
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2022) 4:321–338
https://doi.org/10.1007/s42514-022-00099-8

REGULAR PAPER

A tail‑tolerant cloud storage scheduling based on precise periodicity
detection

Yuxiao Han1 · Jia Ma1 · Fei Li2 · Yubo Liu1 · Nong Xiao1 · Yutong Lu1 · Zhiguang Chen1

Received: 30 November 2021 / Accepted: 8 April 2022 / Published online: 23 May 2022
© The Author(s) 2022

Abstract
Cloud storage is a fundamental component of the cloud computing system, which significantly affects the overall perfor-
mance and quality of service of the cloud. Cloud storage servers face the challenge of imbalanced workloads. According
to our observations on the time series generated by cloud storage, we found that the imbalance workloads will dramatically
increase the tail latency of data access in the multi-tenant scenario. The intuitive solution is to periodicity detect the imbalance
storage nodes and re-balance the loads. However, there are four challenges to accurately detect load of storage in the cloud
with multiple tenants since the load may change frequently in cloud. This paper proposes PrecisePeriod, a precise periodic-
ity detection algorithm customized for multi-tenant cloud storage. It removes outliers through data preprocessing, employs
the discrete wavelet transform to remove high-frequency noise while keeping frequency domain information, computes the
candidate periodicity queue using the autocorrelation function, and determines precise period through periodicity verifica-
tion. Then, we design a cloud storage load balancing scheduling strategy based on PrecisePeriod, and the evaluation shows
that the PrecisePeriod scheduling significantly reduces tail latency while only bringing 1 − 2% overhead.

Keywords  Cloud storage · Time series · Periodicity detection · Scheduling · Tail latency

1  Introduction

Cloud computing has become a fast and effective solution
with the explosive growth of data scale and applications.
Modern tenant-oriented cloud services must meet strict Ser-
vice Level Objectives (SLOs) (Sriraman et al. 2019), usually
expressed as tail latency. Tail latency is generally caused
by two reasons, one is made by garbage collection (Kim

2019) and memory management (Skarlatos et al. 2017) dur-
ing system operation, and the other is caused by the high
instantaneous load (Elyasi et al. 2017). To reduce costs,
cloud service providers usually provide services to multiple
tenants simultaneously, but the load superposition caused
by multiple tenants poses a new challenge to tail-tolerant.

To reduce the tail latency caused by load superposition,
the scheduling method is usually used to re-balance the
loads. Common resource scheduling methods include hash
scheduling, greedy scheduling (Shi 2020), random strategy
(Eltabakh 2011), heuristic strategy (Sellami et al. 2021),
and so on. However, the previous scheduling methods only
schedule according to the historical information, which can
not ensure the stability of the results in the case of fewer
scheduling times. The reason is the lack of prediction of
future data, which is challenging to ensure the effectiveness
of each schedule.

In the process of tenants using cloud computing services,
a large number of time series are generated. We analyze the
time series generated to better understand the challenge of
load scheduling in the multi-tenant scenario. Because there
are many periodic behaviors in tenants’ activities, periodic-
ity characteristics appear in the time series. Periodicity is

 *	 Yuxiao Han
	 hanyx7@mail2.sysu.edu.cn

	 Jia Ma
	 majia5@mail2.sysu.edu.cn

	 Fei Li
	 renlei.lf@alibaba-inc.com

	 Yubo Liu
	 yubo.liu@nscc-gz.cn

	 Zhiguang Chen
	 zhiguang.chen@nscc-gz.cn

1	 School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China

2	 Alibaba Group, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-022-00099-8&domain=pdf

322	 Y. Han et al.

1 3

a critical property of time series that has been applied to
a variety of tasks, such as clustering (Vlachos et al. 2004;
Kumar et al. 2002), classification (Vlachos et al. 2005), pre-
diction (Theodosiou 2011), etc. Precise periodicity detection
can better analyze the data and accurately predict the future
situation, further used in scheduling.

However, performing precise periodicity detection in
cloud storage is difficult due to the complexity and fluctua-
tion of real-world time series in the multi-tenant scenario.
The challenges are as follows: (1) Time series usually con-
tain outliers, which may be errors in the data or in the sta-
tistical process and significantly impair the results of perio-
dicity detection; (2) Time series quite often fluctuate due to
noise; (3) Time series may be dynamic in nature and may
change at any time in response to tenant behavior; (4) The
majority of time series contain trend components, such as
increasing or decreasing trend. Existing periodicity detection
algorithms resort to four popular methods:

(1)	 Symbol periodicity detection method (Elfeky et al.
2005; Rasheed and Alhajj 2013): for the sequence com-
posed of the finite symbol set, calculate the period of
a single symbol or symbol set; the symbol periodicity
detection method discretizes the data, converts the time
series to a series made of finite symbol sets, and detects
the periodicity of various modes, such as symbol perio-
dicity, sequence periodicity, and segment periodicity.
However, this method can only predict the range of
future values but not the exact values themselves.

(2)	 Frequency domain method (Almasri et al. 2011): ana-
lyze the frequency of time series from the perspective
of frequency domain and find out the dominant fre-
quency as the period; the frequency domain method
usually starts by transforming the time series from the
time domain to the frequency domain using the discrete
Fourier transform (DFT), then studies the spectrum
structure and change law of the signal, and finds out the
dominant frequency as the frequency corresponding to
the periodicity. However, this method has the problem
of spectrum leakage (Vlachos et al. 2005); when the
frequency corresponding to the periodicity is not an
integral multiple of the fundamental function, spectrum
leakage occurs, resulting in interference across spectral
lines and decreasing prediction accuracy.

(3)	 Time domain method (Wang et al. 2006): from the
perspective of time domain, find the correlation dis-
tance between the time series and itself as the periodic-
ity; which often employs the autocorrelation function
(ACF) to determine the period of a time series by cor-
relating it to itself. However, the ACF method tends to
look for long periodicity and is seriously affected by
outliers or trends, resulting in erroneous results.

(4)	 Frequency-time joint domain method (Toller et al.
2019): combine the frequency domain and time domain
approaches to calculate the period; results from both
frequency and time domains are mutually verified to
obtain the final results. However, this method is limited
by the defects of frequency and time domain methods
and can not solve all the above problems. Generally
speaking, the calculation results of the previous algo-
rithms are not precise enough; we need to improve
them and propose a precise periodicity prediction algo-
rithm.

This paper proposes a precise periodicity detection algo-
rithm called PrecisePeriod based on the frequency-time
joint domain to predict the period and future time series. By
observing and analyzing the time series, we present a pre-
processing method for removing outliers from real datasets.
We use discrete wavelet transform (DWT) to remove noise
while retaining the original frequency domain information
and calculating candidate periods through ACF. We design
a periodicity verification method to select a period from
the candidate periods and improve periodicity prediction
precision by verifying the correctness and stability of the
periodicity. In the process of periodicity detection, we first
use a small part of data for calculation and then gradually
increase the length of historical data to reduce the trend’s
impact and tolerate the periodicity’s dynamic changes. Our
PrecisePeriod algorithm shows better results on actual and
synthetic datasets than several advanced periodicity detec-
tion methods. We have conducted extensive experiments on
PrecisePeriod algorithm in Alibaba real datasets and found
that 30% of the time series are periodic and can be accurately
predicted.

We further apply PrecisePeriod to the load scheduling in
multi-tenant cloud storage. The result is PreciseScheduling,
a scheduling strategy that can accurately predict the access
traffic and efficiently re-balance the loads, thus reducing the
tail latency with low overhead. The evaluation shows that
PreciseScheduling can ensure stability and achieve the best
scheduling effect with fewer scheduling times.

The main contributions of this paper are as follows.

•	 We research the structure and characteristics of data
access of multi-tenant cloud storage and analyze the chal-
lenges in load scheduling.

•	 We propose an efficient, precise periodicity detection
algorithm, PrecisePeriod, to use periodicity verification
with low overhead to ensure precise prediction periods
and future time series.

•	 We apply PrecisePeriod to load scheduling in multi-ten-
ant cloud storage and significantly reduce tail latency of
data access in imbalance loads.

323A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

The rest of the paper is organized as follows. Section 2
summarizes related works about periodicity detection and
scheduling. Section 3 describes the design and implemen-
tation of PrecisePeriod. Section 4 describes the design and
implementation of PreciseScheduling. In Sect. 5, we evalu-
ate the effectiveness of PrecisePeriod and PreciseScheduling
methods. Finally, Sect. 6 summarizes the work of this paper.

2 � Background and related work

2.1 � Tail latency in cloud storage

At present, cloud computing service providers usually use
SSDs as storage nodes to provide services for multiple ten-
ants simultaneously on the premise of meeting QoS require-
ments, as shown in Fig. 1. There are usually multiple tenants
in the cloud computing scenario, and each tenant uses one or
multiple cloud disks. According to the design of block stor-
age, each cloud disk is usually divided into various 32GB
segments and stored in SSDs. Recent research shows that
SSDs do not consistently maintain their ideal performance
in practical use (Yan et al. 2017). One of the reasons is that
load superposition causes numerous requests in the SSD to
queue up, resulting in high tail latency (Elyasi et al. 2017).

The reason can be analyzed from queuing theory (Cooper
1981). According to queuing theory, tail latency D is mainly
affected by unit time SSD read/write speed S and unit time
read/write operation arrival speed A. The calculation for-
mula of tail latency is as follows:

When S is fixed, D is positively correlated with A. With the
growth of A, the growth rate of D increases significantly. We
also use the simulated SSD with the configuration of Table 3
to simulate the change of tail latency D under different read-
write operation speeds A when unit time SSD read/write
speed S remains unchanged, as shown in Fig. 2. We statistic

(1)D =
1

S − A
.

the tail latency changes under different A, and each operation
reads/writes 64 consecutive sectors.

We can see that when A is less than 12000, the change of
D is not apparent. When A is greater than 12000, the wait-
ing queue length of read-write requests in SSD increases
significantly, causing the tail latency to grow exponentially.

Cloud computing service providers need to meet strict
QoS requirements, and tail latency is a problem that must be
solved(Didona and Zwaenepoel 2019). The simplest way to
reduce the tail latency is to improve the performance of the
equipment, increase the service speed and keep the average
load at a low level to avoid the tail latency caused by the
high instantaneous load. However, this method undoubtedly
increases additional costs and wastes resources. Because
most SSDs do not reach peak load, and only a few SSDs
have high instantaneous load caused by load superposition.
Avoiding load superposition through scheduling is an eco-
nomical and reasonable solution to solve the tail latency.

2.2 � Scheduling algorithm

In the aspect of data scheduling strategy, the existing
research mainly focuses on the placement of replicas and
blocks in distributed storage systems. Data scheduling can
be separated into two types based on frequency: dynamic
data scheduling and static data scheduling. Dynamic data
scheduling strategy is to schedule the existing data after each
data request. When the amount of data is small, dynamic
data scheduling is effective. However, the system over-
head caused by frequent data scheduling is enormous for
the massive amount of data in a distributed storage system.
Static data scheduling strategy assumes that the data access
is constant for some time. The proposed data scheduling
strategy can remain effective for some time. Data migration

Fig. 1   Cloud environment storage system structure

Fig. 2   Relationship between tail latency and read/write operation, 64
consecutive sectors per random request

324	 Y. Han et al.

1 3

can realize the overall adjustment when the data layout is
obviously inappropriate.

The static data scheduling method is usually used to
reduce peak traffic to avoid the high instantaneous traffic
caused by the multi-tenant load superposition.

The commonly used method is based on the greedy
(Shi 2020) or random strategy (Eltabakh 2011) scheduling
method, based on historical information to avoid possible
peak traffic in the future. However, the problem with these
methods is the lack of accurate prediction of future traffic,
which leads to unstable scheduling effects.

SP (Lee et al. 2000) and PB (Madathil et al. 2008) strat-
egy can minimize the variance of service time and realize
load balancing of distributed storage clusters. However,
these two strategies assume that data access is independent,
which is unreasonable because collaborative access is com-
mon in data-intensive applications. Hence, the superposition
of data access traffic often occurs, which can not ignore in
data layout.

DRAW (Wang et al. 2014) and CLUST (Vengadeswaran
and Balasundaram 2020) strategy analyzes the characteris-
tics of a single dataset and then puts forward the scheduling
strategy according to the features. However, the shortcom-
ings of these two algorithms are apparent: they are only
applicable to specific datasets, and the scalability of the
method is poor.

HDFS default data scheduling strategy can only ensure
the storage balance of each node. Still, it cannot guarantee
the I/O load balance, resulting in a series of periodic data
blocks that may be placed on the same node, resulting in
load superposition.

By analyzing the actual workload, we find that there is
a lot of periodic behavior. It is possible to avoid peak over-
lap with fewer scheduling times if we can precisely detect
periodicity and future peaks, thereby reducing tail latency.

2.3 � Periodicity prediction

In different works of literature, periodicity prediction is
also called seasonal length estimation (Toller et al. 2019) or
segment periodicity detection (Rasheed and Alhajj 2013),
which all represent the same meaning; we use periodicity
detection in this paper. To calculate the periodicity of time
series, many different methods have been proposed. Most
of these methods can be divided into four categories: (1)
Symbol periodicity detection method; (2) Frequency domain
method; (3) Time domain method; (4) Frequency-time joint
domain method.

For symbol periodicity detection, a suffix-tree-based algo-
rithm (Rasheed and Alhajj 2013) and a convolution-based
algorithm (Elfeky et al. 2005) are proposed. However, these
methods only perform well in the synthetic dataset and are
seriously affected by outliers and noise. At the same time,

these methods can not accurately predict specific values,
which is not conducive to subsequent scheduling.

Frequency domain method usually uses DFT to calculate
the periodogram of time series. However, when the peri-
odicity is long, the calculation result of the periodogram
is inaccurate. When the selection of the basis function is
incorrect, there is the problem of spectrum leakage (Vla-
chos et al. 2005). To improve the effectiveness of the peri-
odogram, (Almasri et al. 2011) proposes the use of discrete
wavelet transform (DWT) to replace DFT, but the result of
the periodogram is still inaccurate. (Mezic and Surana 2016;
Lange et al. 2021) proposes the spectral analysis method, but
the calculation results are unstable and will be affected by
outliers and trends.

Time domain method uses ACF to calculate the correla-
tion between the time series and itself (Tian 1988). In short,
if the period of the time series is T, the result of the back-
ward shift length T of the time series is highly correlated
with itself, and it appears as a local peak in the calcula-
tion result of ACF. Based on the characteristics of ACF,
autocorrelation peak is proposed as periodicity prediction
(Wang et al. 2006) . However, ACF tends to look for long
periods. When the period of the time series is T, there will
be multiple local peaks in the ACF calculation results, such
as T, 2T, which will affect the results of period detection. An
autocorrelation zero distance method is proposed to solve
this problem of multiple local peaks (Toller et al. 2019) .
However, it can not solve the problem of ACF itself and still
produces wrong results due to outliers and noise.

Frequency-time joint domain uses both frequency domain
and time domain information. (Toller et al. 2019) proposes
the SAZED method, which uses time domain and frequency
domain information to calculate the candidate period and
uses different properties of ACF to verify the periodicity.
However, the disadvantage of this method is that the pre-
cision of periodicity detection results is not high and will
get a lot of inaccurate results. (Mitsa 2010; Vlachos et al.
2005) put forward the AUTOPERIOD method, which uses
a periodogram to calculate the candidate period in frequency
domain and ACF to identify the accurate periodicity in time
domain. However, this method is used for multiple periodic-
ity detection. We only need to find the most critical periodic-
ity and predict the future time series.

Although there are many periodicity detection methods,
the precision of their final results is not high, and it is dif-
ficult to be used for accurate scheduling due to the influence
of outliers, noise, trends, and other factors. We want to find
a method that can precisely detect the periodicity and use
the predicted data in scheduling.

325A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

3 � PrecisePeriod design

3.1 � Method overview

In this section, we will discuss our proposed PrecisePeriod
algorithm. We define the periodicity model of time series as
the following formula:

where yt represents the time series at time t, st represents the
periodic sequence with period T at time t,nt represents the
noise at time t, and at represents the outliers at time t. The
PrecisePeriod proposed in this paper is to precisely identify
the periodicity’s length after removing the noise.

The algorithm mainly includes the following four parts,
as shown in upper part of Fig. 3 : (1) Data preprocessing to
remove outliers in time series; (2) Employ discrete wavelet
transform (DWT) to decompose and reconstruct time series
to remove high-frequency noise; (3) Use autocorrelation
function (ACF) to detect periodicity; (4) Compare the pre-
dicted data with the actual data to check the accuracy and
stability of periodicity.

Compared with other periodicity detection methods, our
PrecisePeriod mainly adds two steps: pre-processing and
periodicity verification, of which periodicity verification
plays the most critical role in improving accuracy. The cal-
culation steps of AUTOPERIOD (Vlachos et al. 2005) are
shown in the lower part of Fig. 3. Although both frequency
domain and time domain information are used simultane-
ously, the accuracy of the calculation results is not high due
to the influence of outliers and trends. Subsequent people

(2)yt = st + nt + at, t = 0, 1,… ,N − 1,

also proposed pre-processing methods, but only pre-process-
ing alone cannot guarantee the precision of the results. We
creatively put forward the process of periodicity verification,
which ensures the precision of the results by verifying the
correctness and stability of the period many times.

3.2 � Data preprocessing

In the real world time series, the observed results usually
contain various errors, and the time series we use will inevi-
tably produce errors in the capture process. Excluding the
random influence of accidental error, the systematic error in
the acquisition process is an important part that can not be
ignored. For example, when the network is under high load,
the data capture program will temporarily stop to ensure the
transmission of tenant data. In that case, the output result
will produce the phenomenon of log loss, which will be
reflected in the captured time series as temporary data loss.
When there is usually traffic in the data, a temporary data
loss will produce a significant minimum, as shown in Fig. 4,
resulting in abnormal data fluctuation. This fluctuation will
bias the calculation results of ACF, resulting in misleading
periodic information. Therefore, the outliers caused by this
systematic error need to be removed by data preprocessing.

Due to the load superimposition of multi-tenant on the
cloud disk, the instantaneous traffic peak may occur in the
traffic, as shown in Fig. 4. For example, the tenants will
back up the recently generated data to the cloud storage
every other period or summarize the newly developed data
for data analysis, so this instantaneous traffic peak needs
to be reserved. However, it may also produce continuous
peaks, which is not conducive to ACF calculation and will

Fig. 3   Overview of periodic
detection algorithm flow. The
upper plot shows PrecisePeriod
algorithm, and the lower plot
shows other frequency-time
joint domain algorithms. DWT
discrete wavelet transform, ACF
autocorrelation function, DFT
discrete Fourier transform

Fig. 4   Original time series from
data capture

326	 Y. Han et al.

1 3

lead to errors in periodicity detection. To avoid this situa-
tion, we need to smooth the time series while retaining the
change and fluctuation of flow to minimize the occurrence
of glitches in the oscillation.

The method used in this paper is to form a new series
based on the change of data, detect the data through Tukey’s
test (Tukey 1977) method, and different types of outliers are
handled differently. Tukey’s test method calculates the upper
quartile Q

3
 and lower quartile Q

1
 of the data and then we can

define the outliers as any value outside this range according
to the coefficient k ∶ [Q

3
+ k(Q

3
− Q

1
),Q

1
− k(Q

3
− Q

1
)] .

This paper uses Tukey’s test method to obtain the result
k = 1.5 to find the outliers in the time series.

The change series of data is used to generate outliers posi-
tion series in order to distinguish different types of outliers.
For the minimum value caused by systematic error, the outli-
ers position series is a continuous sequence of length 2. The
first value is less than the minimum range, and the second is
greater than the maximum range. We use the average value
of data nearby to replace the outliers. For other types of out-
liers, the homogenization method is adopted. The original
outliers series is replaced by the uniformly spaced increase
and then decrease sequence to smooth the time series while
retaining the change message of flow. Through data preproc-
essing, we can get the time series corresponding to Fig. 5.

3.3 � DWT denoise

We use discrete wavelet transform (DWT) to denoise the
input time series at different levels (Cai and Harrington
1998), convenient for periodic detection. The reason why
DWT is used instead of discrete Fourier transform (DFT)

is that DWT has the following advantages: (1) DWT can
well retain the peak and abrupt part of the valuable signal
required in the original signal, which has higher robustness,
but DFT can easily lead to the distortion of the original
signal in the recovery process; (2) DWT has good time-
frequency localization characteristics; (3) DWT can well
characterize the non-stationary characteristics of signals.

The process of DWT denoise includes three steps: (1)
Decompose the time series into wavelet coefficients (from
the high-pass filter) and scaling coefficients (from the low-
pass); (2) Zero filling or compression of the signal accord-
ing to some criteria; (3) The compressed coefficients are
inversely transformed into the original domain to obtain the
denoised time series.

We use the common DWT based on Daubechies wavelet
(Daubechies 1992; Percival and Walden 2000) to denoise
the time series. When calculating DWT for time series
X = (X

0
,X

1
, ...,XN−1) of length N, j layer wavelet coefficients

wj are given by

and j layer scaling coefficients vj are given by

where Nj = N2−j and v
0
= X , as illustrated in Fig. 6.

For time series, the low-frequency component is vital. It
often contains the characteristics of time series, while the
high-frequency component corresponds to the details or

(3)wj,k =

L−1
∑

l=0

hlwj−1,2k+1−l, k = 0, 1, ...,Nj − 1,

(4)vj,k =

L−1
∑

l=0

glvj−1,2k+1−l, k = 0, 1, ...,Nj − 1,

Fig. 5   Time series after pre-
processing

Fig. 6   Principle of DWT
decomposition

327A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

differences of time series. For periodicity detection tasks,
although high-frequency components have a small num-
ber of periodic information, most of them are noise, which
means removing high-frequency parts can increase the accu-
racy of ACF detection. Therefore, we use the zero filling
method to remove the wavelet coefficients calculated by each
layer and only use the scaling coefficients for wavelet recon-
struction to obtain different levels of denoised time series.

3.4 � ACF periodicity detection

After obtaining different levels of denoised time series
through DWT, we use autocorrelation function (ACF)
(Brockwell 2009; Box 2015) to calculate the period of each
denoised time series. ACF can provide us with the autocor-
relation value of any sequence with lag values. Intuitively,
it describes the degree of correlation between the current
value of the time series and its future value. Time series
contains trends, seasonality, periodicity, residuals, and other
components. ACF will consider all these components when
looking for correlation, including direct and indirect cor-
relation information.

When we have time series X = (X
0
,X

1
, ...,XN−1) of length

N, ACFk is given by

where � is the mean of the time series, and �2 is the variance
of the time series.

After obtaining the calculation results of ACF, we select
the maximum value in the local peak as the period obtained
by ACF calculation. For different levels of denoised time

(5)
ACFk =

1

(N − k)�2

N−k
∑

t=1

(Xt − �)(Xt+k − �),

k = 0, 1, ...,N − 1,

series, we calculate different ACF results and get the detec-
tion values of multiple periods. When there are repeated
values in periods, we take the modal number as the detection
results of the period. When periods present a polarization
distribution, there is an error in the DWT process, which
will lead the ACF to predict long periods and short periods,
respectively. We take the two levels of the detection result as
the period. When there are outliers in periods, we remove the
outliers and take the mean value of other detection results
as the period.

3.5 � Periodicity verification

On the one hand, the ACF tends to find long periods and is
prone to outliers and noise; on the other hand, the denoised
time series will also produce errors due to errors in the DWT
process or outliers in time series. Therefore, we need to ver-
ify the accuracy and stability of ACF results. For detection
accuracy, we use periodicity to predict the future time series.

328	 Y. Han et al.

1 3

If the prediction results are close to the actual time series,
the periodicity detection results are correct. For detection
stability, we use periodicity to predict longer-term future
time series. When the prediction results are close to the
actual time series for a long time, it indicates that the perio-
dicity can exist stably for a long time and is relatively stable.

For the time series, we take a small part of the time series
to predict periodicity, then decide whether to use more time
series to detect the periodicity or verify its stability based
on the prediction results.

Take out part of the time series and predict the perio-
dicity through DWT and ACF. ACF may give detec-
tion results of multiple periodicities. We need to verify
each detection result in the time series to find the most
suitable periodicity. When we have obtained the detec-
tion value of the periodicity, the prediction of future time
series is obtained by weighting the historical time series.
For time series X = (X

0
,X

1
, ...,XN−1) of length N, after the

periodicity T is obtained, the prediction result of time t is
Xt = (Xt−T + Xt−2T + Xt−3T)∕3 . When the historical time
series length is less than 3 times of periodicities, use the
actual time series as the prediction result. Until there are
enough historical time series to verify the accuracy of the
periodicity.

After multiple periodicities are obtained through differ-
ent levels of denoised time series, the Pearson correlation
coefficient (PCC) (Berthold and Höppner 2016) between the
prediction results and the actual time series is calculated to
represent the correlation. The closer the calculation results
are to 1, the stronger the correlation is. The periodicity cor-
responding to the maximum PCC is taken as the detection
periodicity. If the result of PCC is higher than the predefined
threshold, it indicates that the prediction result has a strong
correlation with the actual time series which indicates that

the detection of the periodicity is correct. So the periodic-
ity can be used to predict longer-term time series to verify
the stability of the periodicity. On the contrary, if the result
of PCC is lower than the predefined threshold, it indicates
a specific difference between the predicted result and the
actual time series which means the actual time series can-
not be represented by the prediction result. Therefore, it is
necessary to add historical time series and predict the perio-
dicity again.

The accuracy of periodicity prediction will be low if the
PCC threshold is set too high. The precision of periodic
detection will be low if the PCC threshold is set too low.
According to the experimental results, the prediction effect
is the best when the PCC threshold is 0.7. If the prediction
fails many times, we will increase the growth rate of the
length of historical time series to speed up the prediction
periodicity.

Due to the application change of the tenants on the cloud
disk, periodicity will be changed simultaneously. For exam-
ple, the tenant switches from backing up every 1 hour to
backing up every 2 hours. Although the periodicity has been
successfully predicted in the detection process, the detection
results over time are imprecise. We consider using the histor-
ical time series near the current detection stage to predict the

periodicity again in order to adapt to the change of the perio-
dicity. This helps to exclude some old historical time series
and predict the latest periodicity to avoid the impact of the
periodicity contained in the old historical time series. Then
we use the method mentioned before to verify the accuracy
and stability of the periodicity after detection. The complete
algorithm is described in Algorithm 1.

329A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

4 � PreciseScheduling based on PrecisePeriod

This paper aims to avoid the tail latency caused by load
superposition of multiple segments on SSDs for the current
cloud computing storage structure, as shown in Fig. 1. Spe-
cifically, we want to predict future load superposition, deter-
mine which segment causes it, and schedule the segment to
another SSD. It is possible to minimize high instantaneous
load induced by load superposition, thereby reducing tail
latency. Specifically, PreciseScheduling is divided into two
distinct stages: (1) Using the results of PrecisePeriod, fore-
cast future traffic of SSD and segment; (2) Identify the SSD
with the highest peak traffic and the segment that causes it,
then schedule it to another SSD to lower peak traffic.

For the existing segment time series, we select the 20%
segment with the highest traffic according to the Pareto prin-
ciple and use PrecisePeriod to predict the periodicity of the
segment. For unpredictable parts, the traffic situation of this
part in the future is unknown, and the results obtained by
scheduling them are unstable, which may be better or worse.
To consider the robustness of PreciseScheduling, we assume
that the traffic of unpredictable segments conforms to a uni-
form distribution, which is distributed to each SSD by a hash
method. This part of the segments is not considered in the
subsequent scheduling process.

For predictable segments, we predict the read traffic and
write traffic of the segment, respectively, in the prediction
process. We use the periodicity of read/write traffic to pre-
dict write/read traffic if only read/write traffic can be fore-
casted. The sum of the predicted values of read and write
traffic is used as the predicted traffic of segment for schedul-
ing because there is no significant difference in read-write
latency for SSDs. Then we predict the traffic in the next 6
h and combine the traffic according to the SSD where it
is located to forecast the future traffic of SSD. Six hours
are reserved for scheduling because every schedule needs
to move 32 GB of data on SSD, so the scheduling interval
cannot be too short. At the same time, the periodicity is
relatively stable in the short term but unstable in the long
term, so it needs to be predicted again at regular intervals.
In general, we choose 6 hours as the scheduling interval.

After the prediction results of SSD and segment are cal-
culated, we use the greedy idea to schedule them. Firstly,
find the SSD with the most enormous peak traffic in the next
6 h, and find the segment with the most significant impact
on the peak traffic in the SSD as the scheduling source. The
peak traffic here refers to the instantaneous traffic rather than
the total traffic. The primary reason for tail latency is an
overwhelming immediate load created by instantaneous traf-
fic. More specifically, we divide 6 h into 10 min intervals to
find the SSD with the highest total flow in the gap and the
segment causing the instantaneous flow. Then, the traffic

information of the segment is added to the other SSDs to
find the SSD with the lowest peak traffic as the schedul-
ing target. If the peak traffic of the scheduled target SSD is
higher than that of the original SSD, it will not be scheduled,
and the segment will be added to the non-scheduling queue
to find a new segment for scheduling.

The number of scheduling times is determined by the
additional overhead caused by scheduling. The scheduling
overhead is due to the extra traffic generated by scheduling.
The scheduling is in the segment unit for the cloud comput-
ing storage structure and moves 32GB of data each time. We
need to ensure that the additional overhead generated by Pre-
ciseScheduling is within an acceptable range. For example,
the scheduling overhead caused does not exceed 5% of the
original traffic. Therefore, we can calculate the maximum
number of scheduling times according to the scheduling
overhead and the size of the actual traffic. The complete
algorithm is described in Algorithm 2.

5 � Experiments and discussions

5.1 � PrecisePeriod performance

Our experiments evaluate the performance of PrecisePe-
riod with other advanced periodicity detection algorithms
on public real-world and synthetic datasets, respectively. We
also study how each component we proposed contributes to
PrecisePeriod.

5.1.1 � Datasets

Public datastes. We use CRAN time series data as public
datasets (Toller et al. 2019) to facilitate the comparison with
other periodicity detection algorithms. It contains time series
in various fields, such as economic indicators and environ-
mental measurement, etc. It has 82 time series with a length
range from 16 to 3024 and period length ranges from 2 to 52.

Synthetic datastes. We generate a synthetic time series
with a length of 1000 with complex patterns, including one
periodic component, multiple outliers, variation trend, and
noise. Specifically, we first create a sine wave with a period
between 50 and 200 whose amplitude changes randomly.
The amplitude change is to better simulate the actual situa-
tion. There are fluctuations in the actual data, and there will
be no perfect periodicity. Next, we generate outliers whose
proportion is randomly generated from 0 to 0.05 and add
them to the sine wave. Then Gaussian noise is added to the
time series, the noise variance is between 0 and 0.5. Finally,
add a random linear trend, linear increase, or linear decrease.
In the synthetic data, we generate 1000 time series; one of
the synthetic time series is shown in the Fig.7.

330	 Y. Han et al.

1 3

5.1.2 � Comparison with existing algorithms

We compare PrecisePeriod with the other four algorithms:
(1) findFrequency (Hyndman and Athanasopoulos 2018); (2)
seasonLength (Toller and Kern 2019); (3) SAZEDmaj ; and
(4) SAZEDopt (Toller et al. 2019). We compare the accuracy
and F1 value of several algorithms at different datasets and
levels. We first evaluate whether the periodicity detection
results match the actual periodicity entirely, and the results
are shown as ±0% in Table 1. Then evaluate the periodicity
detection results within the actual periodicity’s ±2% toler-
ance interval. The detection periodicity in this interval can
also approximately predict future data.

Table 1 shows the accuracy and F1 score of different
algorithms in two data sets. In CRAN datasets, the reason for
the low detection accuracy and F1 score of the seasonLength

algorithm is the algorithm overfits a specific dataset, result-
ing in inferior performance in other datasets. The accuracy
of findFrequency and SAZED algorithms is relatively close
to the F1 score, indicating that these two algorithms predict
more results as much as possible to improve the detection
accuracy, resulting in low precision and recall. In contrast,
our proposed PrecisePeriod algorithm can improve the
detection accuracy as much as possible through the peri-
odic verification method and ensure high detection precision
and F1 score simultaneously. In the synthetic dataset, the
detection effect of the findFrequency algorithm decreases
significantly. The reason is that findFrequency uses spectral
decomposition and autoregressive methods to predict perio-
dicity, which is seriously affected by outliers, resulting in
poor detection effect. The SAZED method still guarantees a
certain degree of accuracy and F1 score, but it is lower than

Fig. 7   The generation of synthetic data. a Create a time series consisting of sine waves with randomly varying amplitude; b Add random outli-
ers; c Generate random Gaussian noise and trend; d Add noise and trend to generate synthetic time series

Table 1   Accuracy and F1
score comparisons of different
periodicity detection algorithms
on CRAN dataset and synthetic
dataset

Bold values indicate better results than other methods

Algorithm CRAN dataset Synthetic dataset

±0% ±2% ±0% ±2%

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

FindFrequency 0.439 0.486 0.439 0.486 0.097 0.097 0.359 0.361
SeasonLength 0.146 0.150 0.146 0.150 0.011 0.011 0.037 0.037
Sazedopt 0.524 0.524 0.537 0.537 0.254 0.254 0.584 0.584
Sazedmaj 0.439 0.444 0.488 0.494 0.144 0.144 0.430 0.430
PrecisePeriod 0.500 0.656 0.512 0.672 0.303 0.304 0.743 0.746

331A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

our proposed algorithm. Overall, our proposed algorithm
achieves the best performance in accuracy and F1 score.

To further analyze the performance of various algorithms,
we plot the precision, recall, and F1 score of different algo-
rithms in CRAN dataset and synthetic dataset in Fig. 8. It
can be observed from the figure that our proposed Precise-
Period algorithm achieves the best effect in the three indica-
tors. Especially in CRAN dataset, our proposed algorithm
achieves a precision rate of nearly 1.0. It achieves the goal
of precise periodicity detection, which is helpful to schedule
using PrecisePeriod results.

5.1.3 � Ablation experiment

To further understand the contribution of each part of our
PrecisePeriod algorithm, we compare the performance of the
PrecisePeriod algorithm with the following two versions: (1)
No Preprocessing: this version has no preprocessing process,

and the rest are the same as PrecisePeriod algorithm; (2)
Single Periodicity Verification: this version modifies the
periodicity verification process. Because our algorithm must
select the final result from the candidate periods through
periodicity verification, the periodicity verification part can-
not be removed entirely. This version inputs all time series
into the calculation forecast period at one time and uses sin-
gle times periodicity verification to select the final period.
It lacks the process of predicting and verifying future data
with the period and the rest are the same as PrecisePeriod
algorithm.

Table 2 shows the detection accuracy and F1 score of
different algorithm versions in two datasets. Skipping the
preprocessing process will cause the outliers in time series
cannot be removed, thus affecting the calculation of auto-
correlation function and resulting in the decline of accuracy
and F1 score of periodicity detection in various cases. After
modifying the periodicity verification process, directly using

Fig. 8   Precision, recall, and F1 of different periodicity detection algorithms on CRAN dataset and synthetic dataset

Table 2   Ablation experiment
of the PrecisionPeriodicity on
CRAN dataset and synthetic
dataset

Bold values indicate better results than other methods

Algorithm CRAN dataset Synthetic dataset

±0% ±2% ±0% ±2%

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

No preprocessing 0.476 0.619 0.488 0.635 0.276 0.279 0.711 0.719
Single periodicity

verification
0.341 0.500 0.341 0.500 0.292 0.328 0.636 0.714

PrecisePeriod 0.500 0.656 0.512 0.672 0.303 0.304 0.743 0.746

332	 Y. Han et al.

1 3

the entire time series to predict the periodicity will lack the
details analysis and lead to missing the excavation of short
periodicity and preferring to find long periodicity. At the
same time, this method is affected by the trend in the time
series. An increasing or decreasing trend in time series will
affect the periodicity detection, resulting in the decline of
detection accuracy.

To further analyze the impact of each part on the perfor-
mance of the algorithm, we plot the precision, recall, and F1
values of different versions of the algorithm in CRAN data-
set and synthetic dataset in Fig. 9. It can be observed from
the figure that the values of three indicators can be increased
at the same time through preprocessing. The detection

Fig. 9   Precision, recall, and F1 of ablation experiment on CRAN dataset and synthetic dataset

Fig. 10   Actual time series: original data and prediction results of single time series

333A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

results can be more stable through periodicity verification,
and periodicity detection accuracy can be improved.

5.1.4 � Experiment on real datasets

We extensively evaluate our algorithm on Alibaba real data-
sets. We discovered that about 30% of the time series in the
actual cloud computing load are periodic. We can accurately
anticipate future time series based on the periodicity, as
illustrated in Fig. 10. The figure shows two time series from
Alibaba with apparent periodicity and relative stability. The
blue line represents the original time series, while the red
line represents the predicted result. Our method successfully
finds the periodicity of time series and predicts the future
data according to the original data. In the initial part of the
first time series, we find that it has a small periodic change,
which is only a mild change, and there are more complex
situations in the actual time series. Our algorithm can toler-
ate this change through periodicity verification and can still
predict the correct periodicity.

To verify the accuracy of the prediction results more
broadly, we summarized all the results to achieve the
overall traffic prediction for different SSDs, as shown in
Fig. 11. The figure shows the predicted outcome of some
SSDs, which has the expected time series and actual time
series of the expected success part only. We add up the time
series for predicting success as SSD whole traffic predict,
and comparing with existing time series of traffic. In the

figure, the blue line represents the actual traffic of SSD, the
orange line represents the predicted traffic of SSD, and the
red line is the division line of different SSDs. The figure
shows that our prediction results are close to the actual traf-
fic. Accurate prediction of future time series can be realized
through periodicity, and the prediction results can be used
for PreciseScheduling.

5.2 � PreciseScheduling performance

Our experiment uses Alibaba real datasets to simulate the
scheduling effect on the MQsim simulator.

5.2.1 � Experimental setup

Simulation. To evaluate the scheduling effect, we use
MQsim (Tavakkol et al. 2018), an open-source MQ-SSD
simulator, which can accurately simulate modern SSD based
on NVME. Table 3 shows the configuration of the MQ-SSD
system we modeled.

Dataset. We use an actual cloud computing load. The
dataset contains more than 40000 different segments and
is stored in 96 separate SSDs. Overall, the average value of
the total read-write traffic is 2.5GB/s, and the peak value
of the total read-write traffic is 6.5GB/s. In our simulated
SSD environment, the average read-write latency of SSDs
is 127us, and the average 99.99% read-write tail latency of
SSDs is 1.019ms. However, for a single SSD, the 99.99%

Fig. 11   Actual time series: original data and prediction results of part of SSD

Table 3   Configuration of the
simulated SSD SSD Organization Host interface: PCIe 3.0 (NVMe 1.2)

User capacity: 480GB
8 channels, 4 chips per channel
QueueFetchSize = 512

Flash communication interface ONFI 3.1 (NV-DDR2)
Width: 8bit, Rate: 333 MT/s

Flash microarchitecture 8 KiB page, 448 B metadata per
page,

256 pages per block, 2048 blocks per
plane, 2 places per die

Flash access parmeters Read latency: 75 s, Program
latebcy: 750 Us, Erase latency: 3.8

ms

334	 Y. Han et al.

1 3

read-write tail latency may be up to ten milliseconds. Our
proposed PreciseScheduling algorithm can effectively
reduce the peak of tail latency and ensure that all SSDs do
not produce too significant tail latency.

5.2.2 � Comparison with existing algorithms

We first spread all segments into different SSDs by hashing
and then reduce the tail latency by scheduling. We compare
the proposed PreciseScheduling algorithm with the other two
methods: (1) Greedy scheduling based on historical informa-
tion, similar to our idea. The difference is that this method
selects the scheduled segments from all segments according

Fig. 12   Tail flow reduction of different scheduling algorithms

Fig. 13   PreciseScheduling effect under various scheduling overhead. The left plot shows the 99.99% tail latency. The right plot shows the aver-
age latency

Fig. 14   PreciseScheduling effect. The left plot shows PreciseScheduling lowers the tail latency. The right plot shows it doesn’t increase the aver-
age latency

335A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

to the historical data, but our process only considers the pre-
dicted successful segments; (2) Random scheduling based on
historical information, similar to greedy scheduling based on
historical information. The difference is that this method ran-
domly selects the scheduling target SSD, and greedy schedul-
ing selects the SSD that can minimize the peak traffic.

Firstly, we compare the decline degree of the tail flow of
different scheduling methods under various scheduling times.
As shown in Fig. 12, PreciseScheduling consistently achieves
the best effect. It can be seen from the figure on the left,
as the number of scheduling times increases, the additional
overhead caused by scheduling increases, and the degree of
99% tail flow decline is also increasing. As can be observed
from the figure on the right, PreciseScheduling algorithm
performed well in the situation of a few scheduling times for
99.9% tail flow. Although it can further reduce the 99.9% tail
flow by increasing the scheduling times, the degree of decline
is insignificant. The most severe impact on tail latency is
usually the peak traffic, so PreciseScheduling can achieve
good results with little scheduling overhead. The other two
scheduling algorithms need more scheduling overhead to
reduce the peak traffic and reduce the tail latency effectively.

Next, we experiment with the scheduling results in the
simulated SSD environment, simulate the scheduling for 6
hours, and observe the change of tail latency. The dataset
we use contains more than 40000 segments, and we move
32GB of data for each schedule. According to the calculation
results of data traffic, generating an additional 1% schedul-
ing overhead means scheduling 17 segments every 6 hours.

Firstly, we test the effect of PreciseScheduling under dif-
ferent scheduling overhead, as shown in Fig. 13. The left
figure shows 99.99% tail latency under various schedul-
ing overheads, and the right figure represents the average
latency. There is still a tail latency peak because the traffic
of a single segment is too high, which can not be solved by
scheduling. The effect is the same as that in Fig. 12. After
increasing the scheduling overhead, the change degree of
99.9% tail flow is small, and there is no discernible variation
in 99.99% tail delay. Therefore, we use 1% extra scheduling
overhead to compare with other methods.

Secondly, we analyze the effect of PreciseScheduling, as
shown in Fig. 14. The left figure shows the 99.99% tail delay
before and after each SSD scheduling. The scheduling algo-
rithm proposed reduces the tail delay when generating an
additional 1% scheduling overhead. PreciseScheduling solves
the problem of the high tail latency of a single SSD. We
schedule the load to different SSDs to avoid the tail latency
caused by load superposition. The figure on the right shows
that PreciseScheduling will not increase the average latency
while reducing the tail latency.

Finally, we compare PreciseScheh the other scduling
algorithm witheduling methods, as shown in Fig. 15. The
left figure shows PreciseScheduling and greedy scheduling
based on historical information. When the scheduling times
are the same, greedy scheduling based on historical infor-
mation can not well reduce the tail latency of all SSDs, and
there is still a high tail latency in one SSD. Even if it gener-
ates five times the scheduling overhead of PreciseSchedul-
ing, the scheduling effect is still not good. The figure on the
right shows PreciseScheduling and random scheduling based
on historical information. The effect of random scheduling is
worse than PreciseScheduling. Only when scheduling gen-
erates an additional 10% scheduling overhead can it achieve
similar results to PreciseScheduling.

We conduct experiments with PreciseScheduling on more
extensive datasets. The scheduling effect varies according to
the different of data. In aggregate, our algorithm can con-
siderably reduce the tail latency by generating an additional
1 − 2% of the scheduling overhead while the SSD with the
highest 99.99% tail latency in the storage node can minimize
tail latency by 50 − 90%.

6 � Conclusion

We proposes PrecisePeriod in this paper, a precise perio-
dicity detection algorithm. It achieves precise periodicity
detection by four steps, removes outliers through data pre-
processing, employs discrete wavelet transform to remove
high-frequency noise, computes candidate periodicity queue

Fig. 15   The comparison of PreciseScheduling with two different scheduling algorithms

336	 Y. Han et al.

1 3

by autocorrelation function, and determines precise period
through periodicity verification. Experiment on actual and
synthetic datasets shows that PrecisePeriod algorithm is bet-
ter than several state-of-art periodicity detection methods.
We found that 30% of the time series in real-world datasets
from Alibaba are periodic through PrecisePeriod algorithm.
In the end, we introduce a cloud storage load balancing
scheduling method based on PrecisePeriod, and the evalu-
ation reveals that PrecisePeriod scheduling significantly
reduces tail latency while incurring just 1 − 2% overhead.

Acknowledgements  We thank Alibaba for the data provided for this
paper experiment and the reviewers for their valuable comments on
this article. This work is supported by The National Key Research
and Development Program of China (2019YFB1804502), NSFC:
61872392, NSFC: 61832020, the Major Program of Guangdong
Basic and Applied Research: 2019B030302002, the Program for
Guangdong Introducing Innovative and Entrepreneurial Teams under
Grant No. 2016ZT06D211, Guangdong Natural Science Foundation
(2018B030312002).

Declarations 

Conflict of interest  The authors declare no conflict of interest, finan-
cial or otherwise. On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visithttp://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Almasri, A.: A new approach for testing periodicity. Commun. Stat-
ist. 40(7), 1196–1217 (2011) https://​doi.​org/​10.​1080/​03610​92090​
35647​43

Berthold, MR., Höppner, F.: On clustering time series using euclidean
distance and pearson correlation. In: arXiv preprint arXiv:​1601.​
02213 (2016)

Box, G.E.P.: Time series analysis: forecasting and control, John Wiley
& Sons, Hoboken (2015)

Brockwell, P.J., Davis, R.A. (eds.): Introduction to time series and fore-
casting. Springer, New York (2002)

Cai, C., Harrington, P.d.B.: Different discrete wavelet transforms
applied to denoising analytical data. J. Chem. Inform. Model.
38(6), 1161–1170. 10.1021/ci980210j (1998)

Cooper, RB.: Queueing theory. In: Pro-ceedings of the ACM ’81
Conference. New York, NY, USA: Association for Computing
Machinery, 119–122. 10.1145/800175 (1981)

Daubechies, I.: Ten lectures on wavelets. SIAM (1992)
Didona, D., Zwaenepoel, W.: Sizeaware sharding for improving tail

latencies in inmemory key-value stores. In: 16th fUSENIXg

Symposium on Networked Systems Design and Implementation
(fNSDIg 19), pp. 79–94 (2019)

Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection
in time series databases. IEEE Transact.Knowledge Data Eng.
17(7), 875–887 (2005)

Eltabakh, M.Y., et al.: CoHadoop: exible data placement and its exploi-
tation in Hadoop. In: Proceedings of the VLDB Endowment 4(9),
575–585 (2011)

Elyasi, N., et al.: (2017). Exploiting intra-request slack to improve SSD
performance. In: Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 375–388

Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and prac-
tice. OTexts (2018)

Kim, J., et al.: Alleviating garbage collection interference through
spatial separation in all ash arrays. In: 2019 fUSENIXg Annual
Technical Conference (fUSENIXg fATCg 19), pp. 799-812 (2019)

Kumar, M., Patel, N.R., Woo, J.: Clustering seasonality patterns in the
presence of errors. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, pp. 557–563 (2002)

Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: spec-
tral methods for long-term time series prediction. J. Mach. Learn.
Res. 22(41), 1–38 (2021)

Lee, L-W., Scheuermann, P., Vingralek, R.: File assignment in parallel
I/O systems with minimal variance of service time. IEEE Trans-
act. Comput. 49(2), 127–140 (2000)

Madathil, D.K., et al.: A static data placement strategy towards per-
fect load-balancing for distributed storage clusters. In: 2008 IEEE
International Symposium on Parallel and Distributed Processing.
IEEE, pp. 1–8 (2008)

Mezic, I., Surana, A.: Koopman mode decomposition for periodic/
quasi-periodic time dependence. IFAC-PapersOnLine 49(18),
690–697 (2016)

Mitsa, T.: Temporal data mining. CRC Press, Boca Raton (2010)
Percival, D.B., Walden, A.T.: Wavelet methods for time series analysis.

Vol. 4. Cambridge university press, Cambridge (2000)
Rasheed, F., Alhajj, R.: A framework for periodic outlier pattern detec-

tion in time-series sequences. IEEE Transact. Cybern. 44(5),
569–582 (2013)

Sellami, M., et al.: Clustering-based data placement in cloud comput-
ing: a predictive approach. Cluster Comput., pp. 1–26. https://​doi.​
org/​10.​1007/​s10586-​021-​03332-1(2021)

Shi, Y., et al.: AdaptScale: an adaptive data scaling controller for
improving the multiple performance requirements in Clouds.
Future Gener. Comput. Syst. 105, 814–823 (2020). https://​doi.​
org/​10.​1016/j.​future.​2017.​08.​034

Skarlatos, D., Kim, N.S., Torrellas, J.: Pageforge: a near-memory
content-aware page-merging architecture. In: Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchi-
tecture. MICRO-50 ’17. Association for Computing Machinery,
302-314. https://​doi.​org/​10.​1145/​31239​39.​31245​40(2017)

Sriraman, A., Dhanotia, A., Wenisch, T.F.: SoftSKU: optimizing server
architectures for microservice diversity @scale. In: Proceedings
of the 46th International Symposium on Computer Architecture.
ISCA ’19. New York, NY, USA: Association for Computing
Machinery, 513–526. isbn: 9781450366694. https://​doi.​org/​10.​
1145/​33076​50.​33222​27(2019)

Tavakkol, A., et al.: Mqsim: a framework for enabling realistic studies
of modern multi-queue SSD devices. In: 16th fUSENIXg Confer-
ence on File and Storage Technologies (fFASTg 18), pp. 49–66.
urlhttps://www.usenix.org/conference/fast18/presentation/tavak-
kol (2018)

Theodosiou, M.: Forecasting monthly and quarterly time series using
STL decomposition. Int J. Forecast. 27(4), 1178–1195 (2011)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/03610920903564743
https://doi.org/10.1080/03610920903564743
http://arxiv.org/abs/1601.02213
http://arxiv.org/abs/1601.02213
https://doi.org/10.1007/s10586-021-03332-1
https://doi.org/10.1007/s10586-021-03332-1
https://doi.org/10.1016/j.future.2017.08.034
https://doi.org/10.1016/j.future.2017.08.034
https://doi.org/10.1145/3123939.3124540
https://doi.org/10.1145/3307650.3322227
https://doi.org/10.1145/3307650.3322227

337A tail‑tolerant cloud storage scheduling based on precise periodicity detection﻿	

1 3

Tian, C.J.: A Limiting property of sample autocovariances of periodi-
cally correlated processes with application to period determina-
tion. J. Time Series Anal. 9(4), 411–417. https://​doi.​org/​10.​1111/j.​
1467-​9892.​1988.​tb004​80.x(1988)

Toller, M., Kern, R.: Robust parameter-free season length detection in
time series. In: arXiv preprint arXiv:​1911.​06015 (2019)

Toller, M., Santos, T., Kern R.: SAZED: parameter-free domain-
agnostic season length estimation in time series data. Data Mining
Knowledge Discovery 33(6), 1775–1798 (2019)

Tukey, J.W., et al.: Exploratory data analysis, vol. 2. Reading Mass
(1977)

Vengadeswaran, S., Balasundaram, S.R.: Clust: grouping aware data
placement for improving the performance of large-scale data man-
agement system. In: Proceedings of the 7th ACM IKDD CoDS
and 25th COMAD, pp. 1–9 (2020)

Vlachos, M., Yu, P., Castelli, V.: On periodicity detection and structural
periodic similarity. In: Proceedings of the 2005 SIAM interna-
tional conference on data mining. SIAM, pp. 449–460 (2005)

Vlachos, M., et al.: Identifying similarities, periodicities and bursts for
online search queries. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 131–142
(2004)

Wang, J., Chen, T., Huang, B.: Cyclo-period estimation for discrete-
time cyclo-stationary signals. IEEE Transact. Signal Proces.
54(1), 83–94. https://​doi.​org/​10.​1109/​TSP.​2005.​859237(2006)

Wang, J., Shang, P., Yin, J.: Draw: a new data-grouping-aware data
placement scheme for data intensive applications with interest
locality. Cloud Comput. Data-Intensive Appl. Springer, pp.
149–174 (2014)

Yan, S., et al.: Tiny-tail ash: near-perfect elimination of garbage col-
lection tail latencies in NAND SSDs. ACM Transact. Storage
(TOS) 13(3), 1–26 (2017)

Yuxiao Han  is currently working
toward an M.Sc. degree in the
School of Computer Science and
Engineering from Sun Yat-sen
University, China. His main
research interests focus on
resource scheduling in cloud
storage.

Jia Ma  is currently work-
ing toward the M.Eng. degree in
the School of Computer Science
and Engineering from Sun Yat-
sen University, Guangzhou. His
current research areas include
resource management in cloud
storage.

Fei Li  graduated from the State
Key Laboratory of parallel and
distributed computing at the Uni-
versity of national defense sci-
ence and technology with a com-
puter science and technology
doctor. He is a technical expert
in Alibaba cloud intelligent stor-
age department, a distinguished
researcher of Shenzhen Univer-
sity, a member of CCF YOCSEF
of China computer society, a
member of CSIG visual percep-
tion special committee of China
image graphics society, commu-
nication member of China artifi-

cial intelligence society and CAAI machine learning professional com-
mittee, engaged in research in the intelligent application field.

Yubo Liu  received his Ph.D.
degree in computer science and
technology from Sun Yat-sen
University. His research direc-
tion is storage system and high
performance computing, includ-
ing but not limited to distributed/
local file system, object storage
system, persistent memory, and
consistency.

Nong Xiao  received his B.S. and
Ph.D. degrees in computer sci-
ence and technology from
National University of Defense
Technology, Changsha. He is a
professor at Sun Yat-sen Univer-
sity, Guangzhou, and the deputy
director of National Supercom-
puter Center in Guangzhou. His
current research interest includes
cloud computing and cloud stor-
age systems, memory comput-
ing, high-performance big data
computing systems, parallel
algorithms for big data analysis
and processing, large-scale solid-

state storage, and new data-intensive computing systems.

https://doi.org/10.1111/j.1467-9892.1988.tb00480.x
https://doi.org/10.1111/j.1467-9892.1988.tb00480.x
http://arxiv.org/abs/1911.06015
https://doi.org/10.1109/TSP.2005.859237

338	 Y. Han et al.

1 3

Yutong Lu  received her B.S.,
M.S., and Ph.D. degrees in com-
puter science and technology
from National University of
Defense Technology, Changsha.
She is a professor at Sun Yat-sen
University, Guangzhou, and the
director of National Supercom-
puter Center in Guangzhou. Her
current research interest includes
large-scale storage system, high-
performance computing, and
computer architecture.

Zhiguang Chen  received his B.S.
degree from Harbin Institute of
Technology, Harbin, and his
M.S. and Ph.D. degrees in com-
puter science and technology
from National University of
Defense Technology, Changsha.
He is an associate professor at
Sun Yat-sen University, Guang-
zhou. His current research inter-
est includes distributed file sys-
tem, network storage, and
solid-state storage system.

	A tail-tolerant cloud storage scheduling based on precise periodicity detection
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Tail latency in cloud storage
	2.2 Scheduling algorithm
	2.3 Periodicity prediction

	3 PrecisePeriod design
	3.1 Method overview
	3.2 Data preprocessing
	3.3 DWT denoise
	3.4 ACF periodicity detection
	3.5 Periodicity verification

	4 PreciseScheduling based on PrecisePeriod
	5 Experiments and discussions
	5.1 PrecisePeriod performance
	5.1.1 Datasets
	5.1.2 Comparison with existing algorithms
	5.1.3 Ablation experiment
	5.1.4 Experiment on real datasets

	5.2 PreciseScheduling performance
	5.2.1 Experimental setup
	5.2.2 Comparison with existing algorithms

	6 Conclusion
	Acknowledgements
	References

