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Abstract
Machine learning, applied to medical data, can uncover new knowledge and support medical practices. However, analyzing 
medical data by machine learning methods presents a trade-off between accuracy and privacy. To overcome the trade-off, 
we apply the data collaboration analysis method to medical data. This method using artificial dummy data enables analysis 
to compare distributed information without using the original data. The purpose of our experiment is to identify patients 
diagnosed with diabetes mellitus (DM), using 29,802 instances of real data obtained from the University of Tsukuba Hospital 
between 01/03/2013 and 30/09/2018. The whole data is divided into a number of datasets to simulate different hospitals. We 
propose the following improvements for the data collaboration analysis. (1) Making the dummy data which has a reality and 
(2) using non-linear reconverting functions into the comparable space. Both can be realized using the generative adversarial 
network (GAN) and Node2Vec, respectively. The improvement effects of dummy data with GAN scores more than 10% over 
the effects of dummy data with random numbers. Furthermore, the improvement effect of the re-conversion by Node2Vec 
with GAN anchor data scores about 20% higher than the linear method with random dummy data. Our results reveal that the 
data collaboration method with appropriate modifications, depending on data type, improves analysis performance.

Keywords  Medical data · Machine learning · Data collaboration · Generative adversarial network

Introduction

Medical big data is increasingly used for improving health-
care quality and clinical research, such as clinical deci-
sion support systems [3, 5, 44, 50], identifying patients 
for clinical trials [36], and post-marketing surveillance of 

drugs [31, 51]. While machine learning is one of the criti-
cal techniques for analyzing medical data [5, 6, 34, 40, 43, 
45], patients’ privacy must be protected in the learning pro-
cess. As machine-learning methods for privacy protection, 
encryption [8, 15, 29, 32], differential privacy [1, 12, 30], 
and federated learning [33, 38] are well known. However, 
encryption requires a huge computational cost [7], and the 
accuracy of analysis for differential privacy tends to be low 
as protection becomes strong [35]. On the other hand, fed-
erated learning using accumulated encrypted models from 
institutions not only provides good analysis accuracy, it is 
also difficult to estimate the original data. However, the risk 
of information leakage tends to be high when it contains 
personal information.

Recently, a method of data collaboration analysis for 
distributed data among institutions has been proposed as a 
secured method absent data encryption [4, 26–28, 54]. The 
method converts raw data to “intermediate representations 
(IRs)” at each institution by feature extraction, namely some 
information in raw data is reduced. Therefore, it is impos-
sible to estimate the original information from the IRs. The 
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IRs gathered from all institutions are able to be integrally 
analyzed without reconverting to the original data. Since 
each institution generates the IR independently, it is impos-
sible to compare the representation as the original data is 
compared. Therefore, the data collaboration method learns 
further transformations to make the IRs comparable. This 
comparable transformation can be derived by sharing com-
mon dummy data among institutions. The data collaboration 
method should be appropriate for analyzing medical data 
since small size of data distributed among hospitals (e.g., 
those with regional characteristics or rare diseases) cannot 
be shared as in the original form. However, it is possible 
to integrate and analyze the distributed data by using the 
method. Thus, the hospitals can make a diagnosis based on 
information obtained from other institutions.

In this study, the data collaboration analysis method is 
applied to medical data for identifying patients diagnosed 
with diabetes mellitus. One of the most useful pieces of 
information for the secondary use of medical data is diagno-
sis. Since structured data on diagnoses are limited in terms 
of accuracy and completeness [14, 37, 53], automated tech-
niques for identifying patients diagnosed with a particular 
disease based on medical data have increased [11, 21, 22, 41, 
52]. Our aim is to show that the data collaboration method 
identifies patients diagnosed with a particular disease accu-
rately while protecting privacy. The main contributions of 
this paper include the following items. (1) Application of the 
data collaboration method to real medical data. (2) Clarifica-
tion of the influences of anchor data similar to raw data on 
the classification of disease. (3) Improvement of the clas-
sification accuracy by non-linearity of transformation.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the data collaboration method in detail and 
how to apply it to the medical data is illustrated in Sect. 3. 
In Sect. 4, an explanation of medical data and experimental 
settings are given. The results of data collaboration analysis 
are shown in Sect. 5. Finally, we discuss the results and 
conclude this study in Sect. 6.

Data Collaboration Analysis

For analyzing distributed data remaining the original 
datasets, data collaboration analysis method was origi-
nally proposed by Imakura and Sakurai (2019) [24–27] 
as non-model share-type federated learning systems and 
was developed for classification and regression problems 
[28] and feature selection [54]. The performance compari-
son between model share-type and non-model share-type 
federated learnings was also reported in [4]. The data col-
laboration method only centralizes so-called intermediate 
representations constructed individually instead of the 
original datasets. The algorithm of the data collaboration 

method comprises the following three-step algorithm. (1) 
Each institution constructs intermediate representations 
from raw data individually and send them to an analyst, 
called data collaborator. (2) From the gathered intermedi-
ate representations, the collaboration representations are 
constructed. (3) Collaboration representations integrated 
from individual original datasets are analyzed as one 
dataset.

Here, we briefly introduce the practical algorithm. The 
m-dimensional data of d institutions, Xi , are described as 
follows:

where ni indicates the amount of data in the i th institution, 
and

Each institution independently constructs the intermediate 
representation, X̃i , by a map, fi , such that

Note that m̃i are not require to be the same. As the map func-
tion, fi , the dimensionality reduction method, including prin-
cipal component analysis, independent component analysis 
[23], local linear embedding [46], and locality preserving 
protections (LPP) [20] are considered.

Here, because fi depends on the institution, i, the inter-
mediate representation of the data differs fi(x) ≠ fj(x) 
(i ≠ j) . In this case, we cannot combine the intermediate 
representations to analyze one dataset. To overcome this 
difficulty, the intermediate representations are transformed 
again to the collaboration representation, X̂i = gi(X̃i) 
∈ ℝ

m̂×ni , with the function, gi , satisfying

Note that X̂i is not an approximation of Xi . The dimensions 
of Xi and X̃i can differ. Instead of the intermediate represen-
tation, one can analyze the collaboration representation as 
one dataset, as follows:

To construct the map, gi , we introduce shareable data, 
referred to as an anchor dataset, comprising public data or 
pseudo-data constructed randomly as follows:

where r indicates the amount of anchor data. Applying each 
map, fi , to the anchor data, we have the ith intermediate 
representation of the anchor dataset,

(1)Xi = [xi1, xi2, ..., xini ] ∈ ℝ
m×ni (1 ≤ i ≤ d),

(2)
∑
i

ni = n.

(3)X̃i = fi(Xi) ∈ ℝ
m̃i×ni .

(4)gi(fi(x)) ≈ gj(fj(x)) (i ≠ j).

(5)X̂ = [X̂1, X̂2, ..., X̂d] ∈ ℝ
m̂×n,

(6)Xanc = [xanc
1

, xanc
2

, ..., xanc
r

] ∈ ℝ
m×r,
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Then, we share X̃anc

i
 and construct gi , satisfying

Imakura and Sakurai (2019) [26] introduce a practical 
method for constructing gi when gi is linear. In this situation, 
the function, gi , can be computed by solving the minimiza-
tion problem,

where Z = [z1, z2,… , zr] ∈ ℝ
m̂×r is a target for the collabo-

ration representations, X̂anc

i
 . For the details, we refer to [26, 

27].

Data Collaboration for Medical Data

Overview

Figure 1 provides an overview of the proposed method. 
First, the data collaborator constructs the virtual data gen-
erator denoted by G and distributes it to each hospital or 
medical institution. By using the generator G, institution 

(7)X̃i

anc
= fi(X

anc) ∈ ℝ
m̃i×r.

(8)X̂anc

i
≈ X̂anc

j
, X̂anc

i
= gi(X̃

anc

i
).

(9)min
g1,g2,...,gd

d�
i=1

‖Z − gi(X̃i

anc
)‖2

F

i obtains the virtual patient data, corresponding to the 
anchor data, Xanc

i
 (Step1). For privacy protection, the insti-

tutions only share a random number seed to generate the 
virtual data. Second, each institution can arbitrarily select 
a map by which raw data Xi and virtual data Xanc

i
 with 

dimension M, are converted to an intermediate represen-
tation (Step2). The intermediate representation is in the 
form of extracted feature, so that the dimension is usually 
reduced from the original data. Thus, the privacy problem 
is resolved, since it is impossible to estimate the original 
data from the representation. Regarding the dimension 
of intermediate representation, each hospital has its own 
dimension (denoted by M̃1 and M̃2 in Fig. 1) due to the dif-
ference of the strategy and regulation for sharing medical 
data. Next, the data collaborator gathers the intermediate 
representations and constructs the reconverting function, 
gi , based on the intermediate representations of anchor 
data, X̃anc . Finally, the collaboration representations with 
dimension K, denoted by X̂i , are obtained via the recon-
verting function gi , and they are applied to the machine 
learning method as input values (Step4). In this study, the 
classification of patients diagnosed with diabetes mellitus 
(DM) was carried out in terms of social importance. That 
is to say, more than 425 million people worldwide were 
estimated to have DM [13], and the problem can cause 
other critical diseases [50].

Fig. 1   Overview of this study
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Generating the Intermediate Representation by LPP

Regarding the map f, this study uses LPP [20], which pre-
sents low computational costs. LPP is a linear approxima-
tion of the nonlinear Laplacian eigenmap. The algorithm 
has three steps: (1) Constructing the adjacency matrix by 
k-nearest neighbor (KNN) [2]. In this study, k=5. (2) Choos-
ing the symmetric m × m weight matrix by calculating the 
weight as:

where Wij is the weight between node i and j. t ∈ � is a 
parameter. (3) Calculating Eigenmaps generalized eigenvec-
tor problem, the eigenvectors and eigenvalues are calculated 
as follows:

where D is a diagonal matrix whose entries are column sums 
of W. L = D −W  is the Laplacian matrix. Finally, � deter-
mines f.

Node2vec for Reconverting Function

The previous study [26] used SVD as a linear reconverting 
function g. As an alternative reconverting function, Node-
2Vec, which is non-linear, was exploited [19] in this paper. 
Node2Vec is a graph-embedding [18],[?] and network-
embedding method [10], which converts the graph and net-
work structures to a vector. Specifically, both DeepWalk [42] 
and Node2Vec [19] estimate the vector representation from 
the graph structure. The methods were based on a skip-gram 
model [39]. Node2Vec uses random walks, which is the 
sequence of nodes sampled from the edge of the graph [10]. 
We consider the weight matrix, W̃ ∈ ℝ

r×r , which is obtained 
by integration of the KNN adjacency matrix, W̃i ∈ ℝ

r×r . In 
this study, W̃  was the weighted summation of W̃i in order to 
maintain the relation of KNN after reconversion. Therefore, 
W̃  is defined as follows:

The uth node for the graph related to W̃  is ṽu . The initial 
node selected randomly is represented by c0 , and the jth node 
of the random walks is represented by cj . Thus, cj is sampled 
by the distribution, as shown below:

(10)Wij = e
−

‖�i−�j‖2
t ,

(11)XLXT
� = �XDXT

�,

(12)W̃ =

d∑
i

wiW̃i.

(13)Pr(cj = ṽt|cj−1 = ṽs) =

{ 𝜋st

C
if W̃st > 0,

0 otherwise.

C is a normalizing constant. �st is the transition probability 
form the node s to t, and 𝜋st = 𝛼pq(u, s)W̃st , where u = cj−2 
and � is defined by

where dut is the number of nodes in the shortest path from 
the node u to t. p is called the return parameter represent-
ing the probability to return to the original node, and q is 
called the in-out parameter representing the probability to 
leave the node u. Let l be the length of the random walk, 
and c0, c1, c2, ..., cl is obtained. With a sufficient number of 
random walks applying to the skip-gram model, the vector 
representation of node ṽu , is obtained. The integrated vectors 
is denoted by Z = ℝ

m̂×r , where m̂ can be selected freely. In 
this study, p = 0.5 and q = 1 are used. The number of ran-
dom walks is 1, 000, and the walk length is 500.

Experimental Settings

We perform numerical experiments with real medical data 
for verifying the following two tasks.

•	 Task 1: Effect of the similarity to raw data on classifica-
tion score is verified.

•	 Task 2: Non-linearity of the reconverting function for 
classification scores are verified.

Task 1 is carried out with the reconverting function being 
linear or non-linear, and Task 2 is carried out with anchor 
data generated from random number or virtual patients data.

Subjects and Anchor Data

This study analyzed 29,802 patients (mean age: 59.9; gen-
der: 50.3% female) testing HbA1c and random blood glu-
cose. They were hospitalized at least once at the University 
of Tsukuba Hospital between 01/03/2013 and 30/09/2018. 
Based on Ethical Guidelines for Medical and Health 
Research Involving Human Subjects, our research is car-
ried out with opt-out consent and is also approved by the 
Ethics Committee of the University of Tsukuba Hospital 
(Permission number: H30-187). We used only the maximum 
value of glucose and HbA1c for each patient. The other basic 
statistics are shown in Table 1.

(14)�pq(u, t) =

⎧
⎪⎪⎨⎪⎪⎩

1

p
if dut = 0,

1 if dut = 1,

1

q
if dut = 2,
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The number of anchor data are 1,000, generated by three 
methods. The first one was generated by a random number that 
was limited by the max and min value of original data. This 
type of anchor data was used in previous studies [26], and the 
data adjusted to statistics properties of real data were applied 
to machine learning in medical situations [49]. The second 
one was generated by GAN [9, 16, 17]. GAN generates similar 
data to the raw data in terms of statistical distribution. The 
1,000 patients raw data randomly selected is used for GAN, 
and 1,000 virtual patients are obtained as the anchor data. The 
statistical value of anchor data generated by GAN is shown in 
Table 1. The third one is a part of the raw data that is selected 
randomly as anchor data for verification.

Similarity of Virtual Data (Anchor Data) to Raw Data

Anchor data similar to raw data has not yet been investigated 
in the context of data collaboration. This study generates sev-
eral types of virtual data of patients, verifying their similarity 
to raw data via earth-mover’s distance (EMD) [47]. EMD is 
calculated for the three datasets composed of a random num-
ber, the virtual patients, and raw data. The dataset has 100 
data samples, which are chosen randomly five times. EMD 
are calculated between the raw dataset and others, as described 
below. The mean EMDs for five times are shown in Table 2. 
Thus, virtual patient data are similar to raw data, as expected, 
and we evaluate the performance of data collaboration with 
respect to these data.

Calculated data of virtual patients and their intermediate 
representations are shown in the additional information.

Evaluation of the Performance of the Classification 
Task

The classification of DM is carried out next. We designed 
two types of settings for collaboration: the first is increasing 
number of collaborative institution where each hospital has 
the same amount of medical data and the second is increas-
ing number of divisions where the total size of data is fixed.

In the first setting, the raw data are divided to have 40 
samples for each institution, and the number of institutions 
are increased until 25 considered as independent hospitals. 
In the second setting, the total size of data is fixed and the 
number of divisions are increased by 20 hospitals from 2 to 
202. We used 14,401 for the training data as well as the test 
data. Therefore, the size of datasets per each hospitals are 
ranged from 1402 to 144 where the half of samples are used 
to test samples.

As for the individual analysis, median score among the 
entire institutions was adopted to avoid the effect of data 
selection bias. The integrated analysis that shares all raw 
data is called “ALL-RAW” and the individual analysis 
that uses only raw data at one institution is called “EACH-
RAW”. Further, the results of data collaboration are sepa-
rated by the two types of reconverting functions and anchor 
data: “SVD-RANDOM” and “SVD-GAN”, “Node2Vec-
RANDOM”and “Node2Vec-GAN”. We adopt the logistic 
regression with the L2 penalty for classification method and 
area under the receiver operating characteristic (ROC) curve 
are calculated as an evaluation metrics.

Result

Figure 2 shows the area under the ROC curve in the case 
where the number of collaborative hospitals increases 
and Fig. 3 shows the case where the number of divisions 
increases. The horizontal axis indicates the number of hos-
pitals with the same amount of data for each hospital (Fig. 2) 
or the number of divisions with the decreasing amount of 
data for each hospital (Fig. 3). The vertical axis indicates 
the area under the ROC curve for the results obtained by 
data collaboration. The blue and light blue line indicate 
“ALL-RAW” and “EACH-RAW”, respectively, which can 
be comparison criteria of scores. The green line represents 
non-linear reconverting function: Node2Vec, and the red line 
represents linear reconverting function which is originally 
proposed by Imakura [26]: SVD. Light-colored as well as 
broken lines indicate the results of using anchor data gener-
ated randomly. Finally, the lightly colored area around the 
line represents the standard error for 10 trials.

To verify Task 1, scores with the same reconverting func-
tions (i.e., “Node2Vec-GAN” and “Node2Vec-RANDOM”, 
or “SVD-GAN” and “SVD-RANDOM”) are compared. In 

Table 1   The statistics of raw data and 1000 virtual patients

Mean SD Max Min

(a) Statistics of raw dataset
Age 59.9 18.5 103 0
Female (%) 50.3 / / /
Glucose (mg/dL) 154.1 84.0 1802 29
HbA1c (%) 6.23 1.37 19.1 3.5
(b) 1,000 virtual patient dataset
Age 59.1 19.2 85.0 2.0
Female (%) 52.2 / / /
Glucose (mg/dL) 153.2 78.1 617 50
HbA1c (%) 6.48 1.72 14.25 3.69

Table 2   Mean of earth-movers’ distance between raw and target data

RANDOM GAN RAW​

EMD 455.4 22.1 18.5
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addition, to verify Task 2, scores with the same type of 
anchor data (i.e., “Node2Vec-GAN” and “SVD-GAN”) are 
compared. The final results for the scores from 25 hospitals 
in Fig. 2 and 202 hospitals in Fig. 3 are shown in Table 3.

As expected, the scores of data collaboration are lower 
than that of centralized analysis “ALL-RAW” (see Figs. 2 
and 3). First, for the Task1 verification, the different types 
of anchor data (i.e., “SVD-RANDOM” vs “SVD-GAN” and 
“Node2Vec-RANDOM” vs “Node2Vec-GAN”) are com-
pared. For the both types of experimental conditions for 
Figs. 2 and 3, the AUC score for data collaboration method 
using GAN-anchors are greater than that for RANDOM-
anchors. Specifically, the AUC scores with GAN-anchors 
improve more than 10% compared to RANDOM-anchors 
in any cases in Table 3 . Therefore, the result demonstrates 
that the similarity of the anchor data to real medical data 
improves performance of the data collaboration.

Next, we verify Task 2 by comparing the linear and 
non-linear reconverting functions: SVD and Node2Vec, 
respectively. As shown in Fig. 2, the data collaboration with 

non-linear re-conversion outperformed linear re-conversion 
in terms of the AUC score. In the case of Fig. 2, the score of 
Node2Vec-GAN with 25 collaborative hospitals results in 
about 10% higher than “EACH-RAW”. In contrast, the score 
of SVD-GAN exceeds slightly by 3%. In addition, AUC 
scores for SVD with respect to all divisions in Fig. 3 are 
lower than that of the individual analysis, “EACH-RAW”. 
These results suggest that reconverting function of SVD is 
insufficient for applying the data collaboration analysis to 
medical data. For a conceivable reason, the medical data 
frequently has extreme values as abnormal ones. Thus, 
SVD may have removed them as noise [48]. Interestingly, 
as shown in Fig. 3, the performance of the data collabora-
tion with Node2Vec-GAN turns upward when the number of 
hospitals grows over 140 and the size of data per hospital is 
reduced to 100. It is suggested that Node2Vec is robust to a 
large number of participants but with small data sizes. From 
these results, it is figured out that anchor data following real 
data distribution and an appropriate non-linear reconvert-
ing function improve the performance of data collaboration 
analysis.

Summary and Discussion

In this study, the data collaboration analysis has been applied 
to medical data for diagnosis of diabetes mellitus (DM). The 
following conditions play an important role for the perfor-
mance of the analysis: 

Table 3   Results of the analysis of 25 hospitals (unit: %)

Figure 2 3

gi SVD Node2Vec SVD Node2Vec

ALL-RAW​ 90.0 90.0 92.4 92.4
EACH-RAW​ 74.0 74.0 79.3 79.3
RANDOM 65.4 72.9 63.2 73.5
GAN 76.9 83.8 76.6 83.8

Fig. 2   The performance of the identifying DM subjects depending on SVD and Node2Vec with Ridge regression
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(1)	 The distribution of anchor data are similar to that of raw 
data.

(2)	 The reconverting function is non-linear.

Both were satisfied in the present analysis, and the score in 
identification of DM by the proposed method was a maxi-
mum of 20% higher than that by the previous method. This 
study introduced a way of application of data collaboration 
analysis suitable for medical data.

Adequate analysis of medical data requires a high degree 
of accuracy with privacy protection. This study realised 
high accuracy and preserving privacy of disease classifica-
tion by dimension reduction methods and appropriate non-
linear transformations. The problem of proposed method is 
that the analysis cannot be interpreted medically. For exam-
ple, the relation between the classification and non-linearly 
transformed features (e.g., patients with higher HbA1c 
being classified as DM) is uncertain. This problem should 
be solved with further experiments.

The limitations of this study were that the data is obtained 
from a single hospital and divided into pieces of dataset as 
virtual hospitals. Furthermore, our approach was evaluated 
only with numerical data, whereas distributed clinical data 
possibly included images and text. The applicability of the 

proposed method to data gathered from many independent 
hospitals should be verified in the next stage.

As for another future work, we should consider the case 
where data dimension of virtual patients generated by GAN 
are different among institutions. This would contribute to 
real medical data analyses, since the output from each medi-
cal equipment would be practically different. Additionally, 
virtual patient data would contain the values of a normal 
range for a given parameter (e.g., age, disease threshold). 
On the other hand, the virtual data of patients can be made 
to include abnormal values associated with some disease. 
These virtual patients can be used for educational purpose 
as well.

Appendix

Examples of Virtual Patients

The part of virtual patients data, generated by GAN and 
their intermediate representations by the LPP, are shown 
below (Table 4).

Fig. 3   The performance of the identifying DM subjects depending on SVD and Node2Vec with Ridge regression
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Table 4   The pseudo-patient data and the intermediate representation

(a) Pseudo-patient data

Age M/F Glucose (mg/dL) HbA1c (%)

71 1 103 5.53
82 2 287 7.95
42 2 169 5.66
74 1 197 8.32
73 2 183 7.34
84 1 394 9.65
81 2 101 5.72
83 2 532 14.01
18 2 114 5.19
15 1 99 5.16
77 2 164 7.02
47 2 97 5.30
80 1 157 5.76
43 1 205 5.79
80 1 115 5.63
79 1 308 7.21
46 2 101 6.04
81 1 140 5.51
79 2 101 6.15
46 2 86 5.24
25 1 213 5.24
38 2 109 5.43
28 2 107 5.46
83 1 127 5.96
15 1 159 5.14
87 2 169 6.71
73 1 96 4.88
40 2 78 5.30
78 1 134 6.09
67 2 206 5.96

(b) The intermediate representation of (a)

First Second Third

0.30 −0.47 0.03
1.25 −0.06 0.00
1.12 0.28 −0.05
1.06 0.36 −0.05
0.42 −0.39 0.18
1.03 0.35 −0.01
0.81 −0.59 0.56
1.15 0.37 0.16
1.23 0.10 0.03
1.13 0.18 0.01
1.10 0.25 −0.08
0.40 −0.69 −0.04
1.02 0.35 −0.08
1.20 −0.03 −0.08
1.14 0.10 −0.06

Table 4   (continued)

(b) The intermediate representation of (a)

First Second Third

0.29 −0.45 −0.15
1.16 0.17 −0.14
1.40 −0.12 −0.13
0.36 −0.35 0.20
1.08 0.28 −0.05
1.09 0.25 −0.01
0.70 −0.60 0.41
0.40 −0.59 0.01
0.39 −0.65 0.01
0.21 −0.35 −0.01
1.06 0.47 0.10
0.32 −0.49 −0.12
0.29 −0.44 −0.04
0.42 −0.63 0.03
0.34 −0.47 −0.01
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