
Vol.:(0123456789)

SN Computer Science (2021) 2:69
https://doi.org/10.1007/s42979-020-00427-1

SN Computer Science

ORIGINAL RESEARCH

Sentence Embedding Models for Similarity Detection of Software
Requirements

Souvick Das1  · Novarun Deb2 · Agostino Cortesi3 · Nabendu Chaki4

Received: 11 August 2020 / Accepted: 11 December 2020
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature 2021

Abstract
Semantic similarity detection mainly relies on the availability of laboriously curated ontologies, as well as of supervised and
unsupervised neural embedding models. In this paper, we present two domain-specific sentence embedding models trained
on a natural language requirements dataset in order to derive sentence embeddings specific to the software requirements
engineering domain. We use cosine-similarity measures in both these models. The result of the experimental evaluation con-
firm that the proposed models enhance the performance of textual semantic similarity measures over existing state-of-the-art
neural sentence embedding models: we reach an accuracy of 88.35%—which improves by about 10% on existing benchmarks.

Keywords  Requirements similarity · Sentence embedding · Semantic similarity

Introduction

Context

Software requirement elicitation is mostly performed using
natural language, due to the need of effective communication

with the client and the use of documents that accurately
describe the application scenarios.

The use of natural language processing (NLP) in various
aspects of Requirements Engineering (RE) heavlily con-
tributes to speed up the software production process and to
improve the quality of the resulting systems [9]. NLP allows
machines to understand and extract patterns from text data
by applying various techniques such as semantic textual sim-
ilarity, information retrieval, document classification, entity
recognition and so on. Some of the advantages of using NLP
in RE are as follows:

1.	 Support to functional and non-functional requirements
classification.

2.	 Provision of design models for model-driven verifica-
tion.

3.	 Reusability of software components using similarity
measures.

In fact, software engineers are required to understand,
analyze, and validate the requirements manually to gener-
ate the requirement specification document. Requirements
engineers need to extract all related software requirements
before preparing the final specifications. This also requires
the classification of functional and non-functional require-
ments which is also a tedious job. Several classification
algorithms (like [1, 33]) can be used to achieve classifica-
tion of FRs and NFRs. Some of the researches are based

This article is part of the topical collection “Applications of
Software Engineering and Tool Support” guest edited by Nabendu
Chaki, Agostino Cortesi and Anirban Sarkar.

 *	 Souvick Das
	 souvik.cmsa019@gmail.com

	 Novarun Deb
	 novarun_deb@iiitvadodara.ac.in

	 Agostino Cortesi
	 cortesi@unive.it

	 Nabendu Chaki
	 nabendu@ieee.org

1	 Department of Computer Science and Engineering,
University of Calcutta, Kolkata 700106, India

2	 Indian Institute of Information Technology, Vadodara,
Gandhinagar, Gujarat 382028, India

3	 Department of Environmental Science, Informatics,
and Statistics, Ca’ Foscari University, 30172 Venezia, Italy

4	 Department. of Computer Science and Engineering,
University of Calcutta, Kolkata 700106, India

http://orcid.org/0000-0002-3314-2537
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00427-1&domain=pdf

	 SN Computer Science (2021) 2:69 69   Page 2 of 11

SN Computer Science

on clustering algorithms to classify FRs and NFRs [12].
On the other hand, Knauss et. al. [25] presents a socio-
technical model for requirements classification. All these
approaches are mostly dependent on good sentence embed-
ding mechanisms. For example, a domain-specific corpus
on computer science articles was used to generate embed-
ding of words and capture the context of a word to improve
comprehensibility [24]. NLP can be used in RE for finding
relationships among multiple functional and non-functional
requirements which are essential to build and analyze design
models at different phases [29]. Several works (like [15, 22])
show reusable software engineering can be facilitated by
finding the semantic similarity between natural language
requirements.

Research Problem

Leveraging the benefits of NLP in requirements engineer-
ing requires mechanisms that are purely dependent on rich
sentence (or word) embedding models. State-of-the-art pre-
trained models represent generic, common sense knowl-
edge and fail to achieve high accuracy in specific domains.
In spite of having pre-trained word embedding models on
Stack Overflow posts ([4, 11]), there is a significant lack of
domain-specific pre-trained models in Requirements Engi-
neering which could enhance the processing of natural lan-
guage requirements documents. This is the main research
problem being addressed in this paper. We intend to develop
pre-trained sentence embedding models that are specifically
designed for processing natural language requirements with
high accuracy.

Contribution

In this paper, we propose two new domain-specific models
which are specially designed for analyzing software require-
ments in natural language.

The first model, called PUBER, is based on the BERT
[10] architecture and trained on the PURE [13] dataset,
which contains 79 natural language requirements documents.

The second model, called FiBER, is more powerful than
the first one. The original pre-trained BERT model is trained
on Wikipedia articles and Book Corpus [36]. The proposed
FiBER model utilizes the pre-trained BERT model to find
the cosine-similarity between pairs of natural language
requirements. This composite architecture is then fine-
trained again on the PURE requirements dataset. This allows
FiBER to utilize a larger vocabulary to understand natural
language appropriately and be able to grasp the semantics
of natural language requirements documents simultaneously.

Both the models are able to generate fixed-length sen-
tence embeddings which are essential for many different
NLP tasks.

Results

To evaluate the effectiveness of the two proposed domain-
specific models in the domain of Requirements Engineering,
we compared them with state-of-the-art sentence embedding
models. The evaluation results show that our PUBER model
achieves an accuracy of 79.23% for identifying semantically
similar sentences and 79.52% for identifying dissimilar
sentence pairs. FiBER, on the other hand, achieves 91.40%
and 85.30% accuracy for similar and dissimilar sentences,
respectively, i.e., an overall accuracy of 88.35% which
improves by about 10% on existing benchmarks.

Organization of the Paper

The rest of the paper is organized as follows. Sec-
tion “Related Work” presents the state-of-the-art sentence
embedding models as well as several researches where RE
community integrated NLP techniques with requirements
engineering. In Section “Domain Special Sentence Embed-
ding Models”, we introduce our embedding models. Sec-
tion “Experimental Evaluation” shows the results of an
experimental analysis when comparing different sentence
embedding models to find semantic textual similarity on
requirements datasets. Section “Conclusion” concludes.

Related Work

Representation of words and sentences as vectors in a low
dimensional space enables us to incorporate various deep
learning NLP techniques to accomplish different challeng-
ing tasks. Word and sentence embeddings encode words and
sentences in a fixed-length vectors to drastically enhance
the performance of the NLP tasks. Word embeddings are
considered to be an improvement over traditional bag-of-
words model which provides large and sparse word vec-
tors. Word2Vec [23] is the first neural embedding model,
developed by Google researchers. Word2Vec represents
words as multidimensional array. Two unsupervised algo-
rithms namely Skip-gram and CBoW are used to generate
the word embedding. Pennington et al. [26] proposed an
unsupervised algorithm(GloVe) for obtaining vector repre-
sentations of words based on aggregation of global word to
word co-occurrence statistics from corpus.

Recently, the search for universal embedding has been
gaining importance. Pre-trained embedding on a large cor-
pus can be connected with a variety of downstream tasks
such as classification, semantic textual similarity, sentiment
analysis and so on to improve performance. This form of
learning is referred as Transfer Learning. In [14], authors

SN Computer Science (2021) 2:69 	 Page 3 of 11  69

SN Computer Science

have demonstrated that transfer learning can significantly
improve the performance of NLP models on specific tasks,
such as classification. Setting off the eruption of universal
word embedding research, several works improved previ-
ous unsupervised approaches (Word2Vec and state of the art
contextual word vectors) by incorporating the supervision
of semantic or syntactic knowledge. The most noteworthy
is FastText [16] and ELMo [27]. FastText’s key enhance-
ment over the initial Word2Vec vectors is the integration
of character n-grams, which enables word representations
to be determined for words that did not even exist in the
training data (“out-of-vocabulary” words). Within ELMo,
each word is given a representation that is a feature of the
whole sentence of the corpus to which they belong. The
embedding (E) is determined from the internal states of a
two-layer bidirectional Language Model (LMo)and, hence,
the name ELMo.

In the area of sentence embedding, there is a general
perception that the simple technique of directly averaging
the word vectors of a sentence (the so-called Bag-of-Word
approach [23]) provides a good benchmark for several
downstream tasks. However, this approach creates vari-
able length embeddings for sentences of different lengths.
In [2], authors have proposed an algorithm which can take
any well-known word embedding mechanism to encode
a sentence in a linear weighted combination fashion then
compute the weighted average of the word vectors. Finally,
the projection of the vectors on their first principal compo-
nent is removed. The first major proposals went further than
basic averaging of word vectors, using unsupervised training
objectives. Skip-Thought Vectors [18] is an unsupervised
learning method for sentence embeddings. It is analogous
to word embedding Skip-Gram model. The model consists
of an encoder–decoder based on Recurrent Neural Net-
work (RNN) that is trained to recreate the surrounding sen-
tences from the current sentence. An improvement of Skip-
Thoughts vectors is presented in Quick-Thoughts Vectors
[28]. The strength of the model is its speed of training. For a
long period of time, supervised learning of sentence embed-
ding was assumed to generate embedding of lower quality
than unsupervised approaches. This assumption was recently
reversed, particularly after the InferSent [8] model emerged.
Infersent uses Stanford Natural Language Inference [5]
(SNLI) corpus to train the classifier on top of a sentence
encoder. The authors implement the sentence encoder using
bi-directional LSTM coupled with max-pooling operator. In
2018, Cer et al. from Google research proposed Universal
Sentence Encoder [7] which has become one of Tensorflow
Hub’s most downloaded pre-trained text modules, providing
versatile sentence embedding models which turn sentences
into vector representations. The Universal Sentence Encoder
is trained with Deep Averaging Network (DAN) encoder. It

is designed for a variety of tasks to understand the natural
languages dynamically.

Bidirectional Encoder Representations from Transform-
ers (BERT [10]) is a pre-trained model developed by Google
researchers Devlin et al. in 2018. BERT is trained on giga-
bytes of data from various sources (mostly from Wikipedia
and Book Corpus) in an unsupervised fashion. In brief, the
training is performed by masking a few words (nearly 15%
of the words) in a sentence and allowing the model to pre-
dict masked words. As the model is trained to predict, it
also learns to generate an efficient internal representation
of words as word embedding. The uniqueness of the BERT
model is that it explores text representation from both direc-
tions to obtain a clearer understanding of meaning of the
context and their relationship. BERT has set new state of the
art results for several NLP tasks such as question answer-
ing, sentence classification, sentence pair regression and
so on. To perform sentence pair regression, BERT accepts
two sentences separated by special token SEP and applies
multi-head attention layers. The output is then passed to a
simple regression function to provide the final label. Using
this architecture, BERT sets a new benchmark for perfor-
mance on semantic textual similarity among state-of-the-art
models. RoBERTa [20] has shown that minor modifications
to pre-training processes can further enhance the efficiency
of BERT. The major downside of BERT is that no independ-
ent sentence embedding mechanism is assessed. Two major
approaches are used to generate sentence embedding:

1.	 Averaging Method: The most popular BERT methods
for creating sentence embeddings by simply averaging
the word embeddings of all words in one sentence.

2.	 CLS vector: Alternatively, the CLS special token embed-
ding that appears at the beginning of the sentence may
be used. ([21, 35]).

The well-known bert-as-a-service1 repository offers both
these options. In [19], authors have proposed another variant
of BERT called ALBERT where two-parameter reduction
techniques have been introduced to decrease the memory
consumption and enhance the training speed of the model.
They have also used a self-supervised loss that focuses on
modeling inter-sentence coherence. In [34], authors have
proposed XLNet which integrates ideas from Transformer-
XL, where the model generalized auto-regressive pre-train-
ing mechanism. It involves bidirectional learning of contexts
by maximizing the expected likelihood over all permutations
of the factorization order. In another work [30], authors have
come up with an idea to fine-tune BERT model on SNLI
dataset. In this work, the modification of the BERT model

1  https​://githu​b.com/hanxi​ao/bert-as-servi​ce/.

https://github.com/hanxiao/bert-as-service/

	 SN Computer Science (2021) 2:69 69   Page 4 of 11

SN Computer Science

includes the inclusion of siamese and triplet network struc-
tures to produce semantically relevant sentence embeddings.
Another major contribution of the paper is the generation
of sentence embeddings that are compatible with cosine
similarity measurements. In Table 1, we have summarized
sentence embedding models based on different parameters.
These parameters include the model architecture, leaning
methods, training datasets for each of the models and so on.
The parameter “Order of Words” specifies whether a particu-
lar model is aware of the orderings of words (uni-directional
or bi-directional) or not. Another parameter “Semantic Rela-
tionship between Texts” specifies whether the model is con-
text sensitive or context free. STS [6] Benchmark comprises
a selection of the English datasets used in the Semantic Tex-
tual Similarity (STS) tasks. The datasets consist of text from
image captions, headlines and articles from news and user
forums. In Table 1, we have presented the similarity score
measured for different models for STS datasets.

Current state-of-the-art features a range of well-known
sentence embedding models, widely used for a number of
NLP applications in different domains. Requirements Engi-
neering is not unique in incorporating NLP for develop-
ing potential solutions of specific problems. However, this
domain still lacks a rich domain-specific sentence embed-
ding model which is the basic foundation for most NLP
tasks.

Domain‑Specific Sentence Embedding
Models

In this section, we introduce two domain-specific sentence
embedding models—namely PUBER and FiBER—for find-
ing the similarity (and dissimilarity) between pairs of natural
language requirements sentences. Both these models use the
BERT neural network architecture [10].

Figure 1 depicts the architecture of the BERT model,
which is originally trained on the Wikipedia data and Book
Corpus.

Our first model PUBER uses the BERT architecture to
generate a pre-trained model from the PURE dataset. On
the other hand, FiBER uses the pre-trained BERT model
to derive the cosine similarity between pairs of natural lan-
guage requirements sentences. This composite architecture
is then fine-trained using the PURE dataset. The main objec-
tive of this work is to train and build vocabulary for our
models to leverage the benefits of NLP in the Requirements
Engineering domain.

PUBER

The PUBER model is built on the same architecture of
the BERT sentence embedding model as presented in
Fig. 1. However, the model is trained on the PURE dataset

Table 1   Comparison of sentence embedding models

Parameters Models

Weighted sum
of vectors

Skip-thoughts InferSent Google’s USE BERT RoBERTa SBERT XLNet

Learning
method

Unsupervised Unsupervised Supervised Unsupervised Unsupervised Unsupervised Unsupervised Unsupervised

Architecture Feed-forward
Neural net-
work model
(Skip-gram
or CBoW)

GRU (Gated
Recurrent
Units) or
LSTM
(Long
Short-Term
Memory)

Bi-directional
LSTM with
Softmax
classifier

Transformer
or Deep
Averaging
Network

Bi-directional
Transformer

Bi-directional
Transformer

Fine-tuned
BERT on
SNLI with
softmax
classifier

Transformer
architecture
with recur-
rence

Trained
dataset

Wikipedia Can be trained
on any text
corpus

Trained on
GloVe
or Fast-
TextSNLI

Wikipe-
dia, web
news,web
Q/A

Wikipedia
and Book
Corpus

Wikipedia,
Book
Corpus,
Common-
Crawl News
dataset and
text corpus

Stanford
Natural
Language
Inference
Dataset

Wikipedia,
Book Cor-
pus, Com-
mon Crawl,
Giga5,
Clueweb
etc.

Order of
words

Not Consid-
ered

Considered Considered Considered Considered Considered Considered Considered

Semantic rela-
tion between
texts

Not needed Needed Needed Needed Needed Needed Needed Needed

STS Bench-
mark scores
[6]

70 72.1 80.1 87.21 90 92.4 79.19 91.8

SN Computer Science (2021) 2:69 	 Page 5 of 11  69

SN Computer Science

consisting of 34,268 unlabeled sentences. A distinctive
feature of the BERT architecture is its uniformity across
different tasks. There is minimal difference between
the pre-trained model architecture and the architecture
required for performing several downstream tasks like
semantic similarity, classification, sentiment analysis, etc.
PUBER’s workflow model contains the multi-layer bidi-
rectional transformer encoder of the BERT architecture.
Additionally, the cosine similarity is evaluated between
sentence embeddings. The model is shown in Fig. 2.

In our evaluations, we use the original implementation
proposed by Vaswani et al. [32]. With respect to Fig. 1, we
have kept the number of intermediate transformer blocks
( Ti−j ) in each hidden layer to be 24, the number of hidden
layers ( Ei to Ti ) to be 1024 and the number of self-attention
heads to be 16 as proposed. We can describe the workflow
model of PUBER with the help of Fig. 1 and the follow-
ing steps.

1.	 The first step in this procedure is to build the domain-
specific vocabulary. To build the vocabulary from the
alphabet of single byte, we have used the default Word-
Piece embedding with 30,000 token vocabulary. Several
characteristics of this vocabulary are presented as fol-
lows.

(a)	 The classification CLS token is considered as the
first token for every sequence.

(b)	 Differentiation of sentences is taken care by using
SEP token.

(c)	 Our domain specific vocabulary is optimized for
the PURE dataset. Compared to generic vocabu-
lary trained for English, more requirements-spe-

cific words are represented by a single, unsplit
token.

2.	 Once the vocabulary is prepared, we started training the
language model. The vocabulary is then used for the
word embeddings and masking.

3.	 As the model is based on BERT, we train it on a task
of Masked Language Modeling [10] which masks some

S
e
n
t
e
n
c
e
1

S
e
n
t
e
n
c
e
2

Token
1

Token
2

Token
3

Token
4

V
o
c
a
b
u
l
a
r
y

E1

E2

E1024

Hidden
Layers

...

T1-1

T2-1

T1024 -1

T1 -24

T1024 - 24

T2 -24 T2

T1024

T1...

...

...

Softmax

... ...

Ei Initial Embedding Ti Final EmbeddingTi - j Intermediate
Transformer blocks

...

Fig. 1   BERT architecture

Fig. 2   PUBER Similarity Checking Model

	 SN Computer Science (2021) 2:69 69   Page 6 of 11

SN Computer Science

percentage of the input tokens at random, and then pre-
dicts those masked tokens.

4.	 The final hidden vectors corresponding to the mask
tokens are fed into a softmax layer. The training envi-
ronment created is described as follows.

(a)	 Batch size is set to 32.
(b)	 Number of training step is considered to be

100,000.
(c)	 Learning rate is kept as 2e–5.

The described settings enable us to obtain a bidirec-
tional pre-trained domain-specific language model. Once
this model is developed, it is ready to be used for differ-
ent downstream tasks. In this paper, we have measured the
semantic similarity based on cosine similarity between
two sentence embeddings. Figure 2 depicts the PUBER

model which uses the BERT architecture that is trained on
the PURE dataset. Essentially, two sentences are passed to
our PUBER model—say s

1
 and s

2
 . In the next phase, the

PUBER model provides sentence embeddings for both the
sentences—hs

1

 and hs
2

 , respectively. Finally, cosine similarity
is measured between the two embeddings and a similarity
score is evaluated.

FiBER

 Model Architecture

The fine-trained FiBER model is built by augmenting the
pre-trained BERT model with a pooling strategy on top of
it. Figure 3 shows the architecture of the FiBER transformer
model.

Fig. 3   FiBER similarity check-
ing model

SN Computer Science (2021) 2:69 	 Page 7 of 11  69

SN Computer Science

(a)	 At the foundation level, we have the BERT pre-trained
model. We already discussed the BERT architecture
with 1024 hidden layers, each with 24 transformer
blocks (Fig. 1). Every layer does multi-headed atten-
tion computations on the word representation of the
previous layer. The multi-headed attention computa-
tions create a new intermediate representation which is
then fed to the next layer of hidden states. We keep the
transformer architecture as it is in the original BERT
model.

(b)	 On top of the BERT model, we augment a MEAN Pool-
ing component. The pooling mechanisms are essen-
tial to get a fixed representation of a sentence. Thus,
the transformer model accepts two sentence s

1
 and

s
2
 and generates fixed-sized sentence embeddings—

denoted by and , respectively. There are several
pooling strategies available to perform certain tasks
like classification, extraction of word embeddings and
sentence embeddings. Four different pooling strategies
are described as follows:

1.	 If the pooling is set to ‘None’, no pooling is applied.
This will result in a [maximum-sequence-length,
1024] encode matrix for a sequence. This mode is
useful for solving token level tasks like word embed-
ding. Here, 1024 is the dimension of the encoder.

2.	 If pooling is set to ‘CLS’ tokens, only the vector
corresponding to first ‘CLS’ token is retrieved and
the output encode matrix will be [batch_size, 1024].
This pooling type is useful for solving sentence-pair
classification tasks.

3.	 If pooling is set to ‘MEAN’, the embeddings will be
the average of the hidden state of encoding layer on
the time axis and the output encode matrix will be
[batch_size, 1024]. This mode is particularly useful
for sentence representation tasks.

4.	 Finally, if pooling is set to ‘MAX’, it takes the maxi-
mum of hidden state of encoding layers on the time
axis. ‘MAX’ pooling is also useful for sentence rep-
resentation tasks.

	  The results of experimental comparison of the three
pooling strategies mentioned above are depicted in
Table 2. The FiBER model exhibits best performance
when adopting the ‘MEAN’ pooling strategy. Thus, we
keep our default configuration to ‘MEAN’ pooling.

(c)	 To measure the similarity between two test sentences,
we need to feed them to the neural network which
updates the weights for generating fixed-sized sentence
embeddings.

(d)	 At last, the cosine similarity is measured on these fixed-
size sentence embeddings.

	  Cosine similarity is generally used as a metric that
measures the angle between vectors where the magni-
tude of the vectors are not considered. It could be the
case where we work with sentences of uneven lengths.
The number of occurrences of a particular word may
be more frequent in one sentence than in the other.
These are the situations where the semantic similarity
between two sentences can be affected if we consider
the spatial distance measures. Cosine similarity gives
more accuracy for measuring semantic similarity as it
measures the angle between two vectors rather than
considering the spatial distance.

	  However, fixed-sized sentence embeddings are com-
patible for all standard similarity measuring (in terms
of angle between vectors or spatial distance) methods
like cosine similarity, correlation, Euclidean distance,
Jaccard similarity and so on. It is worth mentioning
here that we have calculated both cosine similarity and
correlation between two fixed-length embeddings to
measure the similarity between sentences. Both meth-
ods provide almost identical results.

Transformer Model Training

In Fig. 3, we represent training of our transformer model
using the PURE dataset sentences within the dotted rectan-
gular block. The PURE dataset contains 79 publicly availa-
ble natural language requirements documents collected from
the Web. It consists of 34,268 sentences. We have used the
Cosine loss function [3] for each of the 4 epochs. The cosine
loss function constrains the distribution of the features in the
same class. It is designed specially for the cosine-similarity
measurement. This loss function computes the cosine simi-
larity between the sentence embeddings and minimizes the
mean squared error loss. Furthermore, we used a batch size
of 32 and the Adam optimizer [17] with learning rate of
3e–5. Finally, we tested our model on 800 pairs of unseen
requirements sentences. We evaluated the performance
metric, in this case, the cosine similarity between sentence
embeddings is computed. We have considered the threshold
of similarity metric to be 0.5 which is quite common while
measuring cosine similarity.

Table 2   Performance of FiBER for different pooling strategies

Pooling strategy Average accu-
racy for test
dataset

MAX 84.65
MEAN 88.35
CLS 80.25

	 SN Computer Science (2021) 2:69 69   Page 8 of 11

SN Computer Science

Experimental Evaluation

We compare the performance of our two models PUBER
and FiBER with other state-of-the-art sentence embedding
models, namely Universal Sentence Encoder (USE), BERT,
RoBERTa, DistilBERT and Infersent. We have evaluated
these mechanisms on 800 pairs of software requirements
statements to measure semantic textual similarity between
them. The dataset consists of pairs of sentences annotated
with binary labels—‘Yes’ and ‘No’. The label ‘Yes’ signi-
fies that the statements are semantically related. The label
‘No’ signifies the opposite. The dataset is built by manual
annotation. The requirements statements are taken from the
requirements dataset provided by the OpenScience tera-
PROMISE [31] repository. We have presented evaluation
results by plotting graphs for different ranges of number of
sentences from 100 to 800. The values are listed in Table 3.

The evaluation result in Fig. 4a shows the accuracy of
different approaches in order to identify semantically similar
sentences. The figure shows FiBER gives over 91.40% of
accuracy for identifying the semantically related sentences.
Whereas, the Universal Sentence Encoder shows quite poor
accuracy score of 66.58% for identifying semantically simi-
lar sentences. BERT achieves 78.28% accuracy score which
is better than RoBERTa. Infersent gives slightly better accu-
racy score than Universal Sentence Encoder but is unable to
beat BERT or RoBERTa for the same scenario. Our another
model PUBER achieves better accuracy than BERT and
RoBERTa to identify semnatically semantic sentences. The
DistillBERT is very biased on identifying semantically simi-
lar sentence pair and gives 95.94% of accuracy. DistillBERT
generates almost identical sentence embeddings for every
sentence so that it predicts nearly every pair of sentence as
semantically similar. This is the reason why it shows a high
false positive of 63.25%.

Figure 4b presents the accuracy for different approaches
in order to identify dissimilar sentences. It shows that
our FiBER reaches 85.30% accuracy for identifying non-
related sentences from the dataset. The Universal Sen-
tence Encoder achieves highest accuracy of 91.86% for
the same. PUBER achieves better accuracy than BERT.

RoBERTa gives 80.31% of accuracy score for identifying
dissimilar sentences. Finally, as we expect, DistillBERT
gives poor result relative to other approaches because of its
high false positives. It only achieves 36.48% of accuracy
in order to identify dissimilar sentence pairs.

Figure 4c shows how the FiBER model outperforms
other state of the art sentence embedding methods when
applied to a mix of similar and dissimilar sentences. Our
fine-trained model achieves an improvement of almost
10% on average over Google’s Universal Sentence Encoder
and 12% compared to BERT or RoBERTa. FiBER achieves
88.35% accuracy which is highest among all the state-of-
the-art sentence embedding models. The PUBER model is
also slightly better than other sentence embedding models
(except FiBER). USE, Infersent, BERT and RoBERTa show
quite similar accuracy scores, whereas DistillBERT has the
worst accuracy.

In case of finding semantically similar sentences,
although DistillBERT shows best results but percentage
of false positives (63.25%) is also highest among all the
approaches. The consequence of this situation, Distill-
BERT provides the worst outcome on the detection of dis-
similar sentences. Google’s Universal Sentence Encoder
performs best for identifying dissimilar sentences whereas
the performance for identifying semantically similar sen-
tences is not quite well. The false-negative percentage is
also quite high for USE—approximately 33%. BERT and
RoBERTa provides almost similar accuracy on an average.
On the other hand, our proposed FiBER model achieves
the highest accuracy on average, and also performs well
for both similar and dissimilar sentence recognition. On
the other side, false-positive and false-negative percentage
levels are also the second lowest for each case—14.96%
and 8.59% respectively.

Considering the disjoint vocabulary and the scale of
improvement over state-of-the-art well-known models like
BERT, Google’s Universal Sentence Encoder and Infer-
sent, we conclude that when the Requirements Engineer-
ing domain-specific vocabulary and sentence embeddings
are the key concern, FiBER and PUBER perform the best.

Table 3   Comparison of sentence embedding techniques on natural language requirements dataset

Accuracy for Sentence Categories Models

USE Infersent FiBER PUBER BERT RoBERTa DistillBERT

Accuracy for finding similar sentences in percentage 66.58 71.14 91.40 79.23 78.28 73.03 95.94
Accuracy for finding non-similar sentences in percentage 91.86 80.06 85.30 79.52 75.06 80.31 36.48
Average accuracy in percentage 78.50 75.60 88.35 79.37 76.75 76.50 67.62
False positives in percentage 8.39 17.26 14.96 20.20 24.67 19.42 63.25
False negatives in percentage 33.17 20.9 8.59 20.76 21.71 26.96 4.05

SN Computer Science (2021) 2:69 	 Page 9 of 11  69

SN Computer Science

Conclusion

The PUBER model has a rich word piece vocabulary for
Requirements Engineering domain. Since PUBER is purely
trained on PURE requirements dataset, it does not have rich
general English vocabulary. This is why the BERT model
has been fine-trained on the PURE dataset to build the
enhanced version which we call FiBER. The fine-trained
model is able to make use of BERT’s huge vocabulary and
also understand specific words from the Requirements Engi-
neering domain.

Since we have built sentence embedding models for
the Software Requirements domain, we can empower dif-
ferent NLP tasks within the Requirements Engineering

domain. In the future direction, we aim to apply our model
to accomplish several such NLP tasks with our proposed
sentence embedding models. These include requirements
classification, named entity recognition, and sentiment
analysis to understand code quality in code repositories,
checking code similarity and so on.

Acknowledgements  This work has been partially supported by the
Project IN17MO07 “Formal Specification for Secured Software Sys-
tem”, under the Indo-Italian Executive Programme of Scientific and
Technological Cooperation.

Compliance with Ethical Standards 

Conflict of Interest Statement  On behalf of all authors, the corre-
sponding author states that there is no conflict of interest.

(a) (b)

(c) (d)

Fig. 4   Illustration of performance of different sentence embedding models

	 SN Computer Science (2021) 2:69 69   Page 10 of 11

SN Computer Science

References

	 1.	 Abad ZSH, Karras O, Ghazi P, Glinz M, Ruhe G, Schneider K.
What works better? A study of classifying requirements. In: 2017
IEEE 25th International Requirements Engineering Conference
(RE), IEEE; 2017; p. 496–501.

	 2.	 Arora S, Liang Y, Ma T. A simple but tough-to-beat baseline for
sentence embeddings. In: International Conference on learning
representations; 2016; p. 1–16.

	 3.	 Barz B, Denzler J. Deep learning on small datasets without pre-
training using cosine loss. In: The IEEE Winter Conference on
applications of computer vision, 2020; p. 1371–380.

	 4.	 Biswas E, Vijay-Shanker K, Pollock L. Exploring word embed-
ding techniques to improve sentiment analysis of software engi-
neering texts. In: 2019 IEEE/ACM 16th International Conference
on mining software repositories (MSR), IEEE, 2019; p. 68–78.

	 5.	 Bowman SR, Angeli G, Potts C, Manning CD. A large annotated
corpus for learning natural language inference. In: Proceedings
of the 2015 Conference on empirical methods in natural language
processing, association for computational linguistics, Lisbon, Por-
tugal, 2015. ;. 632–42, https​://doi.org/10.18653​/v1/D15-1075.

	 6.	 Cer D, Diab M, Agirre E, Lopez-Gazpio I, Specia L. Seme-
val-2017 task 1: semantic textual similarity-multilingual and
cross-lingual focused evaluation. In: Association for Computa-
tional Linguistics, 2017; p. 1–14. https​://www.aclwe​b.org/antho​
logy/S17-2001, arXiv preprint arXiv​:1708.00055​.

	 7.	 Cer D, Yang Y, Kong Sy, Hua N, Limtiaco N, St John R, Constant
N, Guajardo-Cespedes M, Yuan S, Tar C, Strope B, Kurzweil
R. Universal sentence encoder for Eenglish. In: Proceedings of
the 2018 Conference on empirical methods in natural language
processing: system demonstrations, association for computa-
tional linguistics, Brussels, Belgium, 2018; p. 169–74, https​://
doi.org/10.18653​/v1/D18-2029

	 8.	 Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A. Super-
vised learning of universal sentence representations from natural
language inference data. In: Proceedings of the 2017 Conference
on empirical methods in natural language processing, association
for computational linguistics, Copenhagen, Denmark, 2017; p.
670–80, https​://doi.org/10.18653​/v1/D17-1070

	 9.	 Dalpiaz F, Ferrari A, Franch X, Palomares C. Natural language
processing for requirements engineering: the best is yet to come.
In: IEEE software, IEEE, 2018;35:115–19.

	10.	 Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training
of deep bidirectional transformers for language understanding.
In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers),
Association for Computational Linguistics, Minneapolis, Min-
nesota, 2019; p. 4171–186, https​://doi.org/10.18653​/v1/N19-1423

	11.	 Efstathiou V, Chatzilenas C, Spinellis D. Word embeddings for the
software engineering domain. In: Proceedings of the 15th Inter-
national Conference on mining software repositories, 2018; p.
38–41.

	12.	 Eyal Salman H, Hammad M, Seriai AD, Al-Sbou A. Semantic
clustering of functional requirements using agglomerative hier-
archical clustering. In: Information, Multidisciplinary Digital
Publishing Institute, 2018;9: 222.

	13.	 Ferrari A, Spagnolo GO, Gnesi S. Pure: a dataset of public require-
ments documents. In: 2017 IEEE 25th International Requirements
Engineering Conference (RE), IEEE, 2017; p. 502–5.

	14.	 Howard J, Ruder S. Universal language model fine-tuning for
text classification. In: Proceedings of the 56th Annual Meeting
of the association for computational linguistics (Volume 1: Long
Papers), association for computational linguistics, Melbourne,
Australia, 2018; p. 328–39, https​://doi.org/10.18653​/v1/P18-1031

	15.	 Ilyas M, Kung J. A similarity measurement framework for require-
ments engineering. In: 2009 Fourth International Multi-Confer-
ence on computing in the global information technology, IEEE,
2009; p. 31–4.

	16.	 Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for
efficient text classification. In: Proceedings of the 15th Confer-
ence of the European Chapter of the association for computational
linguistics: volume 2, short papers, association for computational
linguistics, Valencia, Spain, 2017;.p. 427–31.

	17.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. In:
3rd International Conference on learning representations, ICLR
2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings; 2015.

	18.	 Kiros R, Zhu Y, Salakhutdinov RR, Zemel R, Urtasun R, Torralba
A, Fidler S. Skip-thought vectors. In: Advances in neural informa-
tion processing systems, 2015’ p. 3294–302.

	19.	 Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R.
Albert: a lite bert for self-supervised learning of language repre-
sentations. In: arXiv preprint arXiv​:1909.11942​ 2019.

	20.	 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M,
Zettlemoyer L, Stoyanov V. Roberta: A robustly optimized Bert
pretraining approach. In: arXiv preprint arXiv​:1907.11692​ 2019.

	21.	 May C, Wang A, Bordia S, Bowman SR, Rudinger R. On meas-
uring social biases in sentence encoders. In: Proceedings of the
2019 Conference of the North American Chapter of the associa-
tion for computational linguistics: human language technologies,
volume 1 (Long and Short Papers), association for computational
linguistics, Minneapolis, Minnesota, 2019; p. 622–28, https​://doi.
org/10.18653​/v1/N19-1063

	22.	 Mihany FA, Moussa H, Kamel A, Ezzat E, Ilyas M. An automated
system for measuring similarity between software requirements.
In: Proceedings of the 2nd Africa and Middle East Conference on
software engineering, 2016; p. 46–51.

	23.	 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed
representations of words and phrases and their compositionality.
In: NIPS’13: Proceedings of the 26th International Conference on
Neural Information Processing Systemss, Vol. 2. Red Hook, NY:
Curran Associates Inc.; 2013. p. 3111–9.

	24.	 Mishra S, Sharma A. On the use of word embeddings for identify-
ing domain specific ambiguities in requirements. In: 2019 IEEE
27th International Requirements Engineering Conference Work-
shops (REW), IEEE, 2019; p. 234–40.

	25.	 Ott D. Automatic requirement categorization of large natural lan-
guage specifications at mercedes-benz for review improvements.
In: International Working Conference on requirements engineer-
ing: foundation for software quality, Springer, 2013; p. 50–64.

	26.	 Pennington J, Socher R, Manning CD. Glove: global vectors for
word representation. In: Proceedings of the 2014 Conference on
empirical methods in natural language processing (EMNLP),
2014; p. 1532–543.

	27.	 Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,
Zettlemoyer L. Deep contextualized word representations. In: Pro-
ceedings of the 2018 Conference of the North American Chapter
of the association for computational linguistics: human language
technologies, volume 1 (Long Papers), association for computa-
tional linguistics, New Orleans, Louisiana, 2018; p. 2227–237,
https​://doi.org/10.18653​/v1/N18-1202

	28.	 Quan Z, Wang Z, Le Y, Yao B, Li K, Yin J. An efficient framework
for sentence similarity modeling. IEEE/ACM Trans Audio Speech
Lang Process. 2019;27:853–65.

	29.	 Rahimi M, Mirakhorli M, Cleland-Huang J. Automated extraction
and visualization of quality concerns from requirements specifica-
tions. In: 2014 IEEE 22nd International Requirements Engineer-
ing Conference (RE), IEEE, 2014; p. 253–62.

	30.	 Reimers N, Gurevych I. Sentence-BERT: sentence embeddings
using Siamese BERT-networks. In: Proceedings of the 2019

https://doi.org/10.18653/v1/D15-1075
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/S17-2001
http://arxiv.org/abs/1708.00055
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1031
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N18-1202

SN Computer Science (2021) 2:69 	 Page 11 of 11  69

SN Computer Science

Conference on empirical methods in natural language processing
and the 9th International Joint Conference on natural language
processing (EMNLP-IJCNLP), association for computational
linguistics, Hong Kong, China, 2019; p. 3982–992, https​://doi.
org/10.18653​/v1/D19-1410

	31.	 Shirabad JS, Menzies TJ. The promise repository of software
engineering databases. In: School of information technology and
engineering, University of Ottawa, Canada, 2005; vol 24.

	32.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: NIPS
2017: 31st Conference on Neural Information Processing Systems
(NIPS 2017), Long Beach, CA, USA. Red Hook, NY: Curran
Associates Inc. 2017; p. 5998–6008.

	33.	 Winkler J, Vogelsang A. Automatic classification of requirements
based on convolutional neural networks. In: 2016 IEEE 24th
International Requirements Engineering Conference Workshops
(REW), IEEE, 2016; p. 39–45.

	34.	 Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le
QV. Xlnet: generalized autoregressive pretraining for language

understanding. In: Advances in neural information processing
systems, 2019; p 5754–764.

	35.	 Zhang T, Kishore V, Wu F, Weinberger KQ, Artzi Y. Bertscore:
evaluating text generation with Bert. In: 8th International Confer-
ence on learning representations, ICLR, 2020; 2020.

	36.	 Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba
A, Fidler S. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In: Proceed-
ings of the IEEE International Conference on computer vision,
2015; p. 19–27.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

	Sentence Embedding Models for Similarity Detection of Software Requirements
	Abstract
	Introduction
	Context
	Research Problem
	Contribution
	Results
	Organization of the Paper

	Related Work
	Domain-Specific Sentence Embedding Models
	PUBER
	FiBER
	 Model Architecture
	Transformer Model Training

	Experimental Evaluation
	Conclusion
	Acknowledgements
	References

