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Abstract
The main power of artificial intelligence is not in modeling what we already know, but in creating solutions that are new. 
Such solutions exist in extremely large, high-dimensional, and complex search spaces. Population-based search techniques, 
i.e. variants of evolutionary computation, are well suited to finding them. These techniques make it possible to find creative 
solutions to practical problems in the real world, making creative AI through evolutionary computation the likely “next 
deep learning.”
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Introduction

In the last decade or so we have seen tremendous progress 
in Artificial Intelligence (AI). AI is now in the real world, 
powering applications that have a large practical impact. 
Most of it is based on modeling, i.e. machine learning of 
statistical models that make it possible to predict what the 
right decision might be in future situations. For example, 
we now have object recognition, speech recognition, game 
playing, language understanding, and machine translation 
systems that rival human performance, and in many cases 
exceed it [9, 10, 28]. In each of these cases, massive amounts 
of supervised data exist, specifying the right answer to each 
input case. With current computational capabilities, it is pos-
sible to train neural networks to take advantage of the data. 
Therefore, AI works great in tasks where we already know 
what needs to be done.

The next step for AI is machine creativity. Beyond mod-
eling there is a large number of tasks where the correct, 

or even good, solutions are not known, but need to be dis-
covered. For instance designing engineering solutions that 
perform well at low costs, or web pages that serve the users 
well, or even growth recipes for agriculture in controlled 
greenhouses are all tasks where human expertise is scarce 
and good solutions difficult to come by [5, 12–14, 25]. Meth-
ods for machine creativity have existed for decades. I believe 
we are now in a similar situation as deep learning was a few 
years ago: with the million-fold increase in computational 
power, those methods can now be used to scale up to real-
world tasks.

This paper first identifies challenges in creative tasks, 
suggests how evolutionary computation may be able to solve 
them, and reviews three practical examples of Creative AI 
through Evolutionary Computation.

Challenges in Machine Creativity

Evolutionary computation is in a unique position to take 
advantage of that power, and become the next deep learning. 
To see why, let us consider how humans tackle a creative 
task, such as engineering design. A typical process starts 
with an existing design, perhaps an earlier one that needs to 
be improved or extended, or a design for a related task. The 
designer then makes changes to this solution and evaluates 
them. S/he keeps those changes that work well and discards 
those that do not, and iterates. The process terminates when 
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a desired level of performance is met, or when no better 
solutions can be found—at which point the process may be 
started again from a different initial solution. Such a process 
can be described as a hill-climbing process (Fig. 1a). With 
good initial insight it is possible to find good solutions, but 
much of the space remains unexplored and many good solu-
tions may be missed.

Interestingly, current machine learning methods are also 
based on hill climbing. Neural networks and deep learning 
follow a gradient that is computed based on known exam-
ples of desired behavior [17, 30]. The gradient specifies how 
the neural network should be adjusted to make it perform 
slightly better, but it also does not have a global view of 
the landscape, i.e. where to start and which hill to climb. 
Similarly, reinforcement learning starts with an individual 
solution and then explores modifications around that solu-
tion, to estimate the gradient [29, 34]. With large enough 
networks and datasets and computing power, these methods 
have achieved remarkable successes in recent years.

However, the search landscape in creative tasks is likely 
to be less amenable to hill climbing (Fig. 1b). There are 
three challenges: (1) the space is large, consisting of too 
many possible solutions to be explored fully, even with mul-
tiple restarts; (2) the space is high-dimensional, requiring 
that good values are found for many variables at once; and 
(3) the space is deceptive, consisting of multiple peaks and 
valleys, making it difficult to make progress through local 
search.

Evolutionary Computation Solution

Evolutionary computation, as a population-based search 
technique, is in a unique position to meet these challenges. 
First, it makes it possible to explore many areas of the search 
space at once. In effect, evolution performs multiple paral-
lel searches, not a single hill climb. By itself such parallel 
search would result in only a linear improvement, however, 
the main advantage is that the searches interact: if there is 
a good partial solution found in one of the searches, the 
others can immediately take advantage of it as well. That 
is, evolution finds building blocks, or schemata, or stepping 
stones, that are then combined to form better comprehensive 
solutions [6, 11, 21].

This approach can be highly effective, as shown e.g. in the 
benchmark problem of multiplexer design [16]. Multiplex-
ers are easy to design algorithmically: the task is to output 
the bit (among 2n choices) specified by an n-bit address. 
However, when formulated as a search problem in the space 
of logical operations this problem is challenging because 
the search space grows very quickly, i.e. as 22n+2

n

 . There is, 
however, structure in that space that evolution can discover 
and utilize effectively. It turns out that evolution can discover 
solutions in extremely large cases, including the 70-bit mul-
tiplexer (i.e. n = 6 ) with a search space of at least 2270 states. 
It is hard to conceptualize a number that large, but to give an 
idea, imagine having the number printed using a 10 pt font 
on a piece of paper. It would take light 95 years to traverse 
from the beginning to the end of that number.

Second, population-based search makes it possible to find 
solutions in extremely high-dimensional search spaces as 
well. Whereas it is very difficult to build a model with high-
order interactions beyond pairs or triples, the population 

Fig. 1   Challenge of Creative Problem Solving. Human design process 
as well as deep learning and reinforcement learning can be seen as 
hill-climbing processes. They work well as long as the search space is 
relatively small, low-dimensional, and well behaved. However, crea-
tive problems where solutions are not known may require search in 

a large, high-dimensional space with many local optima. Population-
based search through evolutionary computation is well-suited for such 
problems: it discovers and utilizes partial solutions, searches along 
multiple objectives, and novelty.  (Image credit: http://deap.readt​
hedoc​s.io/en/lates​t/api/bench​marks​.html)

http://deap.readthedocs.io/en/latest/api/benchmarks.html
http://deap.readthedocs.io/en/latest/api/benchmarks.html
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represents such interactions implicitly, as the collection of 
actual combinations of values that exist in the good solutions 
in the population. Recombination of those solutions then 
makes it possible to collect good values for a large number 
of dimensions at once.

As an example, consider the problem of designing an 
optimal schedule for metal casting [4]. There are variables 
for number of each type of object to be made in each heat 
(i.e. melting process). The number of objects and heats 
can be grown from a few dozen, which can be solved with 
standard methods, to tens of thousands, resulting in billion 
variables. Yet, utilizing an initialization process and opera-
tors customized to exploit the structure in the problem, it is 
possible to find good combinations for them, i.e. find near-
optimal solutions in a billion-dimensional space. Given that 
most search and optimization methods are limited to several 
orders of magnitude fewer variables, this scaleup makes it 
possible to apply optimization to entire new category of 
problems.

Third, population-based search can be adapted naturally 
to problems that are highly deceptive. One approach is to 
utilize multiple objectives [3]: if search gets stuck in one 
dimension, it is possible to make progress among other 
dimensions, and thereby get around deception. Another 
approach is to emphasize novelty, or diversity, of solutions 
in search [33]. The search does not simply try to maximize 
fitness, but also favors solutions that are different from those 
that already exist. Novelty can be expressed as part of fit-
ness, or a separate objective, or serve as a minimum criterion 
for selection, or as a criterion for mate selection and survival 
[2, 8, 18, 20, 26].

For instance, in the composite novelty method [31], dif-
ferent objectives are defined for different aspects of per-
formance, and combined so that they specify an area of 
search space with useful tradeoffs. Novelty is then used as 
the basis for selection and survival within this area. This 
method was illustrated in the problem of designing mini-
mal sorting networks, which have to sort a set of n numbers 
correctly, but also consist of as few comparator elements 
as possible (which swap two numbers), and as few layers 
as possible (where comparisons can be performed in paral-
lel). The search space is highly deceptive because often the 
network structure needs to be changed substantially to make 
it smaller. Combining multiple objectives and novelty finds 
solutions faster and finds better solutions than traditional 
evolution, multiobjective evolution, and novelty search 
alone. The approach already found a new minimal network 
for 20 inputs [32].

Thus Evolutionary Computation has the right properties 
to solve challenging tasks that require creativity. The next 
three subsections review three examples on how this power 
can be put to use in discovering creative solutions in real-
world applications.

Designing Effective Web Interfaces

The first example is Ascend by Evolv, an actual commer-
cial application of evolutionary computation on conver-
sion optimization, i.e. on designing web interfaces to make 
it more likely that a user will take the desired action on 
the page, such as signing them up, buying something, or 
requesting for more information [22, 24].

More specifically, the human expert defines a search 
space, consisting of a set of elements on the page, such 
as the heading text, size, and color, background image, 
and content order, possible values for each, and possi-
ble restrictions among their combinations. Page design 
can then be represented as a vector and optimized using 
genetic algorithms. Each candidate is evaluated by deploy-
ing it on the web. A sufficient number of actual users is 
directed to each candidate design, and how well they con-
vert is measured.

Typically about 2000 users are needed to estimate a typ-
ical 1–4% conversion rate for evolution to make progress. 
With a population of a few dozen candidates, Ascend usu-
ally discovers designs that are better than control in 10–20 
generations. Ascend has been applied to hundreds of web 
interfaces across a variety of industries and search space 
sizes, and it routinely improves performance 10–200% 
over the original human designs.

However, what is most interesting about Ascend is that 
it can discover creative solutions that human designers 
miss. The humans utilize principles of perceptual psy-
chology and aesthetics, such as hierarchy, directionality, 
consistency, and clarity, but it turns out following them 
does not necessarily make the page effective. An example 
is shown in Fig. 2. While the control design is elegant, 
the design discovered by evolution is brash, using neon 
colors, contrast, and strong text. As a matter of fact, when 
evolution was running, it came up with similar designs so 
frequently that the designers labeled it “the ugly widget 
generator.” However, this ugly widget performs 45% bet-
ter than the control! This result suggests that there is still 
much that we do not know about factors that affect conver-
sions, but evolution can nevertheless learn them and utilize 
them in creative design.

Discovering Growth Recipes for Agriculture

The second example takes advantage of surrogate mod-
eling, a powerful extension that makes it possible to apply 
evolutionary creativity to many more problems in the real 
world. Whereas the Ascend designs could be evaluated in 
the real world with little cost, in many other domains, such 
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as healthcare, finance, or mechanical design, such evalu-
ations, especially of the most creative solutions, could be 
costly or dangerous.

A case in point is developing growth recipes for com-
puter-controlled agriculture. That is, given vertical farming 
environments where the inputs such as water, temperature, 
nutrients, and light can be controlled at will, the challenge 
is to determine how those inputs should be set so that the 
plants grow as well as possible, for instance improving fla-
vor, maximizing size, or minimizing cost. Whereas it takes 
a long time to grow a plant, a large number of recipes can be 
evaluated immediately with a surrogate model.

In a pioneering experiment, recipes were developed for 
optimizing flavor in basil, focusing on light variables such 
as wavelength, period, and UV component. Initially a few 
hundred recipes were implemented in real growth contain-
ers, representing known good recipes as well as recipes that 
covered the space more broadly. A surrogate model was 
trained on the resulting data, with flavor measured in terms 
of volatile composition of the plants. About a million recipes 
were then created through search and evaluated against the 
surrogate. In the end, the best ones were evaluated in real 
growth experiments.

In this process, a most remarkable discovery was made. 
Initially the maximum light period was set to 18 h, assuming 
that the daily light cycle in the real world was a reasonable 
constraint. However, search quickly discovered that recipes 
at 18 h were the best. At that point, the daily cycle restric-
tion was removed—and (as shown in Fig. 3), even better 
recipes were found with a light period of 24 h! This result is 

counterintuitive and it was a surprise to the biologists in the 
team. It demonstrates how human biases can get in the way 
of discovering good solutions. Evolution does not have such 
biases, and if given enough freedom to explore, can create 
effective, surprising solutions.

Finding Mitigation Strategies for COVID‑19

The third example is particularly topical at the time of this 
writing: Determining how various countries could imple-
ment non-pharmaceutical interventions (NPIs), such as 
school and workplace closings, restrictions on gatherings 
and events, and limitations on movement, to reduce the 
spread of the pandemic with minimal economic cost [23]. 
It is also significantly more complex in that, in addition to 
requiring a surrogate for evaluation, the solutions are strate-
gies, represented by neural networks, instead of single points 
(such as web-page designs or growth recipes).

More specifically, the approach consists of first training a 
Predictor, i.e. a surrogate model, to predict how the number 
of cases would develop in the future, given a history of cases 
and NPIs in a country in the past, and an NPI strategy for the 
future. Using historical NPI data from the Oxford COVID-
19 government response tracker and case data from Johns 
Hopkins COVID-19 Data Repository, it was possible to 
train a recurrent LSTM neural network for this purpose. As 
opposed to traditional epidemiological models, such a model 

Fig. 2   A comparison of human design and evolutionary design for 
a sign-up widget in web design. a The original design is clear and 
consistent, according to general design principles. b The evolution-
ary design is brash and bold, and unlikely to be designed by humans. 
However, it converts 45% better, demonstrating that evolution can 
discover creative solutions that humans miss

Fig. 3   Discovering a counterintuitive 24-h light period for computer-
controlled agriculture. With the initial 18-h restriction removed, 
evolution discovered that when the lights are always on, basil will 
develop more flavor. The axes represent the three light variables, 
with light period on the horizontal axis. The color of the small dots 
indicates their value predicted by the model (red > yellow > green > 
blue). The large dots are suggestions, and the darker dots are the most 
recent ones. In this manner, if given a search space free of human 
biases, evolution can discover effective, surprising solutions
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is purely phenomenological, includes all hidden interactions, 
and turned out to be surprisingly accurate, even given that 
the data is collected and used as the pandemic unfolds.

In the second step, Prescriptor neural networks, represent-
ing the NPI strategies, were then evolved, using the Pre-
dictor as a surrogate to evaluate how effective they were. 
Since there are two conflicting objectives (minimize cases 
vs. stringency of NPIs), the result is a Pareto front that trades 
off these objectives: Some prescriptors keep the number of 
cases down by locking down, others keep the society open 
with the cost of more cases. The decision maker can then 
select a desired tradeoff, and the Prescriptor will recommend 
the best NPI strategy that achieves it.

This process, Evolutionary Surrogate-assisted Prescrip-
tion (ESP; [7]), made several creative discoveries. Early 
on it recognized that schools and workplaces are the most 
important NPIs; Indeed these are the two activities where 
people spend a lot of time with other people indoors, where 
it is possible to be exposed to significant amounts of the 
virus, as later became evident [15, 19, 27]. After the peak 
has passed and economies are opening up, it discovered that 
alternating between opening and closing schools and work-
places could be an effective way to lessen the impact on the 

economy while reducing cases (Fig. 4). While it may sound 
unwieldy, it has recently been suggested as a possibility [1]. 
Given the limited search space available for evolution, it 
is a creative solution for lifting the NPIs gradually. Com-
ing out of a lockdown, it recognized that people are less 
likely to adhere to restrictions than they were going in, and 
therefore recommended more NPIs that can be enforced, 
such as restrictions on events and international travel. In this 
manner, the data-based modeling and evolutionary discovery 
was able to track the changing context of the pandemic, and 
recommend creative new responses. Counterfactual studies 
with past data suggested that they could have indeed been 
more effective than the actual NPIs implemented at the time 
[23]. For an interactive demo of the system, see https​://evolu​
tion.ml/esp/npi.

Conclusion

To conclude, evolutionary computation is an AI technol-
ogy that is on the verge of a breakthrough, as a way to take 
machine creativity to the real world. Like deep learning, 
it can take advantage of computational resources that are 

Fig. 4   An example creative solution for opening the economy after 
the COVID-19 peak had passed. The top plot shows the historical 
past and predicted future number of cases in the US on May 18th, 
2020. The bottom plot illustrates the NPIs in effect or recommended 
during the same timeline, with color coding indicating their strin-

gency. The system still recommends restrictions on schools, work-
places, and public events (top three rows), but suggests that opening 
and closing workplaces can be alternated, thus mitigating the effect 
on both economy and cases

https://evolution.ml/esp/npi
https://evolution.ml/esp/npi
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now becoming available. Because it is a population-based 
search method, it can scale with compute better than other 
machine learning approaches, which are largely based on hill 
climbing. With evolution, we should see many applications 
in the near future where human creativity is augmented by 
evolutionary search in discovering complex solutions, such 
as those in engineering, healthcare, agriculture, financial 
technology, biotechnology, and e-commerce, resulting in 
more complex and more powerful solutions than are cur-
rently possible.
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