi-

croarchitectural wavefronts that are scheduled and ex-

ecuted in parallel on a given hardware implementation.

Both AMD and NVIDIA use the same idea to hide the

data-loading latency and achieve high throughput, i.e.,

grouping multiple threads. AMD calls such a group a

wavefront, while NVIDIA calls it a warp.

MPSS/COI for Intel XeonPhis Intel XeonPhi is a

series of x86 manycore processors, which inherit many

design elements from the Larrabee project [174]. It uses

around 60 cores and 30 MB of on-chip caches, and fea-

tures a novel 512-bit vector processing unit within a
core [92]. This architecture has been used to build the
Tianhe-2 supercomputer, which was ranked the world’s
fastest supercomputer in June 2013 [42].

The main difference between an XeonPhi and a GPU
is that XeonPhi can, with minor modifications, run soft-

ware that was originally targeted to a standard x86
CPU. Its architecture allows the use of standard pro-
gramming languages and APIs such as OpenMP. To

access the PCIe-based add-on cards, Intel has devel-

oped the Manycore Platform Software Stack (MPSS)

and the Coprocessor Offload Infrastructure (COI) [26].

Intel COI is a software library designed to ease the
development of software and applications that run on

Intel XeonPhi powered device. The COI model exposes

a pipelined programming model, which allows work-

loads to be run and data to be moved asynchronously.

Developers can configure one or more pipelines to inter-

act between sources and sinks. COI is a C-language API
that interacts with workloads through standard APIs.
It can be used with any other programming models,

e.g., POSIX threads.

Level-Zero for Intel XPUs Intel GPUs have been

getting more powerful and are strong contenders in the

graphics and GPGPU space [66]. Apart from the in-

tegrated graphics, Intel has revealed its discrete GPU

architecture (Xe) targeted for datacenter and HPC ap-
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Domain Applications

Optimized Middleware and Frameworks

Data Parallel C++

(Intel SYCL)
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Direct Programming API-based Programming
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MKL-DNN Parallel STLDLDT
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Host Interface Level-Zero Interface

CPU GPU AI NPU FPGA

Fig. 2 Intel’s OneAPI software stack. Reproduced from [27].

plications, e.g., being as the primary compute engine for

the Aurora supercomputer [36]. Figure 2 shows Intel’s

OneAPI software stack to unify programming across its

compute product portfolio (CPUs, GPUs, NPUs and

FPGAs) with a single set of APIs [27]. At the low level,

the Level-Zero API is to provide direct-to-metal inter-

faces to offload accelerator devices. This interface is in-

tended for providing explicit controls needed by higher-

level runtime APIs and libraries, e.g., OneAPI. Its design

is initially influenced by other low-level APIs.

DirectCompute for GPUs Microsoft’s DirectCom-

pute is an application programming interface that sup-

ports running compute kernels on GPGPUs on Win-

dows. DirectCompute is part of the Microsoft DirectX

collection of APIs.

DirectCompute exposes GPU’s compute functional-
ity as a new type of shader - the compute shader, which

is very similar to the existing vertex, pixel and geometry

shaders, but with much more general purpose process-

ing capabilities [4]. The compute shader is not attached

specifically to any stage of the graphics pipeline, but

interacts with the other stages via graphics resources

such as render targets, buffers and textures. Unlike a

vertex shader, or a pixel shader, the compute shader

has no fixed mapping between the data it is processing

and threads that are doing the processing. The compute

shader also allows unordered memory access, in partic-

ular the ability to perform writes to any location in a

buffer. The DirectCompute architecture shares a range
of computational interfaces with NVIDIA’s CUDA.

Renderscript for GPUs Many mobile phones have

followed the same trend of desktop architectures, in-
tegrating different types of processing units onto the
same chip. These new mobile phones include multi-core

CPUs (e.g., Qualcomm Snapdragon) as well as GPUs

(e.g., ARM Mali or Qualcomm Adreno).

Google released Renderscript as an official GPU com-

puting framework for Android in 2011 [33]. Render-

script provides high performance and portability across

mobile hardware architectures. It provides three pri-
mary tools: a simple 3D rendering API, a compute API
similar to CUDA, and a C99-derived language.

2.1.3 A Unified Programming Model

The use of heterogeneous many-core architectures in

high-performance computing has attracted increasingly

more interests, particularly due to the growth of graph-

ics processing units. Much of this growth has been driven

by NVIDIA’s CUDA ecosystem for developing GPGPU
applications on NVIDIA GPUs. However, with the in-
creasing diversity of GPUs, including those from AMD,
ARM, Intel and Qualcomm, OpenCL (Open Comput-

ing Language) has emerged as an open and vendor-

agnostic standard for programming GPUs as well as

other accelerating devices such as APUs and FPGAs.

OpenCL is an open programming standard that is

maintained by the Khronos group. Its API consists of

a C library supporting device programming in the C99

or C++ language. An OpenCL application is composed

of two parts: one or more kernels and an OpenCL host

program. The kernel specifies functions to be executed

in a parallel fashion on the processing cores. The host

sets up the execution environment, reads in data, and

instantiates and enqueues the kernels to run.

Code Portability vs. Performance Portability

OpenCL stands out in its portability by defining an

abstract execution model and a platform model. Port-

ing OpenCL to a new many-core device is a matter

of providing an implementation of the runtime library

that conforms to the standard, achieving the goal of
code portability [90]. OpenCL applications written for
one vendor’s platform should run correctly on other

vendors’ platforms, if they are not using any vendor-

proprietary or platform-specific extensions. The code

portability of OpenCL is ensured by Khronos’ certi-

fication program, which requires OpenCL vendors to
pass rigorous conformance tests on their platform be-
fore they claim it is OpenCL “conformant” [11,40].

Different from code portability, OpenCL cannot guar-

antee the goal of performance portability. This is be-
cause the hardware implementation of OpenCL is ven-
dor dependent. Different hardware vendors have their

unique device architectures. As a result, an OpenCL ap-
plication written and optimized for one vendor’s plat-
form is unlikely to have the same performance as on
other vendors’ platforms [60]. To achieve portable per-

formance, researchers have investigated various tech-

niques, which are discussed in Section 3.

Closed and Open-source Implementation Table 2

shows that there exist a variety of OpenCL implemen-
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tations. AMD is working on the “Boltzmann Initiative”

and the ROCm open compute platform, which contains

its OpenCL implementation [18]. Furthermore, the Gal-

lium Compute Project maintains an implementation

of OpenCL mainly for AMD Radeon GCN (formerly

known as CLOVER [21]), and it builds on the work

of the Mesa project to support multiple platforms. Re-

cently, Intel has turned to implementing OpenCL for
its CPUs, GPUs and FPGAs, and made its partial im-
plementation open to the public [22]. BEIGNET was

an open-source implementation of OpenCL released by

Intel in 2013 for its GPUs (Ivy Bridge and newer), but

is now deprecated [19]. IBM once released its OpenCL

implementation for programming CEBA [62].

In recent years, the mobile system-on-chips (SOCs)

have advanced significantly in computing power. GPUs

in the mobile SOCs are very powerful. To leverage the

computing power, mobile vendors enable OpenCL onto

their hardware. ZiiLABS enabled OpenCL on the Zi-

iLABS platforms and released the ZiiLABS OpenCL

SDK [45]. This implementation aims to unlock the full

potential of the StemCell (SIMD) array architecture to

deliver new levels of performance. ARM has also im-

plemented OpenCL for Mali GPUs [100]. Qualcomm

provides the Qualcomm Adreno SDK to take full ad-

vantage of the graphics and computation power pro-

vided by the Adreno GPU [11]. To facilitate seamless

migration of applications between TI SoCs, TI has cus-
tomized OpenCL implementation for its SOCs (ARM
CPUs+TI DSP) [43].

There are several open-source implementations de-

veloped and maintained by the academia. POCL is an

implementation built on Clang and LLVM. It supports
CPUs, TTA, NVIDIA GPUs, and the HSA-based archi-

tectures [120]. Based on POCL, the researchers from

National University of Defense Technology have built

an OpenCL implementation (MOCL) for the Matrix-2000

many-core architecture [207] and the FT-1500A multi-

core CPU [94]. With the help of the generic C++ com-

pilers, FreeOCL can supports a large range of multi-core
CPUs [20]. SnuCL is an open-source OpenCL framework

developed at Seoul National University. This framework

stands out that it extends the original OpenCL seman-

tics to the heterogeneous cluster environment [123].

One OpenCL to Rule them All? It has been around

ten years since the birth of the OpenCL standard in
2009 [30,146]. We had expected that, OpenCL became
the unified de facto standard programming model for

heterogeneous many-core processors, like OpenMP for

multi-core CPUs [41] and MPI for large-scale clusters [28].

However, this is not the case. The fact is that, CUDA

has been the de facto programming environment on

GPGPUs for years. Table 1 shows that five of the top

ten supercomputers use GPGPU architectures and take

CUDA as their programming methodology.

We believe that there are several factors behind

OpenCL’s tepid popularity. The first factor is due to the

diversity of many-core architectures in terms of process-

ing cores and memory hierarchies. For example, using

scratch-pad memory has been very popular in DSPs,

game consoles (IBM Cell/B.E.), and graphic processor,

while caches are typically used in Intel XeonPhi. To

be compatible with the diverse many-cores, the next

version of the OpenCL standard will let more OpenCL

features become optional for enhanced deployment flex-

ibility. The optionality includes both API and language
features e.g., floating point precisions. By doing so, we
can enable vendors to ship functionality precisely tar-

geting their customers and markets [184]. The second

factor is due to the commercial interests. The vendors

would prefer using a specialized programming model

for their hardware and building a complete software

ecosystem. From the perspective of programmers, we

often choose to use the CUDA programming interface

for NVIDIA GPU. This is because NVIDIA optimize its

CUDA software stack, and thus applications in CUDA

can often enable us to yield a better performance [91].

To summarize, OpenCL is eligible, yet not practical
to be a unified programming model for heterogeneous

many-core architectures. For future, we argue that, nei-
ther OpenCL nor CUDA dominates the programming

range for heterogeneous many-core architectures, but

it is likely that they coexist. Our investigation work

shows that the low-level programming models share a

common working paradigm, and vendors would choose

to support their unique one. Thereafter, they should

develop a complete ecosystem (e.g., domain libraries)

around this programming model.

2.2 High-level Parallel Programming Models

To lower programming barrier, various strategies have

been proposed to improve the abstraction level, i.e.,

high-level programming models. This is achieved by re-

defining programmers’ role and letting compilers and

runtime systems take more work. Ultimately, the high-

level parallel programming models aim to free program-

mers from mastering the low-level APIs or performing

architecture-specific optimizations. There are five types

of high-level programming models: (1) the C++-based

programming models, (2) the skeleton-based program-

ming models, (3) the STL-based programming models,

(4) the directive-based programming models, and (5)

the domain-specific programming models.
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Table 2 The OpenCL Implementations: Open- and closed-source

Developer SDK Hardware Operating System Version Open-Source

AMD OpenCL AMD ROCm AMD CPU/GPU/APU Linux/Windows 2.0 Y
NVIDIA OpenCL NVIDIA CUDA NVIDIA GPU Linux/Windows 1.2 N
Intel OpenCL Intel Intel SDK Intel CPU/GPU/MIC/FPGA Linux/Windows 2.1 Y
IBM OpenCL IBM IBM SDK IBM CPU/CEBA Linux 1.1 N
ARM OpenCL ARM ARM ARM CPU/Mali GPU Linux 1.2, 2.0 N
Qualcomm OpenCL Qualcomm Adreno GPU SDK Qualcomm Adreno GPU Andriod 2.0 N
TI OpenCL TI Processor SDK TI C66x DSP Linux 1.1 Y
ZiiLABS OpenCL ZiiLABS ZIILABS SDK ZMS StemCell processors Andriod N/A N
POCL Tampere U. POCL CPU/ASIP/NVIDIA GPU/HSA GPUs Linux/Windows 1.2, 2.0 Y
Clover OpenCL Denis Steck Mesa AMD GPU Linux 1.1 Y
FreeOCL zuzuf FreeOCL CPU Linux/Windows 1.2 Y
MOCL NUDT MOCL Matrix-2000 Linux 1.2 Y
SnuCL SNU SNUCL CPU/GPU/Cluster Linux 1.2 Y

2.2.1 C++-based Programming Models

SYCL is a cross-platform abstraction layer that builds

on OpenCL’s concepts, portability and efficiency for

programming heterogeneous platforms in a single-source

style with standard C++. This programming model
enables the host and kernel code for an application
to be contained in the same source file, and achieves
the simplicity of a cross-platform asynchronous task

graph [17]. Intel has been developing oneAPI that in-

cludes DPC++ (an implementation of SYCL with ex-

tensions) for its CPUs, GPUs and FPGAs [27]. C++

AMP (C++ Accelerated Massive Parallelism) is a het-
erogeneous programming model based on C++. Built
upon DirectX11, this model uses parallel for each to in-

stantiate device code, and provides users with a C++

programming interface. Thus, the programmer can write

GPU code in a more concise and controlled way [102].

Inspired by C++ AMP and C++14, HC (Heteroge-

neous Computing) C++ API is a GPU-oriented C++

compiler developed by AMD [24]. HC removes the “re-

strict” keyword, supports additional data types in ker-

nels, and provides fine-grained control over synchro-

nization and data movement.

PACXX is a unified programming model for program-

ming heterogeneous many-core systems, to mitigate the

issue of long, poorly structured and error-prone codes in

low-level programming models [106]. In PACXX, both

host and device programs are written in the C++14

standard, with all modern C++ features including type

inference (auto), variadic templates, generic lambda ex-

pressions, as well as STL containers and algorithms.

PACXX consists of a custom compiler (based on the
Clang front-end and LLVM IR) and a runtime system,
which facilitate automatic memory management and

data synchronization [107,108].

Other C++-based parallel programming models in-

clude boost.compute [180], HPL [188,189], VexCL [82],

hlslib for FPGAs [95], alpaka [205], and so on. By re-

specting the philosophy of modern C++, these high-

level programming models integrate the host code and

the device code into a single C++ file, and use a unified

data structure to manage the buffer to avoid manual
management of data synchronization. By doing so, pro-
grammers can transparently use the parallel computing

resources of many-core architectures, without having to

master their details. An important feature of the C++-

based parallel programming model is that, it can form

a natural match with other C++ programs, which facil-

itates the development and composition of large-scale

scientific computing applications, significantly improv-

ing programmability and productivity.

2.2.2 Skeleton-based Programming Models

Skeleton programming is a programming paradigm based
on algorithmic skeleton [72]. A skeleton is a predefined
“high-order function”, such as map, reduce, scan, farm,

and pipeline, which implements a common pattern of

computation and/or data dependence. Skeleton pro-
gramming provides a high level of abstraction and porta-
bility, with a quasi-sequential programming interface,

as their implementations encapsulate all the underlying
details and architecture features, including paralleliza-
tion, synchronization, communication, buffer manage-

ment, accelerator usage and many others.

SkePU is a skeleton programming framework based

on the C++ template for multi-core CPU and multi-

GPU systems. This framework contains six data-parallel

and one task-parallel skeletons, and two generic con-

tainer types. The backend support of SkePU includes
OpenMP, OpenCL and CUDA, where Clang is used to
facilitate the source-to-source code transformation [78].
The interface of SkePU2 is improved based on C++11

and variadic templates, and user-defined functions are

expressed with the lambda expression [89].

SkelCL is another skeleton library for heterogeneous

platforms [178]. It provides programmers with vector

data type, high-level data distribution mechanism to

enable the automatic buffer management, implicit data
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transfers between host and accelerator. This aims to sig-

nificantly simplify the programming of heterogeneous

many-core systems. The SkelCL backend translates each

skeleton into an OpenCL kernel, and enables the SkelCL

codes to run on both multi-core CPUs and heteroge-

neous GPUs. This framework also supports automatic

mapping of tasks onto multiple devices [177].

Other skeleton-based programming models include

Muesli [71], Marrow [145], ParallelME [49,65], etc. Com-

pared with the C++-based programming models, the

skeleton programming model is lack of generality, i.e.,

some computing or communication patterns are diffi-

cult to be represented by the builtin skeletons. Thus

we have to extend the existing skeletons when neces-

sary. Programmers are also responsible for synthesizing

their target applications with builtin skeletons.

2.2.3 STL-based Programming Models

TBB (Threading Building Blocks) is a C++ template
library developed by Intel for parallel programming of

its multi-core CPUs. It implements a set of algorithm
components (e.g., parallel for, parallel reduce) and a set

of containers (e.g., concurrent queue, concurrent vector).

The TBB runtime system is responsible for managing

and scheduling threads to execute tasks, and balanc-

ing the computing loads between multi-cores by task

stealing. By doing so, TBB aims to unbind program-

mers and the underlying hardware [126]. HPX (High
Performance ParallelX) is a generic C++ runtime sys-
tem for parallel and distributed systems [114, 115]. By

providing a unified programming interface, HPX can

transparently use the underlying hardware resources

with an asynchronous multi-tasking mechanism. HPX

aims to be easy-to-use, and achieves high scalability

and portability. HPX enables the support of heteroge-

neous computing, by introducing the concepts of target,

allocator and executor within the hpx.compute subpro-

ject. The backend of the computing platform includes

CUDA, HCC and SYCL [73,116].

Thrust is a C++ standard parallel template library

for NVIDIA GPUs. It implements four basic core al-

gorithms for each, reduce, scan and sort [58]. By do-

ing so, users need not know how to map the calcula-

tion to the computing resources (e.g., thread block size,

buffer management, algorithm variant selection, etc.),

but only pay attention to the calculation itself. This ap-

proach can greatly improve productivity. Thrust’s back-

end is based on CUDA, TBB, and OpenMP. Kokkos al-

lows programmers to write modern C++ applications

in a hardware-agnostic manner [87]. It is a program-

ming model for parallel algorithms that use many-core

chips and share memory among those cores. This pro-

gramming model includes computation abstractions for

frequently used parallel computing patterns, policies

that provide details for how those computing patterns

are applied, and execution spaces that denote on which

cores the parallel computation is performed.

Other similar STL-based programming models in-
clude Microsoft’s PPL (Parallel Patterns Library) [9],

RAJA [57], etc. This kind of programming model im-
plements the functions and their extensions in the stan-
dard C++ template library, and provides concurrent
data structures. Thus, this programming model can un-

bind the parallel programming itself with the underly-

ing hardware resources. Programmers do not need to

care about the details of the underlying architectures,

which effectively lowers the programming barrier.

2.2.4 Directive-based Programming Models

Another high-level programming models are based on

directive annotations, including both industry standar-

dards (OpenMP [41], OpenACC [39], Intel LEO [26])

and academia-maintained efforts (OmpSs [86], Xcal-

ableMP [155], Mint [186], OpenMDSP [113]). These
programming models only have to add directive con-
structs before the target code region, while the tasks

of offloading, parallelization and optimization are dele-

gated to compilers and runtime systems. On one hand,

programmers do not have to master a large number

of architectural details, thus leading to an improved

productivity. On the other hand, programmers can an-

notate their codes incrementally, which also lowers the

barrier of debugging. Therefore, this programming model

enables the non-experts to enjoy the performance ben-

efits of heterogeneous many-cores without being entan-

gled in the architecture details.

Multiple directive-based programming models can
be mapped onto a single many-core architecture. As

we have mentioned in Section 2.1.2, programming the

Cell/B.E. processor is challenging. There is a signifi-

cant amount of research in programming models that

attempts to make it easy to exploit the computation

power of the CEBA architecture. Bellens et al. present

Cell superscalar (CellSs) which addresses the automatic

exploitation of the functional parallelism of a sequen-

tial program through the different processing elements

of the CEBA architecture [59]. Based on annotating the

source code, a source-to-source compiler generates the

necessary code and a runtime library exploits the exist-

ing parallelism by building a task dependency graph.

The runtime takes care of task scheduling and data

movements between the different processors of this ar-

chitecture. O’Brien et al. explore supporting OpenMP

on the Cell processor [157] based on IBM’s XL compiler,
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so that programmers can continue using their familiar

programming model and existing code can be re-used.

2.2.5 Domain-Specific Programming Models

To achieve an even better performance and programma-

bility, the domain-specific programming models are pre-

ferred on heterogeneous many-cores.

Mudalige et al. propose a high-level programming

framework, OPS, for multi-block structural grid appli-

cations [5]. The frontend of OPS leverages a common

set of APIs for users, and the backend generates highly
optimized device code for target platforms. The OP2

framework is built upon OPS. The difference is that

OPS is suitable for dealing with multi-block structured

grids, while OP2 is targeted for unstructured grid ap-

plications [97]. AMGCL is a header-only C++ library for

solving large sparse linear systems with algebraic multi-
grid (AMG) method [81]. This library has a minimal
dependency, and provides both shared-memory and dis-
tributed memory versions of the algorithms. It allows

for transparent acceleration of the solution phase with

OpenCL, CUDA, or OpenMP [83].

Dubach et al. propose a new Java compatible object-

oriented programming language (Lime) [85]. It uses high-

level abstractions to explicitly represent parallelism and

computation. The backend compiler and runtime can

automatically manage the data mapping and gener-

ate OpenCL/CUDA code for GPUs. Halide is a new
language for generating efficient image processing code

on heterogeneous platforms and simplifying program-

ming [164,165]. Its frontend is embedded in C++, while

its backend includes x86, ARMv7, CUDA and OpenCL.

Equally used in image processing, KernelGenius is a

high-level programming tool for EMM (explicitly man-

aged memory many cores) [136]. Membarth has imple-
mented a source-to-source compiler, which translates a

high-level description into low-level GPU codes (OpenCL,

CUDA or renderscript) [147, 148]. Sidelnik et al. have

proposed to implement a high-level programming lan-

guage, Chapel, for controlling task allocation, commu-

nication and data locality structure on multi-core CPUs

and GPUs. A program in Chapel can run on multiple
platforms, and achieve the same performance as CUDA

programs [175]. Hong et al. describe Green-Marl, a

domain-specific language, whose high-level language con-

structs allow developers to describe their graph analysis

algorithms intuitively, but expose the data-level paral-

lelism inherent in the algorithms [118].

The deep learning frameworks (e.g., Tensorflow [46],

PyTorch [161], and MXNet [70]) provide users with script

or functional languages (e.g., Python, R, Scala, Julia)

in the frontend. These script languages are used to

describe the workflow of training or inference. At the

backend, the frameworks dispatch tasks to the underly-
ing heterogeneous systems (GPUs or FPGAs) via low-
level or other high-level programming models such as

OpenCL, CUDA or SYCL. This whole process of map-

ping tasks is transparent to users.
To sum up, the domain-specific programming mod-

els have the potential to improve programmer produc-

tivity, to support domain-specific forms of modularity,

and to use domain-specific information to support opti-

mizations [144]. Most of these advantages are obtained

by raising the language’s abstraction level with domain-

specic data types, operators, and control constructs. Al-

though the domain-specific programming models can

generate efficient kernel code, they are limited to spe-

cific application domains.

3 Compiling Techniques for Improved

Programmability and Portability

Translating code in one programming model to another

enables code reuse and reduce the learning curve of a

new computing language. Ultimately, code translation

can improve programmability, portability, and perfor-

mance. In this section, we review the code translation
techniques between parallel programming models on
heterogeneous many-core architectures.

3.1 C-to-CUDA

CUDA provides a multi-threaded parallel programming
model, facilitating high performance implementations

of general-purpose computations on GPUs. However,
manual development of high-performance CUDA code
still requires a large amount of effort from program-

mers. Programmers have to explicitly manage the mem-

ory hierarchy and multi-level parallel view. Hence the

automatic transformation of sequential input programs

into parallel CUDA programs is of significant interest.
Baskaran et al. describe an automatic code trans-

formation system that generates parallel CUDA code

from input sequential C code, for affine programs [56].

Using publicly available tools that have made polyhe-

dral compiler optimization practically effective, the au-

thors develop a C-to-CUDA transformation system that

generates two-level parallel CUDA code that is opti-
mized for efficient data access. The performance of the
automatically generated CUDA code is close to hand-
optimized versions and considerably better than their

performance on multi-core CPUs. Building on Baskaran’s

experience, Reservoir Labs developed its own compiler

based on R-Stream [137], which introduces a more ad-

vanced algorithm to exploit the memory hierarchy.
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PPCG Verdoolaege et al. address the compilation of a

sequential program for parallel execution on a modern
GPU [187]. They present a source-to-source compiler
(PPCG), which singles out for its ability to accelerate

computations from any static control loop nest, gener-
ating multiple CUDA kernels when necessary. The au-
thors introduce a multilevel tiling strategy and a code

generation scheme for the parallelization and locality
optimization of imperfectly nested loops, managing mem-
ory and exposing concurrency according to the con-

straints of modern GPUs.

BonesNugteren et al. evaluate a number of C-to-CUDA

transformation tools targeting GPUs, and identify their

strengths and weaknesses [156]. Then they address the

weaknesses by presenting a new classification of algo-

rithms. This classification is used in a source-to-source
compiler (Bones) based on the algorithmic skeletons

technique. The compiler generates target code based

on skeletons of parallel structures, which can be seen as

parameterisable library implementations for a set of al-

gorithm classes. This compiler still requires some modi-

fications to the original sequential source code, but can

generate readable code for further fine-tuning.

PIPS Non-polyhedral tools have also seen major devel-
opments. PIPS is an open-source initiative developed by

the HPC Project to unify efforts concerning compilers

for parallel architectures [32, 48]. It supports the au-

tomatic integrated compilation of applications for het-

erogeneous architectures including GPUs. The compiler

uses abstract interpretation for array regions based on

polyhedra, which allows PIPS to perform powerful in-

terprocedural analysis on the input code.

DawnCC Mendonca et al. argue that inserting prag-
mas into production code is a difficult and error-prone

task, often requiring familiarity with the target pro-
gram [149,152]. This difficulty restricts developers from
annotating code that they have not written themselves.

Therefore, they provide a suite of compiler-based meth-

ods and a tool, DawnCC, to mitigate the issue. The tool

relies on symbolic range analysis to achieve two pur-

poses: populate source code with data transfer prim-

itives and to disambiguate pointers that could hinder

automatic parallelization due to aliasing.

3.2 CUDA-to-OpenCL

Restricted to NVIDIA GPUs, CUDA has the largest

code base and high-performance libraries. On the other

hand, OpenCL is an open standard supported on a large

number of mainstream devices. With the great interest

in OpenCL comes a challenge: manufacturers have a

large investment in CUDA codes and yet would like

to take advantage of wider deployment opportunities

afforded by OpenCL. Therefore, an automated tool for
CUDA-to-OpenCL translation is required.

SnuCL-Tr Kim et al. present similarities and differ-

ences between CUDA and OpenCL, and develop an

automatic translation framework between them [124].
SnuCL-Tr can achieve comparable performance between

the original and target applications in both directions.
Given that each programming model has a large user-

base and code-base, this translator is useful to extend

the code-base for each programming model and unifies

the efforts to develop applications.

CU2CL Gardner et al. summarize the challenges of

translating CUDA code to its OpenCL equivalence [96].

They develop an automated CUDA-to-OpenCL source-

to-source translator (CU2CL), to automatically trans-

late three medium-to-large, CUDA-optimized codes to

OpenCL, thus enabling the codes to run on other GPU-

accelerated systems [146,172]. Swan is tool used to ease

the transition between OpenCL and CUDA [112]. Dif-

ferent from CU2CL, Swan provides a higher-level li-

brary that abstracts both CUDA and OpenCL, such

that an application makes calls to Swan and Swan takes

care of mapping the calls to CUDA or OpenCL.

NMT Kim et al. present source-to-source translation

between CUDA to OpenCL using neural machine trans-
lation (NMT). To generate a training dataset, they ex-

tract CUDA API usages from CUDA examples and

write corresponding OpenCL API usages. With a pair

of API usages acquired, they construct API usage trees

that help users find unseen usages from new samples

and easily add them to a training input [127].

O2render With a similar goal, Yang et al. introduces

O2render, an OpenCL-to-Renderscript translator that

enables the porting of an OpenCL application to a

Renderscript application [202]. O2render automatically

translates OpenCL kernels to a Renderscript kernel.

3.3 Directive-to-CUDA/OpenCL

Translating OpenMP-like codes into CUDA/OpenCL

codes will not only reuse the large OpenMP code base,

but also lower their programming barrier.

OpenMP-to-CUDA Lee and Eigenmann present a

framework for automatic source-to-source translation
of standard OpenMP applications into CUDA appli-
cations [133]. This translator aims to further improve

programmability and make existing OpenMP applica-

tions amenable to execution on GPGPUs. Later, they

propose a new programming interface, OpenMPC, which

builds on OpenMP to provide an abstraction of CUDA



Parallel Programming Models for Heterogeneous Many-Cores : A Comprehensive Survey 11

and offers high-level controls of the involved parameters

and optimizations [134].

OpenMP-to-OpenCL Kim et al. propose a frame-

work that translates OpenMP 4.0 accelerator directives

to OpenCL [125]. They leverage a run-time optimiza-

tion to automatically eliminates unnecessary data trans-

fers between the host and the accelerator.

OpenMP-to-LEO Managing data transfers between
the CPU and XeonPhi and optimizing applications for

performance requires some amount of effort and exper-
imentation. Ravi et al. present Apricot, an optimizing

compiler and productivity tool for Intel XeonPhi that

minimizes developer effort by automatically inserting

LEO clauses [166]. This optimizing compiler aims to

assist programmers in porting existing multi-core ap-

plications and writing new ones to take full advantage

of the many-core accelerator, while maximizing overall

performance.

CUDA-lite CUDA programmers shoulder the respon-

sibility of managing the code to produce the desirable

access patterns. Experiences show that such respon-

sibility presents a major burden on the programmer,

and this task can be better performed by automated

tools. Ueng et al. present CUDA-lite, an enhancement
to CUDA, as one such tool [185]. This tool leverages

programmers’ knowledge via annotations to perform

transformations and show preliminary results that in-

dicate auto-generated code can have performance com-

parable to hand-crafted codes.

hiCUDA Han et al. have designed hiCUDA [109,110], a
high-level directive-based language for CUDA program-

ming. They develop a prototype compiler to facilitate

the translation of a hiCUDA program to a CUDA pro-

gram. The compiler is able to support real-world appli-

cations that span multiple procedures and use dynam-

ically allocated arrays.

CUDA-CHiLL The CHiLL developers extended their
compiler to generate GPU code with CUDA-CHiLL [170],

which does not perform an automatic parallelization

and mapping to CUDA but instead offers high-level

constructs that allow a user or search engine to per-

form such a transformation.

3.4 Adapting CUDA/OpenCL to Multi-core CPUs

MCUDA is a source-to-source translator that trans-

lates CUDA to multi-threaded CPU code [179]. This

translator is built on Cetus [53], a source-to-source trans-

lator framework for C and other C-based languages.

CUDA-x86 by PGI allows developers using CUDA to

compile and optimize their CUDA applications to run

on x86-based multi-core architectures [31]. CUDA-x86

includes full support for NVIDIA’s CUDA C/C++ lan-

guage for GPUs. When running on x86-based systems

without a GPU, CUDA applications can use multiple

cores and the streaming SIMD capabilities of Intel and

AMD CPUs for parallel execution.

Ocelot [84] is primarily a PTX-to-LLVM translator

and run-time system that can decide whether to run

the PTX on a GPU device or on a CPU with just-in-

time (JIT) compilation. Ocelot is similar to MCUDA in

that it allows for CUDA kernels to be run on CPUs,
but it takes the approach of performing translations on

lower-level bytecodes.

3.5 Supporting Multiple Devices

The interest in using multiple accelerating devices to

speed up applications has increased in recent years.

However, the existing heterogeneous programming mod-

els (e.g., OpenCL) abstract details of devices at the

per-device level and require programmers to explicitly

schedule their kernel tasks on a system equipped with

multiple devices. This subsection examines the software

techniques of extending parallel programming models

to support multiple devices.

GPUSs The GPU Superscalar (GPUSs) is an extension
of the Star Superscalar (StarSs) programming model

that targets application parallelization on platforms with

multiple GPUs [51]. This framework deals with archi-

tecture heterogeneity and separate memory spaces, while

preserving simplicity and portability.

VirtCL You et al. propose a framework (VirtCL) that
reduces the programming burden by acting as a layer

between the programmer and the native OpenCL run-

time system. VirtCL abstracts multiple devices into a

single virtual device [203]. This framework comprises

two main software components: a front-end library, which

exposes primary OpenCL APIs and the virtual device,

and a back-end run-time system (CLDaemon) for schedul-
ing and dispatching kernel tasks based on a history-
based scheduler.

OpenMP extension Yan et al. explore support of

multiple accelerators in high-level programming mod-
els by extending OpenMP to support offloading data
and computation regions to multiple accelerators [201].

These extensions allow for distributing data and com-

putation among a list of devices via easy-to-use in-

terfaces, including specifying the distribution of multi-

dimensional arrays and declaring shared data regions.



12 J. Fang et. al

OpenACC-to-CUDA Komoda et al. present an Ope-

nACC compiler to run single OpenACC programs on
multiple GPUs [129]. By orchestrating the compiler and
the runtime system, the proposed system can efficiently

manage the necessary data movements among multiple

GPUs memories. The authors extend a set of direc-

tives based on the standard OpenACC API to facilitate

communication optimizations. The directives allow pro-
grammers to express the patterns of memory accesses
in the parallel loops to be offloaded. Inserting a few di-

rectives into an OpenACC program can reduce a large

amount of unnecessary data movements.

4 Optimization Techniques for Minimizing the

Host-Accelerator Communication

While the heterogeneous many-core design offers the

potential for energy-efficient, high-performance comput-
ing, software developers are finding it increasingly hard
to deal with the complexity of these systems [91, 151].

In particular, programmers need to effectively manage

the host-device communication, because the communi-

cation overhead can completely eclipse the benefit of

computation offloading if not careful [61, 67, 92, 101].

Gregg and Hazelwood have shown that, when memory
transfer times are included, it can take 2x–50x longer to
run a kernel than the GPU processing time alone [101].

Various parallel programming models have intro-

duced the streaming mechanism to amortize the host-
device communication cost [154]. It works by partition-

ing the processor cores to allow independent commu-

nication and computation tasks (i.e., streams) to run

concurrently on different hardware resources, which ef-

fectively overlaps the kernel execution with data move-

ments. Representative heterogeneous streaming imple-

mentations include CUDA Streams [29], OpenCL Com-

mand Queues [30], and Intel’s hStreams [93, 119, 138,

139, 154, 206]. These implementations allow the pro-

gram to spawn more than one stream/pipeline so that

the data movement stage of one pipeline overlaps the

kernel execution stage of another.

4.1 The Streaming Mechanism

The idea of heterogeneous streams is to exploit tempo-
ral and spatial sharing of the computing resources.

Temporal Sharing. Code written for heterogeneous

computing devices typically consists of several stages

such as host-device communication and computation.

Using temporal sharing, one can overlap some of these

stages to exploit pipeline parallelism to improve perfor-

mance. This paradigm is illustrated in Figure 3. In this

Time
Prelude/postlude Host-device commun.
Computation Device-host commun.

Sequential
Temporal 

sharing

Fig. 3 Exploit pipeline parallelism by temporal sharing. Re-
produced from [206].

Fig. 4 Spatial sharing. The circles represent processing
cores, Tx represents a task, and Px represents a partition.

example, we can exploit temporal sharing to overlap the

host-device communication and computation stages to

achieve better runtime when compared to execute every

stage sequentially. One way of exploiting temporal shar-

ing is to divide an application into independent tasks
so that they can run in a pipeline fashion.

Note that the PPE and SPEs of Cell/B.E. share the

same memory space, and thus there is no need of host-

accelerator communication [69]. But each SPE has a

channel/DMA transport for controlling input and out-

put. To prevent memory stalls, we can take advantage of

the DMA engines by adopting a double-buffer approach

to overlap computations on the previously fetched dat-

ablocks with transfers of subsequent data blocks to and

from memory. We regard that this is a special case of

temporal sharing.

Spatial Sharing. Using multiple streams also enjoys

the idea of resource partitioning. That is, to partition
the resource (e.g., processing cores) into multiple groups
and map each stream onto a partition. Therefore, dif-

ferent streams can run on different partitions concur-

rently, i.e., resource spatial sharing. Nowadays accelera-

tors have a large number of processing units that some

applications cannot efficiently exploit them for a given

task. Typically, we offload a task and let it occupy all

the processing cores. When using multiple streams, we

divide the processing cores into multiple groups (each

group is named as a partition). Figure 4 shows that a

device has 16 cores and is logically divided into four

partitions (P0, P1, P2, P3). Then different tasks are of-

floaded onto different partitions, e.g., T0, T1, T2, T3

runs on P0, P1, P2, P3, respectively. In this way, we aim
to improve the device utilization.
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1 // s e t t i n g the pa r t i t i on−s i z e and task
→֒ g r anu l a r i t y

hStreams app init ( partit ion size ,
→֒ streams p part ) ;

3
// stream queue id

5 stream id = 0 ;
for ( . . . ) {

7 //enquque host−dev i ce t r a n s f e r to cur rent
→֒ stream

hStreams app xfer memory ( , , , stream id ,
→֒ HSTR SRC TO SINK , . . . ) ;

9 . . .
// enqueue computation to the cur rent stream

11 hStreams EnqueueCompute ( stream id , ” ke rne l 1 ”
→֒ , . . . ) ;

. . .
13 //move to the next stream

stream id = ( stream id++) % MAX STR;
15 }

// t r a n s f e r data back to host
17 hStreams app xfer memory ( , , , HSTR SINK TO SRC

→֒ , . . . ) ;

Fig. 5 Example hStreams code.

4.2 Intel hStreams

Intel hStreams is an open-source streaming implemen-
tation built on the COI programming model [154]. At

its core is the resource partitioning mechanism [119]. At
the physical level, the whole device is partitioned into
multiple groups and thus each group has several pro-
cessing cores. At the logical level, a device can be seen

as one or more domains. Each domain contains multiple

places, each of which then has multiples streams. The
logical concepts are visible to programmers, while the

physical ones are transparent to them and the map-
ping between them are automatically handled by the
runtime.

hStreams is implemented as a library and provides

users with APIs to access coprocessors/accelerators ef-
ficiently. Programming with hStreams resembles that

in CUDA or OpenCL. Programmers have to create the

streaming context, move data between host and device,

and invoke kernel execution. And they also have to split

tasks to use multiple streams. Figure 5 gives a simpli-

fied code example written with Intel’s hStreams APIs.

At line 2, we initialize the stream execution by set-

ting the number of partitions and tasks/streams per

partition. This initialization process essentially creates

multiple processor domains and determines how many

logical streams can run on a partition. In the for loop
(lines 7-14) we enqueue the communication and com-

putation tasks to a number of streams identified by

the stream id variable. In this way, communication

and computation of different streams can be overlapped

during execution (temporal sharing); and streams on

different processor domains (or partitions) can run con-

currently (spatial sharing).

4.3 Performance Modelling for Streaming Programs

The previous work have demonstrated that choosing a
right stream configuration has a great impact on the

resultant performance [93, 206]. And the best configu-

ration must be determined on a per-program and per-

dataset basis. Attempting to find the optimal configura-

tion through an exhaustive search would be ineffective,

and the overhead involved would be far bigger than the
potential benefits. Therefore, building models for het-
erogeneous streaming programs is of great significance.

4.3.1 Hand-Crafted Analytical Models

Gomez-Luna et al. present performance models for asyn-

chronous data transfers on GPU architectures [98]. The

models permit programmers to estimate the optimal

number of streams in which the computation on the
GPU should be broken up. Werkhoven et al. present

an analytical performance model to indicate when to

apply which overlapping method on GPUs [198]. The

evaluation results show that the performance model

is capable of correctly classifying the relative perfor-

mance of the different implementations. Liu et al. carry

out a systematic investigation into task partitioning

to achieve maximum performance gain for AMD and

NVIDIA GPUs [142]. This approach is not ideal, as

it is not only complex to develop the analytical mod-

els, but is likely to fail due to the variety of programs

and the ever-changing hardware architecture. That is,

these hand-crafted models have the drawback of being

not portable across architectures as the model is tightly
coupled to a specific many-core architecture.

4.3.2 Machine-Learning based Models

Researchers have also exploited the machine learning

techniques to automatically construct a predictive model

to directly predict the best configuration [206,208]. This

approach provides minimal runtime, and has little de-

velopment overhead when targeting a new many-core

architecture. This is achieved by employing machine

learning techniques to automatically construct a pre-

dictive model to decide at runtime the optimal stream

configuration for any streamed application. The pre-

dictor is first trained off-line. Then, using code and dy-

namic runtime features of the program, the model pre-

dicts the best configuration for a new, unseen program.
This approach can avoid the pitfalls of using a hard-

wired heuristic that requires human modification every

time when the architecture evolves, where the number

and the type of cores are likely to change from one gen-

eration to the next. Experimental results XeonPhi and

GPGPUs have shown that this approach can achieve

over 93% of the Oracle performance [208].



14 J. Fang et. al

5 A Vision for the Next Decade

Given the massive performance potential of heteroge-

neous many-core hardware design, it is clear that fu-

ture computing hardware will be increasingly special-

ized and diverse. As the hardware design keeps evolv-

ing, so does the software development systems and the

programming model. In this section, we discuss some

challenges and open research directions for future par-

allel programming models.

A holistic solution. China, US, Japan and EUROPE
are currently working towards the exascale computing.

The design and construction of an exascale machine
will be built based on heterogeneous many-core archi-
tectures of various forms [140]. This achievement will

require significant advances in the software paradigm

and require that parallelism in control and data be ex-

ploited at all possible levels. Therefore, the dominant

design parameter will shift from hardware to system

software and in particular, parallel programming sys-
tems [79]. We envision that a hierarchy of program-
ming models have to be implemented as well as the

equipment of expert optimized libraries. Low-level pro-

gramming models should be implemented, but are not

suggested to be exposed to programmers. Instead, the

high-level programming models and highly optimized

domain libraries are exposed as the programming in-

terface. Intel’s OneAPI is one of such examples [27].

Pattern-aware parallel programming. Parallel pro-

gramming based on patterns (such as map/reduce and

pipeline) or algorithmic skeletons (Section 2.2.2), where
programmers write algorithmic intents that abstract

away parallelization, heterogeneity, and reliability con-

cerns, offer a partial solution for programming hetero-

geneous parallel systems [80]. As can been from Sec-

tion 2.2, this is an essential feature of high-level parallel

programming models. The key to the success of pattern-

based parallel programming is to have a fully-supported

development toolchain for code optimization, debug-

ging and performance diagnosis. The current compiler
implementation is oblivious to the high-level algorith-
mic intents expressed in the patterns, leading to dis-
appointing performance, discouraging the adoption of

pattern-based parallel programming. For example, a se-

quential loop that adds one to an integer literal one mil-

lion times will be optimized away at compile time. How-

ever, if we implement it as a parallel pipeline pattern,

existing compilers, including leading industrial paral-

lel compilers, Intel TBB on ICC and Go, would fail

to merge the trivial pipeline elements. As a result, the

pattern-based implementation takes minutes to run, not

nanoseconds1, leading to a massive slowdown over the

sequential version. The issue arises from the fact that

current compilers are oblivious to parallel patterns. A

parallel construct encodes the sequential semantics of

the program, but this is lost to the compiler. If the

compiler knew the sequential semantics, it can then dy-

namically merge small pipeline elements. If we can do

these, the primary barrier to adopting pattern-based

programming would be torn down.

Machine learning based program tuning. Pro-

grammers are faced with many decisions when writ-

ing heterogeneous programs, such as selecting an opti-

mal thread configuration [77] and/or selecting a right

code variant [153]. This is due to the profound differ-

ences in many-core architectures, programming mod-

els and input applications [54]. By default, the run-
time system of high-level programming models has to
assist users in automating these online decisions. If a

wrong configuration is selected, the overall performance

will be significantly decreased. Therefore, it is signifi-

cant to design a model to help programmers to auto-

matically choose a reasonable configuration, i.e., auto-

mated performance tuning, which is regarded to have
the potential to dramatically improve the performance

portability of petascale and exascale applications [54].

A key enabling technology for optimizing parallel pro-

grams is machine learning. Rather than hand-craft a

set of optimization heuristics based on compiler ex-

pert insight, learning techniques automatically deter-

mine how to apply optimizations based on statistical

modelling and learning [190,191]. This provides a rigor-

ous methodology to search and extract structure that

can be transferred and reused in unseen settings. Its

great advantage is that it can adapt to changing plat-

forms as it has no a priori assumption about their be-

haviour. There are many studies showing it outperforms
human-based approaches. Recent work shows that it is
effective in performing parallel code optimization [68,

75, 76, 104, 158, 194, 196], performance predicting [193,

209], parallelism mapping [103, 181, 183, 192, 195–197,

208], and task scheduling [88,143,167–169,171,204]. As

the many-core design becomes increasingly diverse, we

believe that the machine-learning techniques provide a
rigorous, automatic way for constructing optimization
heuristics, which is more scalable and sustainable, com-

pared to manually-crafted solutions.

6 Conclusions

This article has introduced programming models for
heterogeneous many-core architectures. Power, energy

1 Code is available at: https://goo.gl/y7bBdN.
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and thermal limits have forced the hardware industry to

introduce heterogeneous many-cores built around spe-

cialized processors. However, developers are struggling

to manage the complexity of heterogeneous many-core

hardware. A crisis is looming as these systems become

pervasive. As such, how to enable developers to write

and optimize programs for the emerging heterogeneous

many-core architectures has generated a large amount
of academic interest and papers. While it is impossible
to provide a definitive cataloger of all research, we have

tried to provide a comprehensive and accessible survey

of the main research areas and future directions. As we

have discussed in the article, this is a trustworthy and

exciting direction for systems researchers.
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