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Abstract
Semantic similarity detection mainly relies on the availability of laboriously curated ontologies, as well as of supervised and 
unsupervised neural embedding models. In this paper, we present two domain-specific sentence embedding models trained 
on a natural language requirements dataset in order to derive sentence embeddings specific to the software requirements 
engineering domain. We use cosine-similarity measures in both these models. The result of the experimental evaluation con-
firm that the proposed models enhance the performance of textual semantic similarity measures over existing state-of-the-art 
neural sentence embedding models: we reach an accuracy of 88.35%—which improves by about 10% on existing benchmarks.

Keywords  Requirements similarity · Sentence embedding · Semantic similarity

Introduction

Context

Software requirement elicitation is mostly performed using 
natural language, due to the need of effective communication 

with the client and the use of documents that accurately 
describe the application scenarios.

The use of natural language processing (NLP) in various 
aspects of Requirements Engineering (RE) heavlily con-
tributes to speed up the software production process and to 
improve the quality of the resulting systems [9]. NLP allows 
machines to understand and extract patterns from text data 
by applying various techniques such as semantic textual sim-
ilarity, information retrieval, document classification, entity 
recognition and so on. Some of the advantages of using NLP 
in RE are as follows: 

1.	 Support to functional and non-functional requirements 
classification.

2.	 Provision of design models for model-driven verifica-
tion.

3.	 Reusability of software components using similarity 
measures.

In fact, software engineers are required to understand, 
analyze, and validate the requirements manually to gener-
ate the requirement specification document. Requirements 
engineers need to extract all related software requirements 
before preparing the final specifications. This also requires 
the classification of functional and non-functional require-
ments which is also a tedious job. Several classification 
algorithms (like [1, 33]) can be used to achieve classifica-
tion of FRs and NFRs. Some of the researches are based 
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on clustering algorithms to classify FRs and NFRs [12]. 
On the other hand, Knauss et. al. [25] presents a socio-
technical model for requirements classification. All these 
approaches are mostly dependent on good sentence embed-
ding mechanisms. For example, a domain-specific corpus 
on computer science articles was used to generate embed-
ding of words and capture the context of a word to improve 
comprehensibility [24]. NLP can be used in RE for finding 
relationships among multiple functional and non-functional 
requirements which are essential to build and analyze design 
models at different phases [29]. Several works (like [15, 22]) 
show reusable software engineering can be facilitated by 
finding the semantic similarity between natural language 
requirements.

Research Problem

Leveraging the benefits of NLP in requirements engineer-
ing requires mechanisms that are purely dependent on rich 
sentence (or word) embedding models. State-of-the-art pre-
trained models represent generic, common sense knowl-
edge and fail to achieve high accuracy in specific domains. 
In spite of having pre-trained word embedding models on 
Stack Overflow posts ([4, 11]), there is a significant lack of 
domain-specific pre-trained models in Requirements Engi-
neering which could enhance the processing of natural lan-
guage requirements documents. This is the main research 
problem being addressed in this paper. We intend to develop 
pre-trained sentence embedding models that are specifically 
designed for processing natural language requirements with 
high accuracy.

Contribution

In this paper, we propose two new domain-specific models 
which are specially designed for analyzing software require-
ments in natural language.

The first model, called PUBER, is based on the BERT 
[10] architecture and trained on the PURE [13] dataset, 
which contains 79 natural language requirements documents.

The second model, called FiBER, is more powerful than 
the first one. The original pre-trained BERT model is trained 
on Wikipedia articles and Book Corpus [36]. The proposed 
FiBER model utilizes the pre-trained BERT model to find 
the cosine-similarity between pairs of natural language 
requirements. This composite architecture is then fine-
trained again on the PURE requirements dataset. This allows 
FiBER to utilize a larger vocabulary to understand natural 
language appropriately and be able to grasp the semantics 
of natural language requirements documents simultaneously.

Both the models are able to generate fixed-length sen-
tence embeddings which are essential for many different 
NLP tasks.

Results

To evaluate the effectiveness of the two proposed domain-
specific models in the domain of Requirements Engineering, 
we compared them with state-of-the-art sentence embedding 
models. The evaluation results show that our PUBER model 
achieves an accuracy of 79.23% for identifying semantically 
similar sentences and 79.52% for identifying dissimilar 
sentence pairs. FiBER, on the other hand, achieves 91.40% 
and 85.30% accuracy for similar and dissimilar sentences, 
respectively, i.e., an overall accuracy of 88.35% which 
improves by about 10% on existing benchmarks.

Organization of the Paper

The rest of the paper is organized as follows. Sec-
tion “Related Work” presents the state-of-the-art sentence 
embedding models as well as several researches where RE 
community integrated NLP techniques with requirements 
engineering. In Section “Domain Special Sentence Embed-
ding Models”, we introduce our embedding models. Sec-
tion “Experimental Evaluation” shows the results of an 
experimental analysis when comparing different sentence 
embedding models to find semantic textual similarity on 
requirements datasets. Section “Conclusion” concludes.

Related Work

Representation of words and sentences as vectors in a low 
dimensional space enables us to incorporate various deep 
learning NLP techniques to accomplish different challeng-
ing tasks. Word and sentence embeddings encode words and 
sentences in a fixed-length vectors to drastically enhance 
the performance of the NLP tasks. Word embeddings are 
considered to be an improvement over traditional bag-of-
words model which provides large and sparse word vec-
tors. Word2Vec [23] is the first neural embedding model, 
developed by Google researchers. Word2Vec represents 
words as multidimensional array. Two unsupervised algo-
rithms namely Skip-gram and CBoW are used to generate 
the word embedding. Pennington et al. [26] proposed an 
unsupervised algorithm(GloVe) for obtaining vector repre-
sentations of words based on aggregation of global word to 
word co-occurrence statistics from corpus.

Recently, the search for universal embedding has been 
gaining importance. Pre-trained embedding on a large cor-
pus can be connected with a variety of downstream tasks 
such as classification, semantic textual similarity, sentiment 
analysis and so on to improve performance. This form of 
learning is referred as Transfer Learning. In [14], authors 
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have demonstrated that transfer learning can significantly 
improve the performance of NLP models on specific tasks, 
such as classification. Setting off the eruption of universal 
word embedding research, several works improved previ-
ous unsupervised approaches (Word2Vec and state of the art 
contextual word vectors) by incorporating the supervision 
of semantic or syntactic knowledge. The most noteworthy 
is FastText [16] and ELMo [27]. FastText’s key enhance-
ment over the initial Word2Vec vectors is the integration 
of character n-grams, which enables word representations 
to be determined for words that did not even exist in the 
training data (“out-of-vocabulary” words). Within ELMo, 
each word is given a representation that is a feature of the 
whole sentence of the corpus to which they belong. The 
embedding (E) is determined from the internal states of a 
two-layer bidirectional Language Model (LMo)and, hence, 
the name ELMo.

In the area of sentence embedding, there is a general 
perception that the simple technique of directly averaging 
the word vectors of a sentence (the so-called Bag-of-Word 
approach [23]) provides a good benchmark for several 
downstream tasks. However, this approach creates vari-
able length embeddings for sentences of different lengths. 
In [2], authors have proposed an algorithm which can take 
any well-known word embedding mechanism to encode 
a sentence in a linear weighted combination fashion then 
compute the weighted average of the word vectors. Finally, 
the projection of the vectors on their first principal compo-
nent is removed. The first major proposals went further than 
basic averaging of word vectors, using unsupervised training 
objectives. Skip-Thought Vectors [18] is an unsupervised 
learning method for sentence embeddings. It is analogous 
to word embedding Skip-Gram model. The model consists 
of an encoder–decoder based on Recurrent Neural Net-
work (RNN) that is trained to recreate the surrounding sen-
tences from the current sentence. An improvement of Skip-
Thoughts vectors is presented in Quick-Thoughts Vectors 
[28]. The strength of the model is its speed of training. For a 
long period of time, supervised learning of sentence embed-
ding was assumed to generate embedding of lower quality 
than unsupervised approaches. This assumption was recently 
reversed, particularly after the InferSent [8] model emerged. 
Infersent uses Stanford Natural Language Inference [5]
(SNLI) corpus to train the classifier on top of a sentence 
encoder. The authors implement the sentence encoder using 
bi-directional LSTM coupled with max-pooling operator. In 
2018, Cer et al. from Google research proposed Universal 
Sentence Encoder [7] which has become one of Tensorflow 
Hub’s most downloaded pre-trained text modules, providing 
versatile sentence embedding models which turn sentences 
into vector representations. The Universal Sentence Encoder 
is trained with Deep Averaging Network (DAN) encoder. It 

is designed for a variety of tasks to understand the natural 
languages dynamically.

Bidirectional Encoder Representations from Transform-
ers (BERT [10]) is a pre-trained model developed by Google 
researchers Devlin et al. in 2018. BERT is trained on giga-
bytes of data from various sources (mostly from Wikipedia 
and Book Corpus) in an unsupervised fashion. In brief, the 
training is performed by masking a few words (nearly 15% 
of the words) in a sentence and allowing the model to pre-
dict masked words. As the model is trained to predict, it 
also learns to generate an efficient internal representation 
of words as word embedding. The uniqueness of the BERT 
model is that it explores text representation from both direc-
tions to obtain a clearer understanding of meaning of the 
context and their relationship. BERT has set new state of the 
art results for several NLP tasks such as question answer-
ing, sentence classification, sentence pair regression and 
so on. To perform sentence pair regression, BERT accepts 
two sentences separated by special token SEP and applies 
multi-head attention layers. The output is then passed to a 
simple regression function to provide the final label. Using 
this architecture, BERT sets a new benchmark for perfor-
mance on semantic textual similarity among state-of-the-art 
models. RoBERTa [20] has shown that minor modifications 
to pre-training processes can further enhance the efficiency 
of BERT. The major downside of BERT is that no independ-
ent sentence embedding mechanism is assessed. Two major 
approaches are used to generate sentence embedding: 

1.	 Averaging Method: The most popular BERT methods 
for creating sentence embeddings by simply averaging 
the word embeddings of all words in one sentence.

2.	 CLS vector: Alternatively, the CLS special token embed-
ding that appears at the beginning of the sentence may 
be used. ([21, 35]).

The well-known bert-as-a-service1 repository offers both 
these options. In [19], authors have proposed another variant 
of BERT called ALBERT where two-parameter reduction 
techniques have been introduced to decrease the memory 
consumption and enhance the training speed of the model. 
They have also used a self-supervised loss that focuses on 
modeling inter-sentence coherence. In [34], authors have 
proposed XLNet which integrates ideas from Transformer-
XL, where the model generalized auto-regressive pre-train-
ing mechanism. It involves bidirectional learning of contexts 
by maximizing the expected likelihood over all permutations 
of the factorization order. In another work [30], authors have 
come up with an idea to fine-tune BERT model on SNLI 
dataset. In this work, the modification of the BERT model 

1  https​://githu​b.com/hanxi​ao/bert-as-servi​ce/.

https://github.com/hanxiao/bert-as-service/
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includes the inclusion of siamese and triplet network struc-
tures to produce semantically relevant sentence embeddings. 
Another major contribution of the paper is the generation 
of sentence embeddings that are compatible with cosine 
similarity measurements. In Table 1, we have summarized 
sentence embedding models based on different parameters. 
These parameters include the model architecture, leaning 
methods, training datasets for each of the models and so on. 
The parameter “Order of Words” specifies whether a particu-
lar model is aware of the orderings of words (uni-directional 
or bi-directional) or not. Another parameter “Semantic Rela-
tionship between Texts” specifies whether the model is con-
text sensitive or context free. STS [6] Benchmark comprises 
a selection of the English datasets used in the Semantic Tex-
tual Similarity (STS) tasks. The datasets consist of text from 
image captions, headlines and articles from news and user 
forums. In Table 1, we have presented the similarity score 
measured for different models for STS datasets.

Current state-of-the-art features a range of well-known 
sentence embedding models, widely used for a number of 
NLP applications in different domains. Requirements Engi-
neering is not unique in incorporating NLP for develop-
ing potential solutions of specific problems. However, this 
domain still lacks a rich domain-specific sentence embed-
ding model which is the basic foundation for most NLP 
tasks.

Domain‑Specific Sentence Embedding 
Models

In this section, we introduce two domain-specific sentence 
embedding models—namely PUBER and FiBER—for find-
ing the similarity (and dissimilarity) between pairs of natural 
language requirements sentences. Both these models use the 
BERT neural network architecture [10].

Figure 1 depicts the architecture of the BERT model, 
which is originally trained on the Wikipedia data and Book 
Corpus.

Our first model PUBER uses the BERT architecture to 
generate a pre-trained model from the PURE dataset. On 
the other hand, FiBER uses the pre-trained BERT model 
to derive the cosine similarity between pairs of natural lan-
guage requirements sentences. This composite architecture 
is then fine-trained using the PURE dataset. The main objec-
tive of this work is to train and build vocabulary for our 
models to leverage the benefits of NLP in the Requirements 
Engineering domain.

PUBER

The PUBER model is built on the same architecture of 
the BERT sentence embedding model as presented in 
Fig. 1. However, the model is trained on the PURE dataset 

Table 1   Comparison of sentence embedding models

Parameters Models

Weighted sum 
of vectors

Skip-thoughts InferSent Google’s USE BERT RoBERTa SBERT XLNet

Learning 
method

Unsupervised Unsupervised Supervised Unsupervised Unsupervised Unsupervised Unsupervised Unsupervised

Architecture Feed-forward 
Neural net-
work model 
(Skip-gram 
or CBoW)

GRU (Gated 
Recurrent 
Units) or 
LSTM 
(Long 
Short-Term 
Memory)

Bi-directional 
LSTM with 
Softmax 
classifier

Transformer 
or Deep 
Averaging 
Network

Bi-directional 
Transformer

Bi-directional 
Transformer

Fine-tuned 
BERT on 
SNLI with 
softmax 
classifier

Transformer 
architecture 
with recur-
rence

Trained 
dataset

Wikipedia Can be trained 
on any text 
corpus

Trained on 
GloVe 
or Fast-
TextSNLI

Wikipe-
dia, web 
news,web 
Q/A

Wikipedia 
and Book 
Corpus

Wikipedia, 
Book 
Corpus, 
Common-
Crawl News 
dataset and 
text corpus

Stanford 
Natural 
Language 
Inference 
Dataset

Wikipedia, 
Book Cor-
pus, Com-
mon Crawl, 
Giga5, 
Clueweb 
etc.

Order of 
words

Not Consid-
ered

Considered Considered Considered Considered Considered Considered Considered

Semantic rela-
tion between 
texts

Not needed Needed Needed Needed Needed Needed Needed Needed

STS Bench-
mark scores 
[6]

70 72.1 80.1 87.21 90 92.4 79.19 91.8
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consisting of 34,268 unlabeled sentences. A distinctive 
feature of the BERT architecture is its uniformity across 
different tasks. There is minimal difference between 
the pre-trained model architecture and the architecture 
required for performing several downstream tasks like 
semantic similarity, classification, sentiment analysis, etc. 
PUBER’s workflow model contains the multi-layer bidi-
rectional transformer encoder of the BERT architecture. 
Additionally, the cosine similarity is evaluated between 
sentence embeddings. The model is shown in Fig. 2.

In our evaluations, we use the original implementation 
proposed by Vaswani et al. [32]. With respect to Fig. 1, we 
have kept the number of intermediate transformer blocks 
( Ti−j ) in each hidden layer to be 24, the number of hidden 
layers ( Ei to Ti ) to be 1024 and the number of self-attention 
heads to be 16 as proposed. We can describe the workflow 
model of PUBER with the help of Fig.  1 and the follow-
ing steps. 

1.	 The first step in this procedure is to build the domain-
specific vocabulary. To build the vocabulary from the 
alphabet of single byte, we have used the default Word-
Piece embedding with 30,000 token vocabulary. Several 
characteristics of this vocabulary are presented as fol-
lows. 

(a)	 The classification CLS token is considered as the 
first token for every sequence.

(b)	 Differentiation of sentences is taken care by using 
SEP token.

(c)	 Our domain specific vocabulary is optimized for 
the PURE dataset. Compared to generic vocabu-
lary trained for English, more requirements-spe-

cific words are represented by a single, unsplit 
token.

2.	 Once the vocabulary is prepared, we started training the 
language model. The vocabulary is then used for the 
word embeddings and masking.

3.	 As the model is based on BERT, we train it on a task 
of Masked Language Modeling [10] which masks some 
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Fig. 1   BERT architecture

Fig. 2   PUBER Similarity Checking Model
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percentage of the input tokens at random, and then pre-
dicts those masked tokens.

4.	 The final hidden vectors corresponding to the mask 
tokens are fed into a softmax layer. The training envi-
ronment created is described as follows. 

(a)	 Batch size is set to 32.
(b)	 Number of training step is considered to be 

100,000.
(c)	 Learning rate is kept as 2e–5.

The described settings enable us to obtain a bidirec-
tional pre-trained domain-specific language model. Once 
this model is developed, it is ready to be used for differ-
ent downstream tasks. In this paper, we have measured the 
semantic similarity based on cosine similarity between 
two sentence embeddings. Figure  2 depicts the PUBER 

model which uses the BERT architecture that is trained on 
the PURE dataset. Essentially, two sentences are passed to 
our PUBER model—say s

1
 and s

2
 . In the next phase, the 

PUBER model provides sentence embeddings for both the 
sentences—hs

1

 and hs
2

 , respectively. Finally, cosine similarity 
is measured between the two embeddings and a similarity 
score is evaluated.

FiBER

 Model Architecture

The fine-trained FiBER model is built by augmenting the 
pre-trained BERT model with a pooling strategy on top of 
it. Figure 3 shows the architecture of the FiBER transformer 
model. 

Fig. 3   FiBER similarity check-
ing model
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(a)	 At the foundation level, we have the BERT pre-trained 
model. We already discussed the BERT architecture 
with 1024 hidden layers, each with 24 transformer 
blocks (Fig. 1). Every layer does multi-headed atten-
tion computations on the word representation of the 
previous layer. The multi-headed attention computa-
tions create a new intermediate representation which is 
then fed to the next layer of hidden states. We keep the 
transformer architecture as it is in the original BERT 
model.

(b)	 On top of the BERT model, we augment a MEAN Pool-
ing component. The pooling mechanisms are essen-
tial to get a fixed representation of a sentence. Thus, 
the transformer model accepts two sentence s

1
   and 

s
2
  and generates fixed-sized sentence embeddings—

denoted by  and , respectively. There are several 
pooling strategies available to perform certain tasks 
like classification, extraction of word embeddings and 
sentence embeddings. Four different pooling strategies 
are described as follows: 

1.	 If the pooling is set to ‘None’, no pooling is applied. 
This will result in a [maximum-sequence-length, 
1024] encode matrix for a sequence. This mode is 
useful for solving token level tasks like word embed-
ding. Here, 1024 is the dimension of the encoder.

2.	 If pooling is set to ‘CLS’ tokens, only the vector 
corresponding to first ‘CLS’ token is retrieved and 
the output encode matrix will be [batch_size, 1024]. 
This pooling type is useful for solving sentence-pair 
classification tasks.

3.	 If pooling is set to ‘MEAN’, the embeddings will be 
the average of the hidden state of encoding layer on 
the time axis and the output encode matrix will be 
[batch_size, 1024]. This mode is particularly useful 
for sentence representation tasks.

4.	 Finally, if pooling is set to ‘MAX’, it takes the maxi-
mum of hidden state of encoding layers on the time 
axis. ‘MAX’ pooling is also useful for sentence rep-
resentation tasks.

	    The results of experimental comparison of the three 
pooling strategies mentioned above are depicted in 
Table 2. The FiBER model exhibits best performance 
when adopting the ‘MEAN’ pooling strategy. Thus, we 
keep our default configuration to ‘MEAN’ pooling.

(c)	 To measure the similarity between two test sentences, 
we need to feed them to the neural network which 
updates the weights for generating fixed-sized sentence 
embeddings.

(d)	 At last, the cosine similarity is measured on these fixed-
size sentence embeddings.

	   Cosine similarity is generally used as a metric that 
measures the angle between vectors where the magni-
tude of the vectors are not considered. It could be the 
case where we work with sentences of uneven lengths. 
The number of occurrences of a particular word may 
be more frequent in one sentence than in the other. 
These are the situations where the semantic similarity 
between two sentences can be affected if we consider 
the spatial distance measures. Cosine similarity gives 
more accuracy for measuring semantic similarity as it 
measures the angle between two vectors rather than 
considering the spatial distance.

	   However, fixed-sized sentence embeddings are com-
patible for all standard similarity measuring (in terms 
of angle between vectors or spatial distance) methods 
like cosine similarity, correlation, Euclidean distance, 
Jaccard similarity and so on. It is worth mentioning 
here that we have calculated both cosine similarity and 
correlation between two fixed-length embeddings to 
measure the similarity between sentences. Both meth-
ods provide almost identical results.

Transformer Model Training

In Fig. 3, we represent training of our transformer model 
using the PURE dataset sentences within the dotted rectan-
gular block. The PURE dataset contains 79 publicly availa-
ble natural language requirements documents collected from 
the Web. It consists of 34,268 sentences. We have used the 
Cosine loss function [3] for each of the 4 epochs. The cosine 
loss function constrains the distribution of the features in the 
same class. It is designed specially for the cosine-similarity 
measurement. This loss function computes the cosine simi-
larity between the sentence embeddings and minimizes the 
mean squared error loss. Furthermore, we used a batch size 
of 32 and the Adam optimizer [17] with learning rate of 
3e–5. Finally, we tested our model on 800 pairs of unseen 
requirements sentences. We evaluated the performance 
metric, in this case, the cosine similarity between sentence 
embeddings is computed. We have considered the threshold 
of similarity metric to be 0.5 which is quite common while 
measuring cosine similarity.

Table 2   Performance of FiBER for different pooling strategies

Pooling strategy Average accu-
racy for test 
dataset

MAX 84.65
MEAN 88.35
CLS 80.25
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Experimental Evaluation

We compare the performance of our two models PUBER 
and FiBER with other state-of-the-art sentence embedding 
models, namely Universal Sentence Encoder (USE), BERT, 
RoBERTa, DistilBERT and Infersent. We have evaluated 
these mechanisms on 800 pairs of software requirements 
statements to measure semantic textual similarity between 
them. The dataset consists of pairs of sentences annotated 
with binary labels—‘Yes’ and ‘No’. The label ‘Yes’ signi-
fies that the statements are semantically related. The label 
‘No’ signifies the opposite. The dataset is built by manual 
annotation. The requirements statements are taken from the 
requirements dataset provided by the OpenScience tera-
PROMISE [31] repository. We have presented evaluation 
results by plotting graphs for different ranges of number of 
sentences from 100 to 800. The values are listed in Table 3.

The evaluation result in Fig. 4a shows the accuracy of 
different approaches in order to identify semantically similar 
sentences. The figure shows FiBER gives over 91.40% of 
accuracy for identifying the semantically related sentences. 
Whereas, the Universal Sentence Encoder shows quite poor 
accuracy score of 66.58% for identifying semantically simi-
lar sentences. BERT achieves 78.28% accuracy score which 
is better than RoBERTa. Infersent gives slightly better accu-
racy score than Universal Sentence Encoder but is unable to 
beat BERT or RoBERTa for the same scenario. Our another 
model PUBER achieves better accuracy than BERT and 
RoBERTa to identify semnatically semantic sentences. The 
DistillBERT is very biased on identifying semantically simi-
lar sentence pair and gives 95.94% of accuracy. DistillBERT 
generates almost identical sentence embeddings for every 
sentence so that it predicts nearly every pair of sentence as 
semantically similar. This is the reason why it shows a high 
false positive of 63.25%.

Figure 4b presents the accuracy for different approaches 
in order to identify dissimilar sentences. It shows that 
our FiBER reaches 85.30% accuracy for identifying non-
related sentences from the dataset. The Universal Sen-
tence Encoder achieves highest accuracy of 91.86% for 
the same. PUBER achieves better accuracy than BERT. 

RoBERTa gives 80.31% of accuracy score for identifying 
dissimilar sentences. Finally, as we expect, DistillBERT 
gives poor result relative to other approaches because of its 
high false positives. It only achieves 36.48% of accuracy 
in order to identify dissimilar sentence pairs.

Figure 4c shows how the FiBER model outperforms 
other state of the art sentence embedding methods when 
applied to a mix of similar and dissimilar sentences. Our 
fine-trained model achieves an improvement of almost 
10% on average over Google’s Universal Sentence Encoder 
and 12% compared to BERT or RoBERTa. FiBER achieves 
88.35% accuracy which is highest among all the state-of-
the-art sentence embedding models. The PUBER model is 
also slightly better than other sentence embedding models 
(except FiBER). USE, Infersent, BERT and RoBERTa show 
quite similar accuracy scores, whereas DistillBERT has the 
worst accuracy.

In case of finding semantically similar sentences, 
although DistillBERT shows best results but percentage 
of false positives (63.25%) is also highest among all the 
approaches. The consequence of this situation, Distill-
BERT provides the worst outcome on the detection of dis-
similar sentences. Google’s Universal Sentence Encoder 
performs best for identifying dissimilar sentences whereas 
the performance for identifying semantically similar sen-
tences is not quite well. The false-negative percentage is 
also quite high for USE—approximately 33%. BERT and 
RoBERTa provides almost similar accuracy on an average. 
On the other hand, our proposed FiBER model achieves 
the highest accuracy on average, and also performs well 
for both similar and dissimilar sentence recognition. On 
the other side, false-positive and false-negative percentage 
levels are also the second lowest for each case—14.96% 
and 8.59% respectively.

Considering the disjoint vocabulary and the scale of 
improvement over state-of-the-art well-known models like 
BERT, Google’s Universal Sentence Encoder and Infer-
sent, we conclude that when the Requirements Engineer-
ing domain-specific vocabulary and sentence embeddings 
are the key concern, FiBER and PUBER perform the best.

Table 3   Comparison of sentence embedding techniques on natural language requirements dataset

Accuracy for Sentence Categories Models

USE Infersent FiBER PUBER BERT RoBERTa DistillBERT

Accuracy for finding similar sentences in percentage 66.58 71.14 91.40 79.23 78.28 73.03 95.94
Accuracy for finding non-similar sentences in percentage 91.86 80.06 85.30 79.52 75.06 80.31 36.48
Average accuracy in percentage 78.50 75.60 88.35 79.37 76.75 76.50 67.62
False positives in percentage 8.39 17.26 14.96 20.20 24.67 19.42 63.25
False negatives in percentage 33.17 20.9 8.59 20.76 21.71 26.96 4.05
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Conclusion

The PUBER model has a rich word piece vocabulary for 
Requirements Engineering domain. Since PUBER is purely 
trained on PURE requirements dataset, it does not have rich 
general English vocabulary. This is why the BERT model 
has been fine-trained on the PURE dataset to build the 
enhanced version which we call FiBER. The fine-trained 
model is able to make use of BERT’s huge vocabulary and 
also understand specific words from the Requirements Engi-
neering domain.

Since we have built sentence embedding models for 
the Software Requirements domain, we can empower dif-
ferent NLP tasks within the Requirements Engineering 

domain. In the future direction, we aim to apply our model 
to accomplish several such NLP tasks with our proposed 
sentence embedding models. These include requirements 
classification, named entity recognition, and sentiment 
analysis to understand code quality in code repositories, 
checking code similarity and so on.
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Fig. 4   Illustration of performance of different sentence embedding models
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