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Abstract
COVID-19, otherwise known as the coronavirus, has precipitated the world into a pandemic that has infected, as of the time 
of writing, more than 10 million persons worldwide and caused the death of more than 500,000 persons. Early symptoms of 
the virus include trouble breathing, fever and fatigue and over 60% of people experience a dry cough. Due to the devastat-
ing impact of COVID-19 and the tragic loss of lives, it is of the utmost urgency to develop methods for the early detection 
of the disease that may help limit its spread as well as aid in the development of targeted solutions. Coughs and other vocal 
sounds contain pulmonary health information that can be used for diagnostic purposes, and recent studies in chaotic dynamics 
have shown that nonlinear phenomena exist in vocal signals. The present work investigates the use of symbolic recurrence 
quantification measures with MFCC features for the automatic detection of COVID-19 in cough sounds of healthy and sick 
individuals. Our performance evaluation reveals that our symbolic dynamics measures capture the complex dynamics in the 
vocal sounds and are highly effective at discriminating sick and healthy coughs. We apply our method to sustained vowel 
’ah’ recordings, and show that our model is robust for the detection of the disease in sustained vowel utterances as well. 
Furthermore, we introduce a robust novel method of informative undersampling using information rate to deal with the 
imbalance in our dataset, due to the unavailability of an equal number of sick and healthy recordings. The proposed model 
achieves a mean classification performance of 97% and 99%, and a mean F

1
-score of 91% and 89% after optimization, for 

coughs and sustained vowels, respectively.

Keywords  COVID-19 · Nonlinear dynamics · Symbolization · Variable Markov Oracle · Recurrence quantification · 
Machine learning · Music information dynamic · Information theory

Introduction

COVID-19 is an infectious disease caused by severe acute 
respiratory syndrome coronavirus that starts by infecting 
the mucous membranes in the throat and moves down the 
respiratory tract leading to the lungs, with coughing being 
a common symptom. Cough sounds contain underutilized 
pulmonary health information that can be analyzed. This 
paper focuses on the auditory effects that symptoms of 
COVID-19 can have on individuals, as detected through the 
analysis of audio recordings of an individual’s coughs and 
utterances. COVID-19 is known to result in a dry cough in 
67% of cases and in phlegm production in 33% of cases. 
Detection of these symptoms can be learned using machine 
learning methodologies trained on recorded samples from 
healthy and sick individuals.

This article is part of the topical collection “Computer Aided 
Methods to Combat COVID-19 Pandemic” guest edited by 
David Clifton, Matthew Brown, Yuan-Ting Zhang and Tapabrata 
Chakraborty.
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Previous Works on Respiratory Voice Diagnostics

In recent years, several studies have proposed acoustic fea-
tures for the detection of pathologies and respiratory dis-
eases in voice signals. Common attributes include MFCCs 
(1-13) [41], vowel formants [49], jitter, shimmer and mean 
harmonics-to-noise ratio (HNR) [25], to name a few.

Santosh [59] proposes a model where speech, signal 
processing and image analysis techniques are integrated 
in healthcare. The author notably emphasizes the useful-
ness of speech processing techniques in helping doctors 
predict the presence of tuberculosis in a patient’s verbal 
communication, identify pain in voice/speech level, as 
well as understand the patient’s willingness to continue 
with treatment. The proposed model suggests the use of 
machine learning tools such as convolutional neural net-
work to make unbiased decisions in healthcare.

Various diseases such as asthma, tuberculosis, bronchi-
tis, among others, can have very prominent effects on the 
pulmonary system and have been shown to be identifiable 
through signal processing analysis of the sounds of coughs. 
Abeyratne et al. [1] analyzed the differences in pneumonia 
coughs, asthma coughs, and bronchitis coughs. Using a 
combination of time series statistics, formant-frequency 
tracking and general temporal-spectral energy-based fea-
tures, they were able to achieve a sensitivity of 94% and 
specificity of 75% based on parameters extracted from the 
cough sounds alone through non-contact microphones.

Swarnkar et al. [63] use a variety of signal process-
ing methods to look at the cough sounds including ana-
lyzing the spectral energy, temporal envelope, and time-
independent waveform statistics and was able to reach a 
recall of 55% and specificity of 93% of classifying wet 
versus dry coughs when trained on 536 samples. A study 
in [2] showed that the coughs from asthmatic patients had 
a measurably higher energy signatures, especially in the 
low-frequency bins, than the coughs from the non-asth-
matic patients. A comprehensive review of the detection 
and analysis of voice pathology from acoustic analysis 

may be found in [8], and an overview of the initiatives so 
far taken to combat with the present COVID-19 pandemic 
is found in [14]. Table  1 reports recent related works from 
the literature.

As the amount of research focusing on COVID-19 
increased, recent works started to investigate the usage of 
deep neural networks to classify individuals as sick based 
on cough sounds. Previously, Nallanthighal et al. [51] uti-
lized CNN and RNN architectures for breath event detec-
tion as a potential indicator for COPD, asthma, and gen-
eral respiratory infections. More recently, Imran et al. [32] 
utilized CNN architectures to perform direct COVID-19 
diagnostic classifications based on cough sounds. Unlike 
the approach discussed in this paper, [32] utilizes transfer 
learning approaches with deep learning to achieve perfor-
mance similar to ours with an F1 score of 0.929. Their work 
is based on a model pre-trained on general sounds and then 
fine-tuned on COVID-19 data. Their COVID-19 dataset is 
larger than the dataset used in this study and could not be 
accessed. Overall, their system has many components that 
are hard to evaluate individually therefore making it difficult 
to compare directly [32, 51].

Non‑linear Dynamic Approaches to Vocal Analysis

Although acoustic analysis studies of pathological voice sig-
nals are widespread, they mostly assume implicitly that the 
information required to characterize disorders in voice are 
depicted in the instantaneous signal’s acoustic properties 
rather then in their temporal dynamics. Chaos theory, an area 
of nonlinear dynamics systems theory, has been recently 
applied to time series analysis, opening a new approach to 
nonlinear speech signal processing [68]. Numerous studies 
have recently shown that nonlinear phenomena exist in vocal 
signals [27, 29] and evidence of nonlinear dynamical behav-
iour in speech signals and pathological voices had been 
found in [30, 31]. In [68], nonlinear dynamics features as 
well as entropy measures were used to discriminate between 
healthy and pathological voices.

Table 1   Cough classification tasks showing results, methods and classifier types: K-nearest neighbors (KNN) and logistic regression model 
(LRM)

Publication Task Results Methods

Al-khassaweneh [2] Asthma Sensitivity: 88% Spectral estimation with KNN
Subburaj [62] Intensity Accuracy: 98% Temporal energy-based regression
Swarnkar [63] Wet/Dry Sensitivity: 55% Specificity: 93% A variety of features with a LRM
Chatrzarrin [10] Wet/Dry Sensitivity: 100% Specificity: 100% Spectral / temporal theresholding
Abeyratne [1] Pneumonia Sensitivity: 80% Specificity: 73% A variety of features with an LRM
Botha [7] Tuberculosis Sensitivity: 82% Specificity: 95% Log-spectral bands with an LRM 

and clinical metrics
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One of the basic properties of nonlinear dynamic systems 
is recurrence, or approximate repetition, of the system states 
over time. To capture such recurrence patterns, the phase 
space that represents system states and a distance measure 
between the states needs to be defined. This allows creating 
so-called Recurrence Plot (RP), a graphical representation of 
a square matrix where patterns correspond to points in time 
at which recurrence of the system’s state occurs, and from 
which additional statistics can be extracted.

An analysis of speech signals based on quantification 
metrics of recurrence plots showed that recurrence quan-
tification measures significantly discriminate healthy from 
pathological voices [74]. In [39], the authors use recurrence 
and fractal scaling measures to distinguish between patho-
logical disorders in voices. In [48], a symbolic nonlinear 
dynamics analysis using recurrence quantification measures 
was applied for the detection of affect in vocal and musical 
stimuli, as well as in auditory scenes.

In this paper, we apply the so called Recurrence Quantifi-
cation Analysis (RQA) to characterize healthy and COVID-
19 diagnosed subjects from the recurrence plot of their audio 
recordings. RQA has attracted increasing attention in the 
time series community, and measures based on recurrence 
plots have been applied in various scientific disciplines [5, 
20, 33, 42, 45, 55–57, 69, 75]. As will be discussed in the 
theory section, there are two main methods to obtain recur-
rence features—by extracting statistics directly from RP, or 
by symbolization of the data and considering the equivalent 
symbolic dynamics [16, 38]. Adaptive symbolization of 
audio signals was previously used for repeated theme dis-
covery in musical recordings in [72].

With such various new systems being developed, to date 
there is still no benchmark model for the identification of 
diseases from cough sounds or other vocalisations with the 
main issue being the less than satisfactory detection preci-
sion. In this paper, we apply a combined method from non-
linear dynamics that uses adaptive time series symbolization 
with RQA features to detect COVID-19 in vocal signals.

By the time of writing and to the best of our knowledge, 
no prior work has so far attempted to diagnose COVID-19 in 
cough sounds in a comparably reliable manner. The robust 
results of our model have the potential to substantially aid in 
the early detection of the disease on the onset of seemingly 
harmless coughs, and is central towards the development 
of a broad range vocal-based ambulatory analysis system.

Theoretical Background

Concepts and theories of chaotic dynamics have been 
recently applied to complex music signals [24, 43], voice 
[30] such as infant cries [47], pathological voices [4, 27, 
31] and emotional speech [28, 29, 54]. They are shown to 

be powerful methods for characterizing complex signals in 
terms of their inherent nonlinear dynamics. A time series 
comprises time-ordered measurements computed from a 
large sample of data that represent a small observation of the 
underlying dynamical system. Nonlinear time series analysis 
(NLTSA) [34] consists of a set of methods that describe 
dynamical information from temporal series of real-world 
systems. NLTSA considers that all the information needed to 
determine the future behaviour of the system’s state is inde-
pendent of its past and can be predicted based on knowledge 
of the present state. Methods for the quantification of the 
underlying dynamics in time series are found in the literature 
[45] and are detailed next.

Mel Frequency Cepstral Coefficients

Standard ways to consider similarity in audio signals is 
through time–frequency representation. The Mel frequency 
cepstral coefficients (MFCCs ) are spectral attributes that 
are obtained using a frequency transform of the log spec-
trum. MFCCs have a frequency resolution similar to that 
of the human ear [67] and, therefore, represent the nonlin-
ear human auditory response to audio frequency. MFCCs 
are widely successful in the recognition of various types of 
audio signals as well as in various human speech process-
ing tasks and are standard in such studies. Some examples 
include the use of MFCC-based features for language iden-
tification systems [50], speech emotion recognition [53], and 
speaker identification [65]. In [50], a comprehensive review 
on the use of MFCC-based features for language identifica-
tion is presented. Authors further propose a second-level 
MFCC-based feature (MFCC-2) that handles the large and 
uneven dimensionality of MFCC.

Recurrence Quantification Analysis

Recurrence is a fundamental property of most dynamical 
systems. Due to a system’s recurrence to former states, we 
know how to make predictions about its future state. Recur-
rence takes place in the system’s phase space, and the tool 
that measures a recurrence of a trajectory in phase space is 
called a recurrence plot (RP) [45]. Recurrence plots (RPs) 
and recurrence quantification analysis (RQA) are robust 
methods for analyzing recurrences in temporal series. A 
recurrence plot is a graphical representation of a squared 
matrix with black and white dots at two time axes, highlight-
ing recurrent states in the structural dynamics underlying 
the signal.

Given a trajectory �i ∈ ℝ
d in a d-dimensional phase space 

of a dynamical system, the RP is a two-dimensional visu-
alization of the square recurrence matrix of the embedded 
time series defined by
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where �i and �j are phase space trajectories in an m-dimen-
sional phase space, N is the number of measured points in 
a trajectory, � is a threshold distance, Θ(.) the Heaviside 
function such that: Θ(x) = 0 if x < 0 and Θ(x) = 1 otherwise, 
and ‖.‖ is some appropriate choice of a norm, such as the L

2

-norm otherwise known as the Euclidean distance. Both axes 
of the RP are time axes. The dots or pixels located at (i, j) 
and (j, i) on the RP are black if the distance between points 
xi and xj in the phase space fall inside a ball or threshold 
corridor of radius � , the threshold distance [9, 55]. In this 
case, the black points refer to recurring states also termed �
-recurrent states since they occur in an �-neighborhood. The 
�-recurrent states are represented by the relation [45]:

The dots are white if Ri,j ≡ 0 . The RP always displays a main 
black diagonal line called the line of identity (LOI) since 
Ri,i ≡ 1 by definition. For more in-depth description of the 
RP properties, the reader is referred to [45].

Recurrence Quantification Measures

Recurrence Quantification Analysis (RQA) is a nonlinear sta-
tistical technique that quantifies the structures of an RP by 
means of various complexity measures [9, 61, 75]. RQA meas-
ures are based on the density of recurrence points, the diago-
nal and the vertical line structures in the RP. Fifteen RQA 
measures are computed in this work and they are detailed next.

Measures Based on the Density of Recurrence Points

Given an RP thresholded at � (Eq. 1), the Recurrence Rate 
(RR) measures the density of recurrence points in the RP:

The RR corresponds to the correlation sum (D2) measure, 
but D2 excludes the main diagonal line (LOI):

Diagonal Line‑Based Measures

The following RQA measures are computed from the histo-
gram P(l) of diagonal lines of length l [61]:

(1)R
m,�

i,j
= Θ(� − ‖�i − �j‖), i, j = 1, ...,N,

(2)�i ≈ �j ⟺ Ri,j ≡ 1.

(3)RR =
1

N2

N∑
i,j=1

Ri,j.

(4)
D2 =

1

N(N − 1)

N∑

i, j = 1

j ≠ i

Ri,j.

Determinism (DET) is the ratio of recurrence points in 
the diagonals to all recurrence points. DET measures the 
predictability of the system.

The average length of diagonal line length L refers to the 
mean prediction time:

The length Lmax of the longest diagonal line in the RP 
excluding LOI is

The inverse of Lmax indicates the divergence (DIV) of the 
phase space trajectory. The faster the divergence of the tra-
jectory segments, the shorter the diagonal lines, and DIV 
has higher value:

The next measure is the Shannon entropy of diagonal line 
length distribution in the RP ( SRP ), which is the probability 
p(l) = P(l)∕Nl to find a diagonal line of exactly length l in 
the RP. It is a measure of complexity in the RP in terms of 
the diagonal lines, such that, for uncorrelated noise the value 
of SRP will be small, which indicates a low complexity.

It is defined as

The RATIO is a measure that uncovers transitions in the 
system’s dynamics:

Vertical Line‑Based Measures

Measures based on vertical structures in the RP uncover 
chaos–chaos transitions [46] in a dynamical system that are 
not found using diagonal line-based measures. These are 
laminarity and trapping time.

The laminarity (LAM) refers to the occurrence of laminar 
states in the system. If the RP contains less vertical lines 
and more single recurrence points, then the value of LAM 
will be low:

(5)DET =

∑N

l=lmin
lP(l)

∑N

l=1
lP(l)

.

(6)L =

∑N

l=lmin
lP(l)

∑N

l=lmin
P(l)

.

(7)Lmax = max(
{
li
}Nl

i=1
).

(8)DIV =
1

Lmax
.

(9)SRP = −

N∑
l=lmin

p(l) ln p(l).

(10)RATIO =
DET

RR
.
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The trapping time measure (TT) is the average length of 
vertical lines, and estimates the mean time that the system’s 
state will be trapped:

Our Model

When computing RP-based measures, a key factor is to 
construct an RP that exhibits enough recurrence points. 
Another difficulty to address is the length of the sequence 
used to generate the RP. A widely known approach for RP 
construction is based on phase space reconstruction from 
time series [34, 60] using Takens time-delay embedding 
theorem [64]. However, one important limitation is that 
accurate embeddings are not easy to construct [33], and 
the recurrence quantification measures that describe the 
underlying dynamics are not invariant for different values 
of the embedding parameters, dimension m and time delay 
� . This is a major concern for any system that relies on RQA 
estimates to make accurate predictions. It was previously 
suggested that with methods of recurrence plot analysis it 
may not be necessary to embed the data, and that NLTSA 
methods that circumvent the need for embedding are desired 
[33]. Another concern is the case of discrete-valued time 
series. Most of the time series analysis methods have been 
developed for continuous-valued time series only, and when 
they are applied to discrete-valued observables, problems 
are encountered in interpreting the RQA results. Additional 
problems are also encountered if the variability of a sys-
tem happens at very different time-scales [16]. These issues 
can be addressed using symbolic time series analysis that 
encodes a time series into a sequence of discrete symbols, 
from which recurrence statistics are estimated to character-
ize the dynamics of the system.

Our method has the following key advantages: first, it 
detects recurrences in symbolic recurrence plots and quanti-
fies them using symbolic recurrence quantification analysis 
(RQA) measures while bypassing phase space reconstruction 
and time-delay embedding. Second, it allows the construc-
tion of symbolic RPs that prune irrelevant information by fil-
tering only the interesting aspects of the system’s dynamics; 
hence, the symbolic RQA measures describe only the essen-
tial information in the signal. A third and novel aspect of 
our approach is the use of an information theoretic measure, 
the information rate (IR), in an informative undersampling 

(11)LAM =

∑N

v=vmin
vP(v)

∑N

v=1
vP(v)

.

(12)TT =

∑N

v=vmin
vP(v)

∑N

v=vmin
P(v)

.

method using a global thresholding approach. This novel 
aspect is detailed in Sect. Information Rate.

We start by transforming the signal into Mel frequency 
cepstral coefficients (MFCCs). Next we perform a symboli-
zation step using the Variable Markov Oracle (VMO) [73]. 
Then we compute the symbolic RP from the self-similarity 
matrix, and in a final step, we derive the symbolic RQA 
measures that constitute our final feature set used in clas-
sification. A framework of the method is shown in Fig. 1.

Variable Markov Oracle

In a previous work [48], we develop the argument on the 
robustness of our nonlinear dynamics method using the Vari-
able Markov Oracle (VMO) in detecting recurrences. We 
provide here a brief description of the model.

The VMO is a suffix automaton that reduces a multivari-
ate time series down to a symbolic sequence while retain-
ing the most informative recurrent sub-sequences. The 
advantage of VMO symbolization is that it detects the best 
recurrence structure by searching over all possible symbol-
ized sequences and selects the threshold � that achieves the 
best compression effect, which offers the most revealing 
symbolization.

To find the best symbolization of the signal, different 
VMO models can be created with different � values. There 
is a tradeoff to consider when choosing � values since no 
structure in the time series can be captured by the VMO if 
the value of � is either too low or too high. Hence, � should 
be determined before VMO construction to obtain the most 
informative symbolization. Dubnov et al. have shown that 
the value of � can be resolved by computing the Information 
Rate (IR) over candidate � values and the optimal � is the 
one that yields a highest IR value [19]. In short, recurrences 
of symbolic sequences are evaluated based on a mutual 
information criterion that estimates the optimal threshold � 
in terms of maximizing Information Rate (IR) that consid-
ers mutual information between past and present in a signal 
[17].

The RP derived from VMO represents the structure of 
recurrent motifs of variable length. Detailed description of 

Fig. 1   Framework for symbolic RQA estimation
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the algorithm is found in [3, 6, 18, 71, 73]. A previous appli-
cation of our model in characterizing affective non-verbal 
vocal signals, music and auditory scenes can be found in 
[48].

Information Rate

Information rate is an information theoretic metric that 
measures the information content that a signal carries into 
its future. It is the mutual information between past and pre-
sent observation in a signal O[t] and is maximized when 
there is balance between variation and repetition in the sym-
bolized signal. A pure random signal as well as a constant 
signal carry little information, resulting in an overall small 
IR value. This means that a VMO with a higher IR value 
captures more of the repeating patterns; hence, more infor-
mation, than a VMO with a lower IR value. Complete details 
about the information theoretic framework of IR and its 
application to VMO construction can be found in [17, 72].

In addition to the optimal VMO symbolization, IR is sig-
nificant for addressing the issue of learning from imbalanced 
data, a situation that arises when there is severe difference 
between the number of observations belonging to the minor-
ity class and those belonging to the majority class. We pro-
pose a novel method of informative undersampling using 
IR, in a global thresholding approach, that significantly 
improves the overall classification performance, described 
in Sect. Learning from Imbalanced Data.

Let xN
1
= x

1
, x

2
, ..., xN be a time series x with N observa-

tions, where H(x) = −
∑

P(x)log
2
P(x) is the entropy of x, 

then the definition of IR is

And it is approximated by replacing the entropy terms in Eq.  
13 by a complexity measure C associated with a compres-
sion algorithm [72]. The complexity measure is the number 
of bits used to compress xn independently using the past 
observations xn−1

1
:

Recurrence Plots from VMO

From the generated VMO-symbolized time series, we obtain 
the symbolic RP ( RPS  hereafter), plotted from the binary 
self-similarity matrix. The index of a suffix link is a point 
on the RPS  and a repeated sequence is detected as a line 
since it includes repetitions of length 1, 2,... up to the longest 
repeated length. This makes VMO effectively find a repeti-
tion for variable length non-uniform embedding.

(13)IR(xn−1
1

, xn) = H(xn) − H(xn|xn−11
).

(14)IR(xn−1
1

, xn) ≈ C(xn) − C(xn|xn−11
).

We redefine the RP as a symbolic recurrence plot RPS  
obtained from the optimal VMO-symbolization of the sig-
nal’s time series:

such that

where N is the number of states considered, �M refers to the 
symbolized substring, Θ is the Heaviside step function (i.e. 
Θ(x) = 0 if x < 0 , and Θ(x) = 1 otherwise). � is a threshold 
distance, and d(�qi , �qj ) is a distance metric between pairs of 
symbolized substrings qi at t = i and qj at t = j.

Figure 2 shows six symbolic RPS  of six cough sounds. 
The sick and healthy coughs RPS  are in the left and right 
columns, respectively. In the plots to the left, it is possi-
ble to detect the presence of clear white bands or disrup-
tions in the sick coughs. The white bands indicate abrupt 
changes in the dynamics as well as extreme events, show-
ing that some states are far from normal. In the plots to 
the right, the white bands are fading. To get an objective 
evaluation of the structures found in RPS  , we apply a sym-
bolic recurrence quantification analysis ( RQAS  hereafter) 
based on (Eq.  15), and we obtain symbolic measures in 
line with Eq. 3 to 12.

COVID‑19 Detection Analysis

Dataset

Our machine learning models are trained upon the data 
collected by the Corona Voice Detect project in partner-
ship with Voca.ai and Carnegie Mellon University. The 
data samples include self-submitted audio recordings, 
age, gender, country of residence (optional), smoking 
habits (optional) and more. The recordings contain the 
audio of the individual coughing three times, uttering 
sustained vowels “ah”, “oh”, “eh” among other vocal 
prompts. Owing to the unanticipated onset of the disease, 
benchmark data for analysis are not yet available. Though 
a controlled setting is not enforced, such as a laboratory 
setting that ensures the absence of noise, the self-sub-
mitted nature of audio recordings offers the advantage of 
being real-life occurring audio events collected in real-
life settings. An early detection of the disease demands 
a speedy analysis of vocal prompts, hence the necessity 

(15)R
�M ,�

i,j
= Θ(� − d(�qi , �qj )) i, j = 1, ...,N,

(16)R
�M ,�

i,j
=

⎧
⎪⎨⎪⎩

1 if d(�qi , �qj ) is ≤ �

0 otherwise,
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Fig. 2   Recurrence plots of 
cough sounds. Left: with 
COVID-19. Right: without 
COVID-19
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of a voluntary self-recordings of vocal symptoms in the 
spur of the moment. This provides a realistic analysis of 
the sounds as they occur when there is an apprehension 
of being infected.

It has been shown that the sustained vowel ‘ah’ is suf-
ficient for various voice assessment applications [66, 70], 
voice disorders [15, 52] and spectral characteristics of vow-
els to efficiently gauge complex content in vocal sounds [37]. 
In [49], an automatic voice disorder classification task using 
two vowel recordings is made to discriminate cyst, paralysis 
and polyp. In our experiment, we use two types of vocal 
recordings from the dataset: coughs as well as the sustained 
vowel ’ah’. The cough sounds are on average about 5.46  s 
of length, sampled at 22050 Hz. The sustained vowels are 
on average about 12.66 s of length, sampled at 22050 Hz.

Learning from Imbalanced Data

The dataset of cough samples consists of 1895 healthy and 
32 sick samples, and the dataset of ’ah’ vowels consists of 
1468 healthy and 20 sick samples. Considering that our 
dataset is imbalanced with the number of healthy samples 
considerably exceeding the number of sick samples, it is 
necessary to take steps to ensure that the classification model 
is not biased towards the majority class. To that end, we 
experiment with a wide range of data sampling techniques 
such as oversampling the minority class or undersampling 
the majority class. Random undersampling (RUS) of the 
majority class was tested; however, since it is known to lose 
information that may be important to fit a robust decision 
boundary, it was not retained.

Oversampling: Oversampling was tested using state-of-
the-art variants of the Synthetic Minority Oversampling 
Technique (SMOTE) as well as some of its extensions that 
perform data cleaning of synthetic samples. Methods tested 
include the Adaptive Synthetic Sampling (ADASYN) algo-
rithm, SMOTE with data cleaning using the Wilson’s Edited 
Nearest Neighbour rule (SMOTE + ENN), SMOTE with 
data cleaning using Tomek Links (SMOTE + TL), Majority 
Weighted Minority Oversampling Technique (MWMOTE), 
filteriNg of ovErsampled dAta using non cooperaTive gamE 
theoRy (NEATER), among others. NEATER is a filtering 
method based on game theory, that is applied after over-
sampling the minority class. It discards instances with high 
probability of belonging to the opposite class, based on 
each instance’s neighborhood. SMOTE + ENN generates 
synthetic samples from the minority class, and then cleans 
those samples by removing the examples that are misclassi-
fied by its three nearest neighbours. SMOTE + TL applies 
Tomek Links for cleaning synthetic samples. A comprehen-
sive review of sampling methods and their applications is 
provided in [13, 58].

The oversampling methods were applied only to the train-
ing set during a cross-validation procedure. The test sets 
are never oversampled nor seen by the model during train-
ing, thus avoiding the problem of overfitting. This approach 
ensures a good evaluation of the classifier’s generalizability 
for the test data. Unfortunately, despite the state-of-the-art 
oversampling methods tested, the classification performance 
was lower for the test set compared to the training set. Next 
we describe a novel method of informative undersampling 
with IR.

Informative Undersampling with IR: We present a novel 
informative undersampling method, based on a criterion of 
information rate (IUS + IR). As mentioned in Sect. Vari-
able Markov Oracle, the symbolization step with the VMO 
selects the symbolic representation of a signal that has the 
highest IR value, thus capturing a higher amount of infor-
mation carried in the signal. If the optimal IR value is very 
low, this means that the optimal symbolization of a signal 
carries little information, in which case it is discarded. We 
apply a global thresholding approach to the samples belong-
ing to the majority class, such that all the samples having 
an IR value beneath a threshold are deleted. In this case, the 
mean of all IR values of the samples in the majority class is 
used as a threshold. This results in an undersampled majority 
class that consists of the samples that have a high optimal IR 
value, which means their symbolization captures a consider-
able amount of information that will be subsequently quan-
tified by our symbolic RQAS  measures. In Sect. Results: 
COVID-19 Classification Performance, we show that this 
novel undersampling method improves remarkably the over-
all classification performance metrics.

Feature Set

Our feature set consists of symbolic RQAS  extracted from 
the VMO-symbolized MFCC vectors. We used the standard 
MFCC feature extraction algorithm and 13 MFFC coeffi-
cients for each frame per signal are considered. Using this 
feature set we are able to analyse the temporal evolution of 
the features by computing RPS  from overlapping windows 
of fixed size for long time series.

In our previous work [48], we showed that RQAS  features 
achieve fairly high scores in identifying emotion in musical 
sounds as well as in auditory scene. In the present work, we 
show that RQAS  metrics extracted from symbolized MFCC 
vectors constitute a robust feature set for the identification 
of COVID-19 in two types of vocal sounds: coughs and sus-
tained vowels [42].

Classification

Considering our imbalanced dataset, we experiment with dif-
ferent classification algorithms as well as various sampling 
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techniques. Classifiers included decision trees, support vec-
tor machines, K-nearest-neighbor, random forest (RF) and 
XGBoost. We report the results of the best performing clas-
sifier, the weighted XGBoost classifier.

XGBoost: XGBoost (eXtreme Gradient Boosting) is an 
advanced implementation of the stochastic gradient boost-
ing algorithm. It is a powerful and sophisticated method that 
deals with data irregularities and helps reduce overfitting. 
One of the main advantages of XGBoost is that it is effec-
tive on datasets that have severe imbalance in class distribu-
tion. The weighted XGBoost for class imbalance provides 
a hyperparameter, the scale-pos-weight, designed to tune 
the behavior of the algorithm for imbalanced classification 
problems. The weighted XGBoost estimates this value by 
the total number of examples in the majority class divided 
by the total number of examples in the minority class:

Experimental work: In a preprocessing stage, the time series 
is transformed into a vector of 13 MFCCs per frame per 
sound, at 22050 Hz sampling rate using an orthonormal 
discrete cosine transform (DCT). In stage 2, the MFCC fea-
ture vector is input to the VMO construction algorithm, that 
generates several symbolizations of the features in terms of 
their recurrence properties. Next by means of information 
rate (IR), the optimal threshold � is evaluated to obtain the 
optimal VMO symbolization model MS . Finally, the sym-
bolic RPS  is generated from the self-similarity matrix cre-
ated from the longest repeated substrings (LRS) of MS , and 
a recurrence analysis of the RPS  infers the RQAS  estimates 
(Fig.  1).

The dataset is normalized prior to training so that column 
features are scaled to have standard deviation 1, and centered 
to have mean 0. A binary classification task is conducted 
where the positive class is positive diagnosis of the disease 
and the negative class is negative diagnosis (healthy). A 5 
times repeated 20-fold stratified cross-validation was per-
formed to evaluate the generalization of the model.

Classification tasks: The following classification tasks 
are implemented with weighted XGBoost, using recordings 
of coughs and vowels. First, a baseline reporting the per-
formance on the imbalanced dataset. A second task reports 
the significantly improved results with undersampling of the 
majority class with RUS + IR. Finally, we optimize the per-
formance using a threshold-moving method.

Performance Evaluation

The most frequently used metrics are based on the confu-
sion matrix. However, these metrics do not provide accurate 
information on a classifier’s functionality and are ineffective 

(17)scale − pos − weight =

∑
(Negative Examples)∑
(Positive Examples)

.

when there is data imbalance [26]. Here we use metrics that 
account for dataset imbalance, and that are not particularly 
sensitive to data distributions.

Precision is sensitive to changes in data, while recall is 
not. Recall does not give an insight about how many exam-
ples are incorrectly labelled as positive. Precision cannot 
assert how many positive examples are incorrectly labelled. 
The F

1
-measure is the weighted harmonic mean of preci-

sion and recall that tends towards the lowest of the two, and 
by means of a single value, it provides a better insight into 
the functionality of a classifier [26, 40, 44]. Cohen’s Kappa 
( � ) takes chance into account and overcomes the problem 
of overestimating the accuracy, it measures the extent to 
which the agreement between observed and predicted values 
is higher than that expected by chance alone [11, 12, 40]. 
Cohen’s kappa ranges from −1 (total disagreement), through 
0 (random classification) to 1 (perfect agreement) [22, 23]. 
Particularly, [36] considers 0–0.20 as slight, 0.21–0.40 as 
fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 
0.81-1 as almost perfect. Finally, the area under the receiver 
operating characteristic curve (ROC) [21, 26, 40] provides a 
visual representation of the relative trade-offs between recall 
(TPR) and the false-positives rate (FPR), and measures the 
ability of a classifier for various threshold settings [26].

For a binary classification problem, the classification 
performance is typically measured by the geometric mean 
(G-Mean) of the true-positive and the true-negative rates 
[35]. G-Mean is a measure for imbalanced classification that 
can be optimized to achieve a balance between sensitivity 
and specificity. A common approach is to test the learning 
model with each threshold returned from the ROC curve, 
and select the threshold with the maximal G-Mean value:

Evaluation of our model is done using G-Mean, mean accu-
racy (mACC) with cross-validation, precision or positive 
predictive value (PPV), sensitivity or true-positive rate 
(TPR), F1-measure, area under the ROC, as well as Cohen’s 
Kappa ( �).

Results: COVID‑19 Classification 
Performance

The performance results are reported in Tables 2, 3 and 4 for 
coughs and sustained vowel.

Table 2 shows that the imbalanced data negatively affect 
the baseline performance results, for both types of vocal 
sounds. Table 3 shows the results of the classification after 
undersampling with IR. It is obvious that the results sig-
nificantly improve after our novel undersampling method. 
However, both precision and recall have low values. A key 

(18)G −Mean =
√
Sensitivity ∗ Specificity.
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point concerning imbalanced classification problems is that 
the accuracy metric is not a good measure for assessing 
model performance since the positive class is greatly out-
numbered by the negative class. In scenarios such as ours, it 
is important to accurately identify the positive cases, which 
in our case refer to the COVID-19 diagnosed patients. 
Intuitively, one tends to maximize recall in our scenario to 
minimize unknowingly infectious individuals from spread-
ing it further. However increasing recall will suffer from 
low precision. Conversely, as we increase precision recall 
suffers. Hence, we want to maximize both recall and preci-
sion. In such a case, a common practice is to optimize the 
performance results by means of threshold-moving, such 
that we find the optimal threshold for which the F

1
-score is 

maximized. We search for the threshold that maximizes the 
geometric mean (G-Mean). We obtain a precision of 83%, 
a recall of 100%, and an F

1
 of 91% for cough sounds, and a 

precision of 80%, a recall of 100% and an F
1
 measure of 89% 

for vowel sounds (Table 4).

Discussion and Future Work

This work displays high potential for evaluating and auto-
matically detecting COVID-19 from web-based audio sam-
ples of an individual’s coughs and vocalisations. Using 
symbolic nonlinear recurrence dynamics, we showed the 
robustness of our method in detecting COVID-19 in cough 
sounds as well as in sustained vowel ’ah’, with an over-
all mean accuracy of 97% and 99%, respectively, and a 
mean F

1
 measure of 91% and 89%, respectively, obtained 

after threshold-moving. The steps taken to obtain the fea-
tures included the preprocessing of the audio signal using 
a Variable Markov Oracle method that detects the best 

recurrence structure by searching over all possible sym-
bolized sequences and selects the threshold that achieves 
the highest predictive information. Then computing a 
recurrence plot from the symbolic dynamics. Followed by 
extracting a set of recurrence quantification features from 
the recurrence plot that are used as input to an XGBoost 
classifier.

The unique aspect of our approach is that it considers a 
variety of statistical complexity measures that are known 
to be powerful characteristics of non-linear dynamics of 
chaotic physical systems, and apply this to the analysis of 
a time series comprising of sequences of cepstral audio 
features. The combination of mel-frequency cepstrum pre-
processing with long-term repetition structure detection 
method and extraction of multiple complexity measures 
from repetition statistics provide a good representation of 
sounds that is capable of distinguishing between sick and 
healthy individuals. Furthermore, we presented a novel 
method of informative undersampling using an informa-
tion theoretic measure of information rate, and applied 
it to undersample the majority class of healthy sounds 
in our dataset. We showed that the overall classification 
performance was significantly improved after informative 
undersampling with IR, compared to the baseline.

We intend to expand our analysis to other speech signals 
such as sustained vowels ’oh’ and ’eh’, as well as sponta-
neous speech signals. As is commonly the case, a larger 
data-set and cleaner audio samples may lead to enhanced 
performance. Additional work needs to be done to con-
sider the sensitivity and understand how many COVID-
19 sick diagnosis our model may miss as this is critical 
to evaluate the risk of having misdiagnosed individuals 
spread the disease further.

While this model is not intended to be used as an inde-
pendent diagnosis method and should be used alongside 
other standard tests, it offers a non-invasive immediate 
diagnosis method that can reach millions of people. This 
can help address the shortage of tests worldwide and can 
be easily accessible to anyone with an internet-connected 
computer or smartphone. We recommend the model be 
used as a tool to guide whether further tests at a hospital 

Table 2   Baseline performance 
with XGBoost on imbalanced 
data

Datasets ACC​ PPV TPR F
1

� AUC​

Coughs 0.98 0.12 0.11 0.10 0.10 0.46
Vowel 0.98 0.08 0.07 0.07 0.07 0.47

Table 3   Best achieved 
performance with XGBoost and 
IUS+IR

Datasets ACC​ PPV TPR F
1

� AUC​

Coughs 0.97 0.78 0.65 0.62 0.61 0.84
Vowel 0.99 0.69 0.7 0.69 0.69 0.86

Table 4   Optimal threshold metrics with XGBoost

Datasets Threshold G-Mean PPV TPR F
1

Coughs 0.265 0.97 0.83 1.0 0.91
Vowel 0.76 0.99 0.80 1.0 0.89
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or testing center are recommended. This can have a very 
valuable contribution in helping individuals take knowl-
edgeable steps to protect themselves and others in their 
community.
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