
Parallelized Training of Restricted Boltzmann
Machines using Markov-Chain Monte Carlo

Methods

Pei Yang Srinivas Varadharajan Lucas A. Wilson
Don D. Smith II John A. Lockman III Vineet Gundecha

Quy Ta

October 15, 2019

Abstract

Restricted Boltzmann Machine (RBM) is a generative stochastic neural net-
work that can be applied to collaborative filtering technique used by recommen-
dation systems. Prediction accuracy of the RBM model is usually better than that
of other models for recommendation systems. However, training the RBM model
involves Markov-Chain Monte Carlo (MCMC) method, which is computationally
expensive. In this paper, we have successfully applied distributed parallel training
using Horovod framework to improve the training time of the RBM model. Our
tests show that the distributed training approach of the RBM model has a good
scaling efficiency. We also show that this approach effectively reduces the training
time to little over 12 minutes on 64 CPU nodes compared to 5 hours on a single
CPU node. This will make RBM models more practically applicable in recom-
mendation systems.

1 Introduction
Restricted Boltzmann machine (RBM) was first invented in 1980s by Smolensky et
al [10], and intensively studied by Hinton et al [5, 6, 8]. Theoretically, RBM has one
visible layer and several hidden layers (one hidden layer in most cases), with mutual
connections between neurons in different layers while connections between neurons
within the same layer are prohibited, as is shown in Figure 1. Connections between
neurons are determined in a way such that the ”energy” for the system consisting of all
these neurons is minimal. So RBM is an energy-based bidirectional graphical model,
whose principles and topologies are quite different from those of other neural networks
such as multilayer perceptron (MLP), convolutional neural network (CNN), recurrent
neural network (RNN), et al.

One of the popular applications of RBM is collaborative filtering for recommenda-
tion system [7], where the algorithm needs to predict users’ interest levels for products
that they have not purchased based on the observed ratings for other products. RBM

1

ar
X

iv
:1

91
0.

05
88

5v
1

 [
cs

.L
G

]
 1

4
O

ct
 2

01
9

model outperforms other models for collaborative filtering (e.g., singular value decom-
position (SVD) model [11]) by predicting with better accuracy [7]. Considering large
datasets with number of users and products(typically more than 100,000), the number
of ratings involved is at the scale of 1012 or even bigger, which also requires a large
memory space to train RBM models. Also, the training algorithm involves Markov
Chain Monte Carlo (MCMC) step, which is very computationally expensive. Hence,
distributed training is a necessity in order to speed up the training process and prac-
tically leverage RBM models for recommendation problems in e-commerce, retails,
online entertainment, et al.

One of the efficient algorithms to train the RBM is the contrastive divergence (CD)
algorithm initially proposed by Hinton et al [1]. The basic idea behind CD algorithm is
to approximately draw samples from a joint distribution via sampling from a Markov
chain with up to a limited number of steps. CD algorithm has been proved to work well
even with just a few steps of Markov chain [7]. However, for a large scale training data,
it still takes a long time for the RBM model to converge to a good solution. Hence, it is
necessary to explore the parallel training techniques in-order to reduce the time-to-train
a model. This would make RBMs to be practically applied for collaborative filtering
in recommendation systems. This would also be useful in recommendation systems
where there is a need to retrain the model frequently and constrained by the available
time. In this paper, for the first time we’ve succesfully applied parallelized training
approach using Horovod [9] framework to significantly scale-up RBM models with
large scale data sets for collaborative filtering in recommendation systems.

The paper is organized as follows. In Section 2, the model architecture and math-
ematical principles of RBM are presented. Section 3 details the learning algorithm for
RBM. Sections 4 and 5 describe how to perform parallelized training of RBM model
and how to make predictions with a trained RBM model. In Section 6, some exper-
imental results with the MovieLens data set [4] are presented. In the end, Section 7
presents our conclusions.

2 Restricted Boltzmman Machine for Collaborative Fil-
tering

Usually a RBM is a bidirectional network with one visible layer and one hidden layer.
The neurons in visible and hidden layers are mutually connected, while connections
between neurons within the same layers are restricted, as is shown in Figure 1. If we
try to predict the users’ ratings for some products using the collaborative filtering, the
visible layer represents the ratings in a 5-way 0’s and 1’s as shown in Figure 2.

Suppose we have N users and M products. The N users have rated a portion of the
M products, with rating values between 1 and K (K = 5 for the case in Figure 2). For
example, if a visible neuron is in the state of [0,0,0,1,0], it suggests that the user has
provided a rating value of 4 for this product. The visible layer has M neurons, with
each corresponding to one of the M products. The states of hidden neurons are binary
(0 or 1).

RBM is an energy-based model. For the system (V ,H) (V = {vk
i },H = {h j}), the

2

”energy” is defined as

E(V ,H) =−Σ
m
i=1Σ

F
j=1Σ

K
k=1vk

i W
k
i jh j

−Σ
m
i=1Σ

K
k=1vk

i bk
i −Σ

F
j=1h jc j (1)

where W k
i j models the interactions between visible and hidden layers, while bk

i and c j
are bias terms for visible and hidden layers and F denotes the number of neurons in the
hidden layer. The joint probability distribution is

p(V ,H) =
exp(−E(V ,H))

Z
(2)

where Z = ΣV ΣH p(V ,H) is the normalization factor. It can be shown that [7, 12]

p(vk
i = 1|H) =

exp(bk
i +ΣF

j=1h jW k
i j)

ΣK
l=1exp(bl

i +ΣF
j=1h jW l

i j)
(3)

and
p(h j = 1|V) = σ(c j +Σ

m
i=1Σ

K
k=1vk

i W
k
i j) (4)

where σ(x) = 1
1+exp(−x) is the sigmoid function. Also, in [12] it was shown that

p(V ;Θ) =
f (V ;Θ)

Z
(5)

where Θ = (W k
i j,b

k
i ,c j) are the parameters for RBM model, and

f (V ;Θ) = Σh1,h2,...,hF exp(−E(V ,H))

= Σ
F
j′=1Σ

1
h j′=0exp(Σm

i=1Σ
F
j=1Σ

K
k=1vk

i W
k
i jh j

+Σ
m
i=1Σ

K
k=1vk

i bk
i +Σ

F
j=1h jc j) (6)

where H = (h1,h2, ...,hF). A detailed description of RBM can be found in [12].

3 Learning Algorithm for RBM
Suppose we have observed data {V n}N

n=1, then the likelihood with respect to such data
is

L({V n}N
n=1,Θ) = Π

N
n=1 p(V n;Θ)

= Π
N
n=1

f (V n;Θ)

Z(Θ)
. (7)

To maximize L({V n}N
n=1,Θ) is equivalent to minimizing the following objective func-

tion

G({V n}N
n=1;Θ) =− 1

N
log(L({V n}N

n=1;Θ))

= log(Z(Θ))− 1
N

Σ
N
n=1log(f (V n;Θ)). (8)

3

Figure 1: RBM architecture

Figure 2: RBM architecture (5-way softmax in visible layer)

3.1 Learning via Gradient Descent
The gradient of G with respect to Θ is

∂G
∂Θ

=
∂ log(Z(Θ))

∂Θ
− 1

N
Σ

N
n=1

∂ log(f (V n;Θ))

∂Θ

=
∂ log(Z(Θ))

∂Θ
−<

∂ log(f (V ;Θ))

∂Θ
>V∈{V n}Ni=n

.

(9)

4

The second term is the expectation of log(f (V ;Θ)) with respect to observed data
{V n}N

n=1. For the first term, we have

∂ log(Z(Θ))

∂Θ
=

1
Z(Θ)

∂Z(Θ)

∂Θ

=
1

Z(Θ)
ΣV

∂ f (V ,Θ)

∂Θ

= ΣV
f (V ;Θ)

Z(Θ)

1
f (V ,Θ)

∂ f (V ,Θ)

∂Θ

= ΣV p(V ;Θ)
∂ log f (V ,Θ)

∂Θ

=<
∂ log f (V ;Θ)

∂Θ
>p(V ;Θ) . (10)

That is, ∂ log(Z(Θ))
∂Θ

is the expectation of ∂ log f (V ,Θ)
∂Θ

with respect to distribution p(V ;Θ).
From Equation 6, we have

∂ log f (V ;Θ)

∂W k
i j

=
1
f

∂ f (V ;Θ)

∂W k
i j

=
1
f

Σ
F
j′=1Σ

1
h j′=0vk

i h jexp(Σm
i=1Σ

F
j=1Σ

K
k=1vk

i W
k
i jh j

+Σ
m
i=1Σ

K
k=1vk

i bk
i +Σ

F
j=1h jc j)

=
1
f

vk
i h j f

= vk
i h j. (11)

Similarly, it can be shown that

∂ log f (V ;Θ)

∂bk
i

= vk
i , (12)

∂ log f (V ;Θ)

∂c j
= h j. (13)

Then the gradient descent learning algorithm for RBM is

W k
i j ←W k

i j +η(〈vk
i h j〉data−〈vk

i h j〉model), (14)

bk
i ← bk

i +η(〈vk
i 〉data−〈vk

i 〉model), (15)
c j ← c j +η(〈h j〉data−〈h j〉model)) (16)

where η is learning rate and < · >data, < · >model are the expectations corresponding
to observed data and the true probability distribution from RBM model respectively.

5

3.2 Contrastive Divergence Algorithm with MCMC
Usually p(V ;Θ) is intractable since Z(Θ) is unknown. Hence, it is infeasible to an-
alytically compute 〈vk

i h j〉model ,〈vk
i 〉model and 〈h j〉model in the learning algorithm (14),

(15) and (16). In practice, Monte Carlo method is applied to compute these expecta-
tions approximately, which uses sample mean from a large size sampling set for the
joint distribution p(V ,H) to estimate the theoretical expectations. Since p(V ,H) is
also unknown, it is also infeasible to draw samples from it directly.

To resolve this difficulty, Hinton et al [5] proposed the contrastive divergence al-
gorithm which utilizes Gibbs sampling technique. It is a MCMC algorithm, to draw
samples that asymptotically follow the joint distribution p(V ,H).

Figure 3 illustrates the Gibbs Sampling algorithm. The algorithm generates a
Markov chain with known conditional probabilities p(H|V) and p(V |H). When the
chain is long enough, samples at the end of the chain will be theoretically close enough
to true samples drawn from the unknown joint distribution p(V ,H). In reality, only a
few Gibbs steps are enough to generate qualified samples that are needed to estimate
the expectations in the learning algorithm (14), (15) and (16). Readers may refer to [3]
for more details on MCMC and Gibbs sampling.

Figure 3: Gibbs sampling

3.3 Contrastive Divergence Algorithm for Training RBM
The contrastive divergence learning algorithm for training RBM via T-step Gibbs sam-
pling is summarized in equations (17), (18) and (19).

W k
i j ← W k

i j +η(〈vk
i h j〉data−〈vk

i h j〉T−step Gibbs samples), (17)

bk
i ← bk

i +η(〈vk
i 〉data−〈vk

i 〉T−step Gibbs samples), (18)

c j ← c j +η(〈h j〉data−〈h j〉T−step Gibbs samples). (19)

4 Parallelized Training
The learning algorithms (17), (18) and (19) are parallel by nature. Suppose we have a
batch of training data {(vm)

k
i ,(hm) j}N

m=1 where (vm)
k
i and (hm) j are vk

i and h j for the
mth data point in the training set. If N can be evenly divided into P parts with N = Pn,

6

then
〈vk

i h j〉data =
1
N

Σ
N
m=1(vm)

k
i (hm) j

=
1

Pn
Σ

Pn
m=1(vm)

k
i (hm) j

=
1
P
[
1
n

Σ
n
m=1(vm)

k
i (hm) j+

1
n

Σ
2n
m=n+1(vm)

k
i (hm) j + · · ·+

1
n

Σ
Pn
m=(P−1)n+1(vm)

k
i (hm) j)].

Similarly, it can be shown that other formulas for computing expectations in algorithms
(17), (18) and (19) are parallel with respect to training data. So we can distribute the
computations in the algorithms over P processes, as is illustrated in Figure 4.

Figure 4: Parallel computing of gradients

In this paper we have performed distributed training of RBM with the Horovod
framework developed by Uber [9]. Horovod essentially uses a distibuted optimizer
strategy which is basically an optimizer that wraps another tf.Optimizer, using an allre-
duce operation to average gradient values before applying gradients to model weights.
In the method compute gradients, gradients for different processes are computed via
sel f . optimizer.compute gradients(·), then averaged via sel f . allreduce grads(·). The
compute gradients method for contrastive divergence algorithm with T = 1 is shown
in Listing 1. To enable distributed training using Horovod, one simply needs to pass
CDOptimizer to horovod.DistributedOptimizer(·) as shown in Listing 2. Readers may
refer to the Horovods github repository for a thorough guidance for parallel training of
neural network models.

Listing 1: Optimizer for contrastive divergence (T=1)

c l a s s CDOptimizer (ba se) :

def i n i t (s e l f) :
pass

v0 i s v i s i b l e l a y e r s t a t e s f o r a b a t c h o f t r a i n i n g da ta ;

7

v0 , v1 are 3d t e n s o r s ; h0 , h1 are 2d t e n s o r s (m a t r i c e s) ;
def c o m p u t e g r a d i e n t s (s e l f , v0 , h0 , v1 , h1) :

c r o s s 1 = t f . e insum (’ s i k , s j−>s i j k ’ , v0 , h0)
w p o s g r a d = t f . r educe mean (c r o s s 1 , a x i s =0)

c r o s s 2 = t f . e insum (’ s i k , s j−>s i j k ’ , v1 , h1)
w neg grad = t f . r educe mean (c r o s s 2 , a x i s =0)

CD = w p o s g r a d − w neg grad

g bv = t f . r educe mean (v0 , a x i s =0) − t f . r educe mean (v1 , a x i s =0)
g bh = t f . r educe mean (h0 , a x i s =0) − t f . r educe mean (h1 , a x i s =0)

re turn [(CD, ’w’) , (g bv , ’ bv ’) , (g bh , ’ bh ’)]

Listing 2: Horovod Distributed Optimizer

o p t = CDOptimizer ()
o p t = hvd . D i s t r i b u t e d O p t i m i z e r (o p t)

5 Inference
After an RBM model is trained (i.e., W k

i j,b
k
i and c j have been learned from training

data), we can make prediction for a user’s potential rating for a given item via p(V ;Θ).
Let V obs = {(vm)

k
i }i∈I ,k∈K be the observed ratings for user m, where I ,K are sets

for indices i,k for which a rating of k for item i is observed (for example, if a rating 4 is
observed for item 221, then 4 is an element in K and 221 is an element in I). Given
V obs, the probability that a user will rate item i′ with score k′ is:

8

p((v)k′
i′ = 1|V obs)

=
1

p(V obs)
p({(v)k′

i′ }
⋃

V obs)

∝p({(v)k′
i′ }

⋃
V obs)

=
1
Z

ΣHexp[ΣF
j=1Σi∈{i′}

⋃
I Σk∈{k′}

⋃
K vk

i W
k
i jh j

+Σi∈{i′}
⋃

I Σk∈{k′}
⋃

K vk
i bk

i

+Σ
F
j=1h jc j]

∝ΣHexp[Σi∈I Σk∈K + vk′
i′ b

k′
i′]

Π
F
j=1exp[Σi∈I Σk∈K vk

i W
k
i jh j + vk′

i′W
k′
i′ jh j +h jc j]

=exp[vk′
i′ b

k′
i′]

F
Π
j=1

Σ
1
h j=0exp[Σi∈I Σk∈K vk

i W
k
i jh j + vk′

i′W
k′
i′ jh j +h jc j]

=exp[vk′
i′ b

k′
i′]

F
Π
j=1

(1+ exp[g({vk
i }i∈I ,k∈K ;{W k

i j})+ vk′
i′W

k′
i′ j + c j])

=S(k′; i′,V obs)

where g({vk
i }i∈I ,k∈K ;{W k

i j}) = Σi∈I Σk∈K vk
i W

k
i j. Then the predicted rating that user

m will give to item i′ is the one with the highest S value, i.e.

k0 = argmax({S(k′; i′,V obs)}k′∈{1,··· ,K}). (20)

Readers can refer to [7] for more details about making predictions with RBM model.

6 Experiments
In this section, we test parallelized training of RBM model with the MovieLens data
[4]. The data set has 27,753,444 ratings for M = 53,889 movies by N = 283,228
users. A piece of this data is shown in Figure 5.

The rating matrix R ∈ RN×M is defined as

R = (rnm)n∈{1,··· ,N};m∈{1,··· ,M} (21)

with rnm being the rating score of user n for movie m. If rnm is not observed yet, then
we let rnm = 0 in the rating matrix.

9

Figure 5: MovieLens Data Samples

6.1 RBM v.s. SVD (Singular Value Decomposition)
Before testing parallelized training of RBM model, we train RBM model with a small
subset of the MovieLens data and compare its performance with that of SVD (Singu-
lar Value Decomposition) method, another popular model for collaborative filtering in
recommendation system. The small data set has 84,313 ratings for 9,557 movies rated
by 248 users. In this test, the first 30 ratings for each user is held from the data as test
set and the remaining part is used as training set.

For SVD method, the basic idea is to keep only a portion of singular values of the
rating matrix

R =UΛV T (22)

and reconstruct R via

R
′
=UΛ

′
V T . (23)

Here Λ contains all the singular values of R and Λ′ is obtained by truncating Λ and
keeping only the first q leading singular values. Then the predicted rating for movie m′

by user n′ is defined as

r
′

n′m′
= R

′

n′m′
. (24)

Readers may refer to [11] for more details on SVD method and its variations.
Since q is a hyper-parameter for SVD method, we tested SVD models with differ-

ent values of q and computed their performance metric RMSE (Rooted Mean Square
Error). The result is shown in Figure 6. The optimal q value is about 10.

The comparison of prediction accuracy for SVD with q = 10 and RBM is shown in
Figure 7. The RBM model has 100 neurons in hidden layer (F = 100) and is trained
with global batch size of 50 for 100 epochs with a learning rate of 0.001 on 2 processes
in a single compute node. As is shown in Figure 7, RMSE value for SVD model with
the optimal q value (q = 10) is still way larger than that for RBM model. In reality,
RBM model produces more accurate predictions than SVD model in most cases.

While prediction accuracy of RBM model is usually higher than that of SVD model,
training an RBM model could be computationally slow. This motivated us to explore
on parallelized training of RBM model.

10

Figure 6: RMSE for SVD Models with Different q Values

6.2 Parallelized Training of RBM Model
The data we used to test parallelized training of RBM model is obtained by selecting
observed ratings from users who have rated at least 100 different movies. The selected
data set contains 21,595,144 ratings for 53,324 movies by 68,342 users. Similarly,
30 of the ratings from each user is held as test data. The tests were run on the Zenith
supercomputer at Dell EMC HPC & AI Innovation Lab [2].

6.2.1 Strong Scaling

To test the performance of strong scaling for RBM model, we fix the global batch size
to be 512. Then we train the model for one epoch with 1,2,4, · · · ,64 nodes with 1
process per node. The tests were run for one epoch. Time-to-train and scaled speedup
are shown in Figure 8 and Figure 9 respectively.

6.2.2 Weak Scaling

For weak scaling test, the batch size for each node is set to be 100. We run the test
for one epoch for 1,2,4, · · · ,64 nodes. Time-to-train and scaled speedup are shown in
Figure 10 and Figure 11 respectively.

6.2.3 Prediction Accuracy

We trained an RBM model with global batch size 512 over 8 processes for 100 epochs.
The model has 100 neurons in the hidden layer. The trained model was then applied
to make predictions for 10,963 ratings in the test data set. The RMSE value is about

11

Figure 7: Prediction Accuracy Comparison (SVD v.s. RBM)

1.62. In future work, we will train RBM models with larger global batch size and test
the prediction accuracy for them.

12

Figure 8: Time to Solution (Strong Scaling)

13

Figure 9: Scaled Speedup for Strong Scaling (1 Epoch)

14

Figure 10: Time to Solution (Weak Scaling)

15

Figure 11: Scaled Speedup for Weak Scaling (1 Epoch)

16

7 Conclusion
In this paper, we studied the principles of RBM model and parallelized training with
Horovod framework for it. As is shown in the paper, parallelized training can signif-
icantly shorten the training time. Only in this way, RBM models can be practically
applied for collaborative filtering in recommendation systems.

Experiments using our technique to train a Restricted Boltzmann Machine with
the MovieLens dataset showed that both strong and weak scaling could be maintained
out to 64 compute nodes while producing quality models in accordance with the scale
of the dataset used. Future work will focus on training at greater scale using larger
datasets.

8 Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of
interest.

References
[1] Carreira-Perpiñán, M.Á., Hinton, G.E.: On contrastive divergence learning. In:

AISTATS (2005)

[2] Dell EMC: HPC & AI Innovation Lab. https://www.dellemc.com/en-us/

solutions/high-performance-computing/HPC-AI-Innovation-Lab.

htm (2019)

[3] Gilks W. (Ed.), R.S.E.S.D.E.: Markov Chain Monte Carlo in Practice. New York:
Chapman and Hall/CRC (1996). URL https://doi.org/10.1201/b14835

[4] Harper, F.M., Konstan, J.A.: Acm transactions on interactive intelligent systems
(tiis) 5, 4, article 19 (december 2015), 19 pages. The MovieLens Datasets: His-
tory and Context (2015)

[5] Hinton, G.: https://www.cs.toronto.edu/ hinton/csc321/readings/boltz321.pdf
(2017)

[6] Hinton, G.E., Sejnowski, T.J.: Learning and relearning in boltzmann machines
(1986)

[7] Ruslan Salakhutdinov Andriy Mnih, G.H.: Restricted boltzmann machine for col-
laborative filtering. Proceedings of the 24 th International Conference on Machine
Learning (2007)

[8] Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: D. van
Dyk, M. Welling (eds.) Proceedings of the Twelth International Conference

17

https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://doi.org/10.1201/b14835

on Artificial Intelligence and Statistics, Proceedings of Machine Learning Re-
search, vol. 5, pp. 448–455. PMLR, Hilton Clearwater Beach Resort, Clearwa-
ter Beach, Florida USA (2009). URL http://proceedings.mlr.press/v5/

salakhutdinov09a.html

[9] Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018)

[10] Smolensky, P.: Parallel distributed processing: Explorations in the microstructure
of cognition, vol. 1. chap. Information Processing in Dynamical Systems: Foun-
dations of Harmony Theory, pp. 194–281. MIT Press, Cambridge, MA, USA
(1986). URL http://dl.acm.org/citation.cfm?id=104279.104290

[11] Xian, Z., Li, Q., Li, G., Li, L.: New collaborative filtering algorithms based on
svd++ and differential privacy. Mathematical Problems in Engineering 2017, 1–
14 (2017). DOI 10.1155/2017/1975719

[12] Yu, H.: A gentle tutorial on restricted boltzmann machine and contrastive diver-
gence (2017). DOI 10.13140/RG.2.2.26119.60326

18

http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://arxiv.org/abs/1802.05799
http://dl.acm.org/citation.cfm?id=104279.104290

	1 Introduction
	2 Restricted Boltzmman Machine for Collaborative Filtering
	3 Learning Algorithm for RBM
	3.1 Learning via Gradient Descent
	3.2 Contrastive Divergence Algorithm with MCMC
	3.3 Contrastive Divergence Algorithm for Training RBM

	4 Parallelized Training
	5 Inference
	6 Experiments
	6.1 RBM v.s. SVD (Singular Value Decomposition)
	6.2 Parallelized Training of RBM Model
	6.2.1 Strong Scaling
	6.2.2 Weak Scaling
	6.2.3 Prediction Accuracy

	7 Conclusion
	8 Conflict of Interest

