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Abstract
Cloud storage is a fundamental component of the cloud computing system, which significantly affects the overall perfor-
mance and quality of service of the cloud. Cloud storage servers face the challenge of imbalanced workloads. According 
to our observations on the time series generated by cloud storage, we found that the imbalance workloads will dramatically 
increase the tail latency of data access in the multi-tenant scenario. The intuitive solution is to periodicity detect the imbalance 
storage nodes and re-balance the loads. However, there are four challenges to accurately detect load of storage in the cloud 
with multiple tenants since the load may change frequently in cloud. This paper proposes PrecisePeriod, a precise periodic-
ity detection algorithm customized for multi-tenant cloud storage. It removes outliers through data preprocessing, employs 
the discrete wavelet transform to remove high-frequency noise while keeping frequency domain information, computes the 
candidate periodicity queue using the autocorrelation function, and determines precise period through periodicity verifica-
tion. Then, we design a cloud storage load balancing scheduling strategy based on PrecisePeriod, and the evaluation shows 
that the PrecisePeriod scheduling significantly reduces tail latency while only bringing 1 − 2% overhead.

Keywords  Cloud storage · Time series · Periodicity detection · Scheduling · Tail latency

1  Introduction

Cloud computing has become a fast and effective solution 
with the explosive growth of data scale and applications. 
Modern tenant-oriented cloud services must meet strict Ser-
vice Level Objectives (SLOs) (Sriraman et al. 2019), usually 
expressed as tail latency. Tail latency is generally caused 
by two reasons, one is made by garbage collection (Kim 

2019) and memory management (Skarlatos et al. 2017) dur-
ing system operation, and the other is caused by the high 
instantaneous load (Elyasi et al. 2017). To reduce costs, 
cloud service providers usually provide services to multiple 
tenants simultaneously, but the load superposition caused 
by multiple tenants poses a new challenge to tail-tolerant.

To reduce the tail latency caused by load superposition, 
the scheduling method is usually used to re-balance the 
loads. Common resource scheduling methods include hash 
scheduling, greedy scheduling (Shi 2020), random strategy 
(Eltabakh 2011), heuristic strategy (Sellami et al. 2021), 
and so on. However, the previous scheduling methods only 
schedule according to the historical information, which can 
not ensure the stability of the results in the case of fewer 
scheduling times. The reason is the lack of prediction of 
future data, which is challenging to ensure the effectiveness 
of each schedule.

In the process of tenants using cloud computing services, 
a large number of time series are generated. We analyze the 
time series generated to better understand the challenge of 
load scheduling in the multi-tenant scenario. Because there 
are many periodic behaviors in tenants’ activities, periodic-
ity characteristics appear in the time series. Periodicity is 
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a critical property of time series that has been applied to 
a variety of tasks, such as clustering (Vlachos et al. 2004; 
Kumar et al. 2002), classification (Vlachos et al. 2005), pre-
diction (Theodosiou 2011), etc. Precise periodicity detection 
can better analyze the data and accurately predict the future 
situation, further used in scheduling.

However, performing precise periodicity detection in 
cloud storage is difficult due to the complexity and fluctua-
tion of real-world time series in the multi-tenant scenario. 
The challenges are as follows: (1) Time series usually con-
tain outliers, which may be errors in the data or in the sta-
tistical process and significantly impair the results of perio-
dicity detection; (2) Time series quite often fluctuate due to 
noise; (3) Time series may be dynamic in nature and may 
change at any time in response to tenant behavior; (4) The 
majority of time series contain trend components, such as 
increasing or decreasing trend. Existing periodicity detection 
algorithms resort to four popular methods:

(1)	 Symbol periodicity detection method (Elfeky et al. 
2005; Rasheed and Alhajj 2013): for the sequence com-
posed of the finite symbol set, calculate the period of 
a single symbol or symbol set; the symbol periodicity 
detection method discretizes the data, converts the time 
series to a series made of finite symbol sets, and detects 
the periodicity of various modes, such as symbol perio-
dicity, sequence periodicity, and segment periodicity. 
However, this method can only predict the range of 
future values but not the exact values themselves.

(2)	 Frequency domain method (Almasri et al. 2011): ana-
lyze the frequency of time series from the perspective 
of frequency domain and find out the dominant fre-
quency as the period; the frequency domain method 
usually starts by transforming the time series from the 
time domain to the frequency domain using the discrete 
Fourier transform (DFT), then studies the spectrum 
structure and change law of the signal, and finds out the 
dominant frequency as the frequency corresponding to 
the periodicity. However, this method has the problem 
of spectrum leakage (Vlachos et al. 2005); when the 
frequency corresponding to the periodicity is not an 
integral multiple of the fundamental function, spectrum 
leakage occurs, resulting in interference across spectral 
lines and decreasing prediction accuracy.

(3)	 Time domain method (Wang et al. 2006): from the 
perspective of time domain, find the correlation dis-
tance between the time series and itself as the periodic-
ity; which often employs the autocorrelation function 
(ACF) to determine the period of a time series by cor-
relating it to itself. However, the ACF method tends to 
look for long periodicity and is seriously affected by 
outliers or trends, resulting in erroneous results.

(4)	 Frequency-time joint domain method (Toller et  al. 
2019): combine the frequency domain and time domain 
approaches to calculate the period; results from both 
frequency and time domains are mutually verified to 
obtain the final results. However, this method is limited 
by the defects of frequency and time domain methods 
and can not solve all the above problems. Generally 
speaking, the calculation results of the previous algo-
rithms are not precise enough; we need to improve 
them and propose a precise periodicity prediction algo-
rithm.

This paper proposes a precise periodicity detection algo-
rithm called PrecisePeriod based on the frequency-time 
joint domain to predict the period and future time series. By 
observing and analyzing the time series, we present a pre-
processing method for removing outliers from real datasets. 
We use discrete wavelet transform (DWT) to remove noise 
while retaining the original frequency domain information 
and calculating candidate periods through ACF. We design 
a periodicity verification method to select a period from 
the candidate periods and improve periodicity prediction 
precision by verifying the correctness and stability of the 
periodicity. In the process of periodicity detection, we first 
use a small part of data for calculation and then gradually 
increase the length of historical data to reduce the trend’s 
impact and tolerate the periodicity’s dynamic changes. Our 
PrecisePeriod algorithm shows better results on actual and 
synthetic datasets than several advanced periodicity detec-
tion methods. We have conducted extensive experiments on 
PrecisePeriod algorithm in Alibaba real datasets and found 
that 30% of the time series are periodic and can be accurately 
predicted.

We further apply PrecisePeriod to the load scheduling in 
multi-tenant cloud storage. The result is PreciseScheduling, 
a scheduling strategy that can accurately predict the access 
traffic and efficiently re-balance the loads, thus reducing the 
tail latency with low overhead. The evaluation shows that 
PreciseScheduling can ensure stability and achieve the best 
scheduling effect with fewer scheduling times.

The main contributions of this paper are as follows.

•	 We research the structure and characteristics of data 
access of multi-tenant cloud storage and analyze the chal-
lenges in load scheduling.

•	 We propose an efficient, precise periodicity detection 
algorithm, PrecisePeriod, to use periodicity verification 
with low overhead to ensure precise prediction periods 
and future time series.

•	 We apply PrecisePeriod to load scheduling in multi-ten-
ant cloud storage and significantly reduce tail latency of 
data access in imbalance loads.
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The rest of the paper is organized as follows. Section 2 
summarizes related works about periodicity detection and 
scheduling. Section 3 describes the design and implemen-
tation of PrecisePeriod. Section 4 describes the design and 
implementation of PreciseScheduling. In Sect. 5, we evalu-
ate the effectiveness of PrecisePeriod and PreciseScheduling 
methods. Finally, Sect. 6 summarizes the work of this paper.

2 � Background and related work

2.1 � Tail latency in cloud storage

At present, cloud computing service providers usually use 
SSDs as storage nodes to provide services for multiple ten-
ants simultaneously on the premise of meeting QoS require-
ments, as shown in Fig. 1. There are usually multiple tenants 
in the cloud computing scenario, and each tenant uses one or 
multiple cloud disks. According to the design of block stor-
age, each cloud disk is usually divided into various 32GB 
segments and stored in SSDs. Recent research shows that 
SSDs do not consistently maintain their ideal performance 
in practical use (Yan et al. 2017). One of the reasons is that 
load superposition causes numerous requests in the SSD to 
queue up, resulting in high tail latency (Elyasi et al. 2017).

The reason can be analyzed from queuing theory (Cooper 
1981). According to queuing theory, tail latency D is mainly 
affected by unit time SSD read/write speed S and unit time 
read/write operation arrival speed A. The calculation for-
mula of tail latency is as follows:

When S is fixed, D is positively correlated with A. With the 
growth of A, the growth rate of D increases significantly. We 
also use the simulated SSD with the configuration of Table 3 
to simulate the change of tail latency D under different read-
write operation speeds A when unit time SSD read/write 
speed S remains unchanged, as shown in Fig. 2. We statistic 

(1)D =
1

S − A
.

the tail latency changes under different A, and each operation 
reads/writes 64 consecutive sectors.

We can see that when A is less than 12000, the change of 
D is not apparent. When A is greater than 12000, the wait-
ing queue length of read-write requests in SSD increases 
significantly, causing the tail latency to grow exponentially.

Cloud computing service providers need to meet strict 
QoS requirements, and tail latency is a problem that must be 
solved(Didona and Zwaenepoel 2019). The simplest way to 
reduce the tail latency is to improve the performance of the 
equipment, increase the service speed and keep the average 
load at a low level to avoid the tail latency caused by the 
high instantaneous load. However, this method undoubtedly 
increases additional costs and wastes resources. Because 
most SSDs do not reach peak load, and only a few SSDs 
have high instantaneous load caused by load superposition. 
Avoiding load superposition through scheduling is an eco-
nomical and reasonable solution to solve the tail latency.

2.2 � Scheduling algorithm

In the aspect of data scheduling strategy, the existing 
research mainly focuses on the placement of replicas and 
blocks in distributed storage systems. Data scheduling can 
be separated into two types based on frequency: dynamic 
data scheduling and static data scheduling. Dynamic data 
scheduling strategy is to schedule the existing data after each 
data request. When the amount of data is small, dynamic 
data scheduling is effective. However, the system over-
head caused by frequent data scheduling is enormous for 
the massive amount of data in a distributed storage system. 
Static data scheduling strategy assumes that the data access 
is constant for some time. The proposed data scheduling 
strategy can remain effective for some time. Data migration 

Fig. 1   Cloud environment storage system structure

Fig. 2   Relationship between tail latency and read/write operation, 64 
consecutive sectors per random request
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can realize the overall adjustment when the data layout is 
obviously inappropriate.

The static data scheduling method is usually used to 
reduce peak traffic to avoid the high instantaneous traffic 
caused by the multi-tenant load superposition.

The commonly used method is based on the greedy 
(Shi 2020) or random strategy (Eltabakh 2011) scheduling 
method, based on historical information to avoid possible 
peak traffic in the future. However, the problem with these 
methods is the lack of accurate prediction of future traffic, 
which leads to unstable scheduling effects.

SP (Lee et al. 2000) and PB (Madathil et al. 2008) strat-
egy can minimize the variance of service time and realize 
load balancing of distributed storage clusters. However, 
these two strategies assume that data access is independent, 
which is unreasonable because collaborative access is com-
mon in data-intensive applications. Hence, the superposition 
of data access traffic often occurs, which can not ignore in 
data layout.

DRAW (Wang et al. 2014) and CLUST (Vengadeswaran 
and Balasundaram 2020) strategy analyzes the characteris-
tics of a single dataset and then puts forward the scheduling 
strategy according to the features. However, the shortcom-
ings of these two algorithms are apparent: they are only 
applicable to specific datasets, and the scalability of the 
method is poor.

HDFS default data scheduling strategy can only ensure 
the storage balance of each node. Still, it cannot guarantee 
the I/O load balance, resulting in a series of periodic data 
blocks that may be placed on the same node, resulting in 
load superposition.

By analyzing the actual workload, we find that there is 
a lot of periodic behavior. It is possible to avoid peak over-
lap with fewer scheduling times if we can precisely detect 
periodicity and future peaks, thereby reducing tail latency.

2.3 � Periodicity prediction

In different works of literature, periodicity prediction is 
also called seasonal length estimation (Toller et al. 2019) or 
segment periodicity detection (Rasheed and Alhajj 2013), 
which all represent the same meaning; we use periodicity 
detection in this paper. To calculate the periodicity of time 
series, many different methods have been proposed. Most 
of these methods can be divided into four categories: (1) 
Symbol periodicity detection method; (2) Frequency domain 
method; (3) Time domain method; (4) Frequency-time joint 
domain method.

For symbol periodicity detection, a suffix-tree-based algo-
rithm (Rasheed and Alhajj 2013) and a convolution-based 
algorithm (Elfeky et al. 2005) are proposed. However, these 
methods only perform well in the synthetic dataset and are 
seriously affected by outliers and noise. At the same time, 

these methods can not accurately predict specific values, 
which is not conducive to subsequent scheduling.

Frequency domain method usually uses DFT to calculate 
the periodogram of time series. However, when the peri-
odicity is long, the calculation result of the periodogram 
is inaccurate. When the selection of the basis function is 
incorrect, there is the problem of spectrum leakage (Vla-
chos et al. 2005). To improve the effectiveness of the peri-
odogram, (Almasri et al. 2011) proposes the use of discrete 
wavelet transform (DWT) to replace DFT, but the result of 
the periodogram is still inaccurate. (Mezic and Surana 2016; 
Lange et al. 2021) proposes the spectral analysis method, but 
the calculation results are unstable and will be affected by 
outliers and trends.

Time domain method uses ACF to calculate the correla-
tion between the time series and itself (Tian 1988). In short, 
if the period of the time series is T, the result of the back-
ward shift length T of the time series is highly correlated 
with itself, and it appears as a local peak in the calcula-
tion result of ACF. Based on the characteristics of ACF, 
autocorrelation peak is proposed as periodicity prediction 
(Wang et al. 2006) . However, ACF tends to look for long 
periods. When the period of the time series is T, there will 
be multiple local peaks in the ACF calculation results, such 
as T, 2T, which will affect the results of period detection. An 
autocorrelation zero distance method is proposed to solve 
this problem of multiple local peaks (Toller et al. 2019) . 
However, it can not solve the problem of ACF itself and still 
produces wrong results due to outliers and noise.

Frequency-time joint domain uses both frequency domain 
and time domain information. (Toller et al. 2019) proposes 
the SAZED method, which uses time domain and frequency 
domain information to calculate the candidate period and 
uses different properties of ACF to verify the periodicity. 
However, the disadvantage of this method is that the pre-
cision of periodicity detection results is not high and will 
get a lot of inaccurate results. (Mitsa 2010; Vlachos et al. 
2005) put forward the AUTOPERIOD method, which uses 
a periodogram to calculate the candidate period in frequency 
domain and ACF to identify the accurate periodicity in time 
domain. However, this method is used for multiple periodic-
ity detection. We only need to find the most critical periodic-
ity and predict the future time series.

Although there are many periodicity detection methods, 
the precision of their final results is not high, and it is dif-
ficult to be used for accurate scheduling due to the influence 
of outliers, noise, trends, and other factors. We want to find 
a method that can precisely detect the periodicity and use 
the predicted data in scheduling.
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3 � PrecisePeriod design

3.1 � Method overview

In this section, we will discuss our proposed PrecisePeriod 
algorithm. We define the periodicity model of time series as 
the following formula:

where yt represents the time series at time t, st represents the 
periodic sequence with period T at time t,nt represents the 
noise at time t, and at represents the outliers at time t. The 
PrecisePeriod proposed in this paper is to precisely identify 
the periodicity’s length after removing the noise.

The algorithm mainly includes the following four parts, 
as shown in upper part of Fig. 3 : (1) Data preprocessing to 
remove outliers in time series; (2) Employ discrete wavelet 
transform (DWT) to decompose and reconstruct time series 
to remove high-frequency noise; (3) Use autocorrelation 
function (ACF) to detect periodicity; (4) Compare the pre-
dicted data with the actual data to check the accuracy and 
stability of periodicity.

Compared with other periodicity detection methods, our 
PrecisePeriod mainly adds two steps: pre-processing and 
periodicity verification, of which periodicity verification 
plays the most critical role in improving accuracy. The cal-
culation steps of AUTOPERIOD (Vlachos et al. 2005) are 
shown in the lower part of Fig. 3. Although both frequency 
domain and time domain information are used simultane-
ously, the accuracy of the calculation results is not high due 
to the influence of outliers and trends. Subsequent people 

(2)yt = st + nt + at, t = 0, 1,… ,N − 1,

also proposed pre-processing methods, but only pre-process-
ing alone cannot guarantee the precision of the results. We 
creatively put forward the process of periodicity verification, 
which ensures the precision of the results by verifying the 
correctness and stability of the period many times.

3.2 � Data preprocessing

In the real world time series, the observed results usually 
contain various errors, and the time series we use will inevi-
tably produce errors in the capture process. Excluding the 
random influence of accidental error, the systematic error in 
the acquisition process is an important part that can not be 
ignored. For example, when the network is under high load, 
the data capture program will temporarily stop to ensure the 
transmission of tenant data. In that case, the output result 
will produce the phenomenon of log loss, which will be 
reflected in the captured time series as temporary data loss. 
When there is usually traffic in the data, a temporary data 
loss will produce a significant minimum, as shown in Fig. 4, 
resulting in abnormal data fluctuation. This fluctuation will 
bias the calculation results of ACF, resulting in misleading 
periodic information. Therefore, the outliers caused by this 
systematic error need to be removed by data preprocessing.

Due to the load superimposition of multi-tenant on the 
cloud disk, the instantaneous traffic peak may occur in the 
traffic, as shown in Fig. 4. For example, the tenants will 
back up the recently generated data to the cloud storage 
every other period or summarize the newly developed data 
for data analysis, so this instantaneous traffic peak needs 
to be reserved. However, it may also produce continuous 
peaks, which is not conducive to ACF calculation and will 

Fig. 3   Overview of periodic 
detection algorithm flow. The 
upper plot shows PrecisePeriod 
algorithm, and the lower plot 
shows other frequency-time 
joint domain algorithms. DWT 
discrete wavelet transform, ACF 
autocorrelation function, DFT 
discrete Fourier transform

Fig. 4   Original time series from 
data capture
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lead to errors in periodicity detection. To avoid this situa-
tion, we need to smooth the time series while retaining the 
change and fluctuation of flow to minimize the occurrence 
of glitches in the oscillation.

The method used in this paper is to form a new series 
based on the change of data, detect the data through Tukey’s 
test (Tukey 1977) method, and different types of outliers are 
handled differently. Tukey’s test method calculates the upper 
quartile Q

3
 and lower quartile Q

1
 of the data and then we can 

define the outliers as any value outside this range according 
to the coefficient k ∶ [Q

3
+ k(Q

3
− Q

1
),Q

1
− k(Q

3
− Q

1
)] .  

This paper uses Tukey’s test method to obtain the result 
k = 1.5 to find the outliers in the time series.

The change series of data is used to generate outliers posi-
tion series in order to distinguish different types of outliers. 
For the minimum value caused by systematic error, the outli-
ers position series is a continuous sequence of length 2. The 
first value is less than the minimum range, and the second is 
greater than the maximum range. We use the average value 
of data nearby to replace the outliers. For other types of out-
liers, the homogenization method is adopted. The original 
outliers series is replaced by the uniformly spaced increase 
and then decrease sequence to smooth the time series while 
retaining the change message of flow. Through data preproc-
essing, we can get the time series corresponding to Fig. 5.

3.3 � DWT denoise

We use discrete wavelet transform (DWT) to denoise the 
input time series at different levels (Cai and Harrington 
1998), convenient for periodic detection. The reason why 
DWT is used instead of discrete Fourier transform (DFT) 

is that DWT has the following advantages: (1) DWT can 
well retain the peak and abrupt part of the valuable signal 
required in the original signal, which has higher robustness, 
but DFT can easily lead to the distortion of the original 
signal in the recovery process; (2) DWT has good time-
frequency localization characteristics; (3) DWT can well 
characterize the non-stationary characteristics of signals.

The process of DWT denoise includes three steps: (1) 
Decompose the time series into wavelet coefficients (from 
the high-pass filter) and scaling coefficients (from the low-
pass); (2) Zero filling or compression of the signal accord-
ing to some criteria; (3) The compressed coefficients are 
inversely transformed into the original domain to obtain the 
denoised time series.

We use the common DWT based on Daubechies wavelet 
(Daubechies 1992; Percival and Walden 2000) to denoise 
the time series. When calculating DWT for time series 
X = (X

0
,X

1
, ...,XN−1) of length N, j layer wavelet coefficients 

wj are given by

and j layer scaling coefficients vj are given by

where Nj = N2−j and v
0
= X , as illustrated in Fig. 6.

For time series, the low-frequency component is vital. It 
often contains the characteristics of time series, while the 
high-frequency component corresponds to the details or 

(3)wj,k =

L−1
∑

l=0

hlwj−1,2k+1−l, k = 0, 1, ...,Nj − 1,

(4)vj,k =

L−1
∑

l=0

glvj−1,2k+1−l, k = 0, 1, ...,Nj − 1,

Fig. 5   Time series after pre-
processing

Fig. 6   Principle of DWT 
decomposition
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differences of time series. For periodicity detection tasks, 
although high-frequency components have a small num-
ber of periodic information, most of them are noise, which 
means removing high-frequency parts can increase the accu-
racy of ACF detection. Therefore, we use the zero filling 
method to remove the wavelet coefficients calculated by each 
layer and only use the scaling coefficients for wavelet recon-
struction to obtain different levels of denoised time series. 

3.4 � ACF periodicity detection

After obtaining different levels of denoised time series 
through DWT, we use autocorrelation function (ACF) 
(Brockwell 2009; Box 2015) to calculate the period of each 
denoised time series. ACF can provide us with the autocor-
relation value of any sequence with lag values. Intuitively, 
it describes the degree of correlation between the current 
value of the time series and its future value. Time series 
contains trends, seasonality, periodicity, residuals, and other 
components. ACF will consider all these components when 
looking for correlation, including direct and indirect cor-
relation information.

When we have time series X = (X
0
,X

1
, ...,XN−1) of length 

N, ACFk is given by

where � is the mean of the time series, and �2 is the variance 
of the time series.

After obtaining the calculation results of ACF, we select 
the maximum value in the local peak as the period obtained 
by ACF calculation. For different levels of denoised time 

(5)
ACFk =

1

(N − k)�2

N−k
∑

t=1

(Xt − �)(Xt+k − �),

k = 0, 1, ...,N − 1,

series, we calculate different ACF results and get the detec-
tion values of multiple periods. When there are repeated 
values in periods, we take the modal number as the detection 
results of the period. When periods present a polarization 
distribution, there is an error in the DWT process, which 
will lead the ACF to predict long periods and short periods, 
respectively. We take the two levels of the detection result as 
the period. When there are outliers in periods, we remove the 
outliers and take the mean value of other detection results 
as the period.

3.5 � Periodicity verification

On the one hand, the ACF tends to find long periods and is 
prone to outliers and noise; on the other hand, the denoised 
time series will also produce errors due to errors in the DWT 
process or outliers in time series. Therefore, we need to ver-
ify the accuracy and stability of ACF results. For detection 
accuracy, we use periodicity to predict the future time series. 
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If the prediction results are close to the actual time series, 
the periodicity detection results are correct. For detection 
stability, we use periodicity to predict longer-term future 
time series. When the prediction results are close to the 
actual time series for a long time, it indicates that the perio-
dicity can exist stably for a long time and is relatively stable.

For the time series, we take a small part of the time series 
to predict periodicity, then decide whether to use more time 
series to detect the periodicity or verify its stability based 
on the prediction results.

Take out part of the time series and predict the perio-
dicity through DWT and ACF. ACF may give detec-
tion results of multiple periodicities. We need to verify 
each detection result in the time series to find the most 
suitable periodicity. When we have obtained the detec-
tion value of the periodicity, the prediction of future time 
series is obtained by weighting the historical time series. 
For time series X = (X

0
,X

1
, ...,XN−1) of length N, after the 

periodicity T is obtained, the prediction result of time t is 
Xt = (Xt−T + Xt−2T + Xt−3T )∕3 . When the historical time 
series length is less than 3 times of periodicities, use the 
actual time series as the prediction result. Until there are 
enough historical time series to verify the accuracy of the 
periodicity. 

After multiple periodicities are obtained through differ-
ent levels of denoised time series, the Pearson correlation 
coefficient (PCC) (Berthold and Höppner 2016) between the 
prediction results and the actual time series is calculated to 
represent the correlation. The closer the calculation results 
are to 1, the stronger the correlation is. The periodicity cor-
responding to the maximum PCC is taken as the detection 
periodicity. If the result of PCC is higher than the predefined 
threshold, it indicates that the prediction result has a strong 
correlation with the actual time series which indicates that 

the detection of the periodicity is correct. So the periodic-
ity can be used to predict longer-term time series to verify 
the stability of the periodicity. On the contrary, if the result 
of PCC is lower than the predefined threshold, it indicates 
a specific difference between the predicted result and the 
actual time series which means the actual time series can-
not be represented by the prediction result. Therefore, it is 
necessary to add historical time series and predict the perio-
dicity again.

The accuracy of periodicity prediction will be low if the 
PCC threshold is set too high. The precision of periodic 
detection will be low if the PCC threshold is set too low. 
According to the experimental results, the prediction effect 
is the best when the PCC threshold is 0.7. If the prediction 
fails many times, we will increase the growth rate of the 
length of historical time series to speed up the prediction 
periodicity.

Due to the application change of the tenants on the cloud 
disk, periodicity will be changed simultaneously. For exam-
ple, the tenant switches from backing up every 1 hour to 
backing up every 2 hours. Although the periodicity has been 
successfully predicted in the detection process, the detection 
results over time are imprecise. We consider using the histor-
ical time series near the current detection stage to predict the 

periodicity again in order to adapt to the change of the perio-
dicity. This helps to exclude some old historical time series 
and predict the latest periodicity to avoid the impact of the 
periodicity contained in the old historical time series. Then 
we use the method mentioned before to verify the accuracy 
and stability of the periodicity after detection. The complete 
algorithm is described in Algorithm 1.
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4 � PreciseScheduling based on PrecisePeriod

This paper aims to avoid the tail latency caused by load 
superposition of multiple segments on SSDs for the current 
cloud computing storage structure, as shown in Fig. 1. Spe-
cifically, we want to predict future load superposition, deter-
mine which segment causes it, and schedule the segment to 
another SSD. It is possible to minimize high instantaneous 
load induced by load superposition, thereby reducing tail 
latency. Specifically, PreciseScheduling is divided into two 
distinct stages: (1) Using the results of PrecisePeriod, fore-
cast future traffic of SSD and segment; (2) Identify the SSD 
with the highest peak traffic and the segment that causes it, 
then schedule it to another SSD to lower peak traffic.

For the existing segment time series, we select the 20% 
segment with the highest traffic according to the Pareto prin-
ciple and use PrecisePeriod to predict the periodicity of the 
segment. For unpredictable parts, the traffic situation of this 
part in the future is unknown, and the results obtained by 
scheduling them are unstable, which may be better or worse. 
To consider the robustness of PreciseScheduling, we assume 
that the traffic of unpredictable segments conforms to a uni-
form distribution, which is distributed to each SSD by a hash 
method. This part of the segments is not considered in the 
subsequent scheduling process.

For predictable segments, we predict the read traffic and 
write traffic of the segment, respectively, in the prediction 
process. We use the periodicity of read/write traffic to pre-
dict write/read traffic if only read/write traffic can be fore-
casted. The sum of the predicted values of read and write 
traffic is used as the predicted traffic of segment for schedul-
ing because there is no significant difference in read-write 
latency for SSDs. Then we predict the traffic in the next 6 
h and combine the traffic according to the SSD where it 
is located to forecast the future traffic of SSD. Six hours 
are reserved for scheduling because every schedule needs 
to move 32 GB of data on SSD, so the scheduling interval 
cannot be too short. At the same time, the periodicity is 
relatively stable in the short term but unstable in the long 
term, so it needs to be predicted again at regular intervals. 
In general, we choose 6 hours as the scheduling interval.

After the prediction results of SSD and segment are cal-
culated, we use the greedy idea to schedule them. Firstly, 
find the SSD with the most enormous peak traffic in the next 
6 h, and find the segment with the most significant impact 
on the peak traffic in the SSD as the scheduling source. The 
peak traffic here refers to the instantaneous traffic rather than 
the total traffic. The primary reason for tail latency is an 
overwhelming immediate load created by instantaneous traf-
fic. More specifically, we divide 6 h into 10 min intervals to 
find the SSD with the highest total flow in the gap and the 
segment causing the instantaneous flow. Then, the traffic 

information of the segment is added to the other SSDs to 
find the SSD with the lowest peak traffic as the schedul-
ing target. If the peak traffic of the scheduled target SSD is 
higher than that of the original SSD, it will not be scheduled, 
and the segment will be added to the non-scheduling queue 
to find a new segment for scheduling.

The number of scheduling times is determined by the 
additional overhead caused by scheduling. The scheduling 
overhead is due to the extra traffic generated by scheduling. 
The scheduling is in the segment unit for the cloud comput-
ing storage structure and moves 32GB of data each time. We 
need to ensure that the additional overhead generated by Pre-
ciseScheduling is within an acceptable range. For example, 
the scheduling overhead caused does not exceed 5% of the 
original traffic. Therefore, we can calculate the maximum 
number of scheduling times according to the scheduling 
overhead and the size of the actual traffic. The complete 
algorithm is described in Algorithm 2.

5 � Experiments and discussions

5.1 � PrecisePeriod performance

Our experiments evaluate the performance of PrecisePe-
riod with other advanced periodicity detection algorithms 
on public real-world and synthetic datasets, respectively. We 
also study how each component we proposed contributes to 
PrecisePeriod.

5.1.1 � Datasets

Public datastes. We use CRAN time series data as public 
datasets (Toller et al. 2019) to facilitate the comparison with 
other periodicity detection algorithms. It contains time series 
in various fields, such as economic indicators and environ-
mental measurement, etc. It has 82 time series with a length 
range from 16 to 3024 and period length ranges from 2 to 52.

Synthetic datastes. We generate a synthetic time series 
with a length of 1000 with complex patterns, including one 
periodic component, multiple outliers, variation trend, and 
noise. Specifically, we first create a sine wave with a period 
between 50 and 200 whose amplitude changes randomly. 
The amplitude change is to better simulate the actual situa-
tion. There are fluctuations in the actual data, and there will 
be no perfect periodicity. Next, we generate outliers whose 
proportion is randomly generated from 0 to 0.05 and add 
them to the sine wave. Then Gaussian noise is added to the 
time series, the noise variance is between 0 and 0.5. Finally, 
add a random linear trend, linear increase, or linear decrease. 
In the synthetic data, we generate 1000 time series; one of 
the synthetic time series is shown in the Fig.7.
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5.1.2 � Comparison with existing algorithms

We compare PrecisePeriod with the other four algorithms: 
(1) findFrequency (Hyndman and Athanasopoulos 2018); (2) 
seasonLength (Toller and Kern 2019); (3) SAZEDmaj ; and 
(4) SAZEDopt (Toller et al. 2019). We compare the accuracy 
and F1 value of several algorithms at different datasets and 
levels. We first evaluate whether the periodicity detection 
results match the actual periodicity entirely, and the results 
are shown as ±0% in Table 1. Then evaluate the periodicity 
detection results within the actual periodicity’s ±2% toler-
ance interval. The detection periodicity in this interval can 
also approximately predict future data.

Table 1 shows the accuracy and F1 score of different 
algorithms in two data sets. In CRAN datasets, the reason for 
the low detection accuracy and F1 score of the seasonLength 

algorithm is the algorithm overfits a specific dataset, result-
ing in inferior performance in other datasets. The accuracy 
of findFrequency and SAZED algorithms is relatively close 
to the F1 score, indicating that these two algorithms predict 
more results as much as possible to improve the detection 
accuracy, resulting in low precision and recall. In contrast, 
our proposed PrecisePeriod algorithm can improve the 
detection accuracy as much as possible through the peri-
odic verification method and ensure high detection precision 
and F1 score simultaneously. In the synthetic dataset, the 
detection effect of the findFrequency algorithm decreases 
significantly. The reason is that findFrequency uses spectral 
decomposition and autoregressive methods to predict perio-
dicity, which is seriously affected by outliers, resulting in 
poor detection effect. The SAZED method still guarantees a 
certain degree of accuracy and F1 score, but it is lower than 

Fig. 7   The generation of synthetic data. a Create a time series consisting of sine waves with randomly varying amplitude; b Add random outli-
ers; c Generate random Gaussian noise and trend; d Add noise and trend to generate synthetic time series

Table 1   Accuracy and F1 
score comparisons of different 
periodicity detection algorithms 
on CRAN dataset and synthetic 
dataset

Bold values indicate better results than other methods

Algorithm CRAN dataset Synthetic dataset

±0% ±2% ±0% ±2%

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

FindFrequency 0.439 0.486 0.439 0.486 0.097 0.097 0.359 0.361
SeasonLength 0.146 0.150 0.146 0.150 0.011 0.011 0.037 0.037
Sazedopt 0.524 0.524 0.537 0.537 0.254 0.254 0.584 0.584
Sazedmaj 0.439 0.444 0.488 0.494 0.144 0.144 0.430 0.430
PrecisePeriod 0.500 0.656 0.512 0.672 0.303 0.304 0.743 0.746
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our proposed algorithm. Overall, our proposed algorithm 
achieves the best performance in accuracy and F1 score.

To further analyze the performance of various algorithms, 
we plot the precision, recall, and F1 score of different algo-
rithms in CRAN dataset and synthetic dataset in Fig. 8. It 
can be observed from the figure that our proposed Precise-
Period algorithm achieves the best effect in the three indica-
tors. Especially in CRAN dataset, our proposed algorithm 
achieves a precision rate of nearly 1.0. It achieves the goal 
of precise periodicity detection, which is helpful to schedule 
using PrecisePeriod results.

5.1.3 � Ablation experiment

To further understand the contribution of each part of our 
PrecisePeriod algorithm, we compare the performance of the 
PrecisePeriod algorithm with the following two versions: (1) 
No Preprocessing: this version has no preprocessing process, 

and the rest are the same as PrecisePeriod algorithm; (2) 
Single Periodicity Verification: this version modifies the 
periodicity verification process. Because our algorithm must 
select the final result from the candidate periods through 
periodicity verification, the periodicity verification part can-
not be removed entirely. This version inputs all time series 
into the calculation forecast period at one time and uses sin-
gle times periodicity verification to select the final period. 
It lacks the process of predicting and verifying future data 
with the period and the rest are the same as PrecisePeriod 
algorithm.

Table 2 shows the detection accuracy and F1 score of 
different algorithm versions in two datasets. Skipping the 
preprocessing process will cause the outliers in time series 
cannot be removed, thus affecting the calculation of auto-
correlation function and resulting in the decline of accuracy 
and F1 score of periodicity detection in various cases. After 
modifying the periodicity verification process, directly using 

Fig. 8   Precision, recall, and F1 of different periodicity detection algorithms on CRAN dataset and synthetic dataset

Table 2   Ablation experiment 
of the PrecisionPeriodicity on 
CRAN dataset and synthetic 
dataset

Bold values indicate better results than other methods

Algorithm CRAN dataset Synthetic dataset

±0% ±2% ±0% ±2%

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

No preprocessing 0.476 0.619 0.488 0.635 0.276 0.279 0.711 0.719
Single periodicity 

verification
0.341 0.500 0.341 0.500 0.292 0.328 0.636 0.714

PrecisePeriod 0.500 0.656 0.512 0.672 0.303 0.304 0.743 0.746
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the entire time series to predict the periodicity will lack the 
details analysis and lead to missing the excavation of short 
periodicity and preferring to find long periodicity. At the 
same time, this method is affected by the trend in the time 
series. An increasing or decreasing trend in time series will 
affect the periodicity detection, resulting in the decline of 
detection accuracy.

To further analyze the impact of each part on the perfor-
mance of the algorithm, we plot the precision, recall, and F1 
values of different versions of the algorithm in CRAN data-
set and synthetic dataset in Fig. 9. It can be observed from 
the figure that the values of three indicators can be increased 
at the same time through preprocessing. The detection 

Fig. 9   Precision, recall, and F1 of ablation experiment on CRAN dataset and synthetic dataset

Fig. 10   Actual time series: original data and prediction results of single time series
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results can be more stable through periodicity verification, 
and periodicity detection accuracy can be improved.

5.1.4 � Experiment on real datasets

We extensively evaluate our algorithm on Alibaba real data-
sets. We discovered that about 30% of the time series in the 
actual cloud computing load are periodic. We can accurately 
anticipate future time series based on the periodicity, as 
illustrated in Fig. 10. The figure shows two time series from 
Alibaba with apparent periodicity and relative stability. The 
blue line represents the original time series, while the red 
line represents the predicted result. Our method successfully 
finds the periodicity of time series and predicts the future 
data according to the original data. In the initial part of the 
first time series, we find that it has a small periodic change, 
which is only a mild change, and there are more complex 
situations in the actual time series. Our algorithm can toler-
ate this change through periodicity verification and can still 
predict the correct periodicity.

To verify the accuracy of the prediction results more 
broadly, we summarized all the results to achieve the 
overall traffic prediction for different SSDs, as shown in 
Fig. 11. The figure shows the predicted outcome of some 
SSDs, which has the expected time series and actual time 
series of the expected success part only. We add up the time 
series for predicting success as SSD whole traffic predict, 
and comparing with existing time series of traffic. In the 

figure, the blue line represents the actual traffic of SSD, the 
orange line represents the predicted traffic of SSD, and the 
red line is the division line of different SSDs. The figure 
shows that our prediction results are close to the actual traf-
fic. Accurate prediction of future time series can be realized 
through periodicity, and the prediction results can be used 
for PreciseScheduling.

5.2 � PreciseScheduling performance

Our experiment uses Alibaba real datasets to simulate the 
scheduling effect on the MQsim simulator.

5.2.1 � Experimental setup

Simulation. To evaluate the scheduling effect, we use 
MQsim (Tavakkol et al. 2018), an open-source MQ-SSD 
simulator, which can accurately simulate modern SSD based 
on NVME. Table 3 shows the configuration of the MQ-SSD 
system we modeled.

Dataset. We use an actual cloud computing load. The 
dataset contains more than 40000 different segments and 
is stored in 96 separate SSDs. Overall, the average value of 
the total read-write traffic is 2.5GB/s, and the peak value 
of the total read-write traffic is 6.5GB/s. In our simulated 
SSD environment, the average read-write latency of SSDs 
is 127us, and the average 99.99% read-write tail latency of 
SSDs is 1.019ms. However, for a single SSD, the 99.99% 

Fig. 11   Actual time series: original data and prediction results of part of SSD

Table 3   Configuration of the 
simulated SSD SSD Organization Host interface: PCIe 3.0 (NVMe 1.2)

User capacity: 480GB
8 channels, 4 chips per channel
QueueFetchSize = 512

Flash communication interface ONFI 3.1 (NV-DDR2)
Width: 8bit, Rate: 333 MT/s

Flash microarchitecture 8 KiB page, 448 B metadata per 
page,

256 pages per block, 2048 blocks per
plane, 2 places per die

Flash access parmeters Read latency: 75 s, Program
latebcy: 750 Us, Erase latency: 3.8 

ms
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read-write tail latency may be up to ten milliseconds. Our 
proposed PreciseScheduling algorithm can effectively 
reduce the peak of tail latency and ensure that all SSDs do 
not produce too significant tail latency.

5.2.2 � Comparison with existing algorithms

We first spread all segments into different SSDs by hashing 
and then reduce the tail latency by scheduling. We compare 
the proposed PreciseScheduling algorithm with the other two 
methods: (1) Greedy scheduling based on historical informa-
tion, similar to our idea. The difference is that this method 
selects the scheduled segments from all segments according 

Fig. 12   Tail flow reduction of different scheduling algorithms

Fig. 13   PreciseScheduling effect under various scheduling overhead. The left plot shows the 99.99% tail latency. The right plot shows the aver-
age latency

Fig. 14   PreciseScheduling effect. The left plot shows PreciseScheduling lowers the tail latency. The right plot shows it doesn’t increase the aver-
age latency
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to the historical data, but our process only considers the pre-
dicted successful segments; (2) Random scheduling based on 
historical information, similar to greedy scheduling based on 
historical information. The difference is that this method ran-
domly selects the scheduling target SSD, and greedy schedul-
ing selects the SSD that can minimize the peak traffic.

Firstly, we compare the decline degree of the tail flow of 
different scheduling methods under various scheduling times. 
As shown in Fig. 12, PreciseScheduling consistently achieves 
the best effect. It can be seen from the figure on the left, 
as the number of scheduling times increases, the additional 
overhead caused by scheduling increases, and the degree of 
99% tail flow decline is also increasing. As can be observed 
from the figure on the right, PreciseScheduling algorithm 
performed well in the situation of a few scheduling times for 
99.9% tail flow. Although it can further reduce the 99.9% tail 
flow by increasing the scheduling times, the degree of decline 
is insignificant. The most severe impact on tail latency is 
usually the peak traffic, so PreciseScheduling can achieve 
good results with little scheduling overhead. The other two 
scheduling algorithms need more scheduling overhead to 
reduce the peak traffic and reduce the tail latency effectively.

Next, we experiment with the scheduling results in the 
simulated SSD environment, simulate the scheduling for 6 
hours, and observe the change of tail latency. The dataset 
we use contains more than 40000 segments, and we move 
32GB of data for each schedule. According to the calculation 
results of data traffic, generating an additional 1% schedul-
ing overhead means scheduling 17 segments every 6 hours.

Firstly, we test the effect of PreciseScheduling under dif-
ferent scheduling overhead, as shown in Fig. 13. The left 
figure shows 99.99% tail latency under various schedul-
ing overheads, and the right figure represents the average 
latency. There is still a tail latency peak because the traffic 
of a single segment is too high, which can not be solved by 
scheduling. The effect is the same as that in Fig. 12. After 
increasing the scheduling overhead, the change degree of 
99.9% tail flow is small, and there is no discernible variation 
in 99.99% tail delay. Therefore, we use 1% extra scheduling 
overhead to compare with other methods.

Secondly, we analyze the effect of PreciseScheduling, as 
shown in Fig. 14. The left figure shows the 99.99% tail delay 
before and after each SSD scheduling. The scheduling algo-
rithm proposed reduces the tail delay when generating an 
additional 1% scheduling overhead. PreciseScheduling solves 
the problem of the high tail latency of a single SSD. We 
schedule the load to different SSDs to avoid the tail latency 
caused by load superposition. The figure on the right shows 
that PreciseScheduling will not increase the average latency 
while reducing the tail latency.

Finally, we compare PreciseScheh the other scduling 
algorithm witheduling methods, as shown in Fig. 15. The 
left figure shows PreciseScheduling and greedy scheduling 
based on historical information. When the scheduling times 
are the same, greedy scheduling based on historical infor-
mation can not well reduce the tail latency of all SSDs, and 
there is still a high tail latency in one SSD. Even if it gener-
ates five times the scheduling overhead of PreciseSchedul-
ing, the scheduling effect is still not good. The figure on the 
right shows PreciseScheduling and random scheduling based 
on historical information. The effect of random scheduling is 
worse than PreciseScheduling. Only when scheduling gen-
erates an additional 10% scheduling overhead can it achieve 
similar results to PreciseScheduling.

We conduct experiments with PreciseScheduling on more 
extensive datasets. The scheduling effect varies according to 
the different of data. In aggregate, our algorithm can con-
siderably reduce the tail latency by generating an additional 
1 − 2% of the scheduling overhead while the SSD with the 
highest 99.99% tail latency in the storage node can minimize 
tail latency by 50 − 90%.

6 � Conclusion

We proposes PrecisePeriod in this paper, a precise perio-
dicity detection algorithm. It achieves precise periodicity 
detection by four steps, removes outliers through data pre-
processing, employs discrete wavelet transform to remove 
high-frequency noise, computes candidate periodicity queue 

Fig. 15   The comparison of PreciseScheduling with two different scheduling algorithms
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by autocorrelation function, and determines precise period 
through periodicity verification. Experiment on actual and 
synthetic datasets shows that PrecisePeriod algorithm is bet-
ter than several state-of-art periodicity detection methods. 
We found that 30% of the time series in real-world datasets 
from Alibaba are periodic through PrecisePeriod algorithm. 
In the end, we introduce a cloud storage load balancing 
scheduling method based on PrecisePeriod, and the evalu-
ation reveals that PrecisePeriod scheduling significantly 
reduces tail latency while incurring just 1 − 2% overhead.
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