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Abstract
Log messages are widely used in cloud servers and other systems. Millions of logs are generated each day which makes them 
important for anomaly detection. However, they are complex unstructured text messages which makes this task difficult. In 
this paper, a hybrid log message anomaly detection technique is proposed which employs pruning of positive and negative 
logs. Reliable positive log messages are first selected using a Gaussian mixture model algorithm. Then reliable negative 
logs are selected using the K-means, Gaussian mixture model and Dirichlet process Gaussian mixture model methods itera-
tively. It is shown that the precision for positive and negative logs with pruning is high. Anomaly detection is done using a 
deep learning long short-term memory network. The proposed model is evaluated using the well-known BGL, Openstack, 
and Thunderbird data sets. The results obtained indicate that the proposed model performs better than several well-known 
algorithms.

Keywords  Anomaly detection · Deep learning · Log messages · Hybrid learning

Introduction

Companies and customers expect 24/7 connectivity to their 
cloud and software systems and loss of access can have seri-
ous consequences. Thus, significant investments have been 
made to preserve the quality and availability of these ser-
vices. This is achieved by generating log messages which 
indicate the status of the system. Logging is the process of 
storing records for audit or security [46]. Log messages are 
unstructured text data that consist of time stamps, verbos-
ity, and raw content concerning the system status. Logs are 
unstructured because developers typically use free text to 
record events for ease and flexibility [46]. Thus, the structure 
of these logs can vary considerably, making it hard to iden-
tify abnormalities [42]. Log messages are used for several 
purposes including anomaly detection [17] and performance 
monitoring [43]. Most techniques employ rules to identify 
anomalies in logs but this requires specialized knowledge 

of the area [41]. Some only consider one feature such as 
verbosity which limits the ability to detect abnormalities. 
Anomaly detection can be carried out manually, but for large 
systems this is not practical due to the amount of data and 
the complexity [25]. As a result, automated log analysis 
methods are required to identify anomalies.

Deep learning (DL) is a subclass of machine learning 
(ML) which employs a network with several layers. DL can 
identify similarities in data [14] which makes it desirable 
for big data applications. DL has been shown to provide 
excellent results for speech recognition, image processing 
and text classification [22, 44]. DL methods have good rec-
ognition capabilities for large amounts of data and are bet-
ter than other ML methods for feature representation [5]. 
ML methods can be discriminative, generative, or hybrid. 
Discriminative methods are typically used for supervised 
classification while generative methods are employed for 
unsupervised classification. Hybrid methods combine gen-
erative and discriminative methods. One of the main issues 
in anomaly detection is handling unlabeled data. Millions of 
log messages are produced daily in cloud and other systems 
so it is typically not possible to label even a small portion of 
the data. Thus, unsupervised approaches should be consid-
ered to deal with this unlabeled data.

ML algorithms have been used to develop a range of 
anomaly detection methods. Elliptical envelope (EEnvelope) 
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creates an elliptical area around the data mass center which 
is used in redshift estimation to detect anomalies [20]. Local 
outlier factor (LOF) uses local data deviation to detect net-
work flow anomalies to reduce the risk of internet attacks 
[31]. Support vector machine (SVM) and one-class support 
vector machine (OC-SVM) have been employed to detect 
unknown computer activity [30] and anomalies in networks 
[28]. A convolutional neural network (CNN) combined with 
a graph convolutional network was used for abnormal breast 
detection in mammograms [45] and COVID-19 detection in 
CT images [38]. A decision tree model was considered in 
[32] to detect faults using log messages. An improved super-
vised K-nearest neighbors (IKNN) method was employed in 
[36] to detect anomalies in log messages. However, using 
supervised methods is not always possible because of the 
lack of labeled data. A method to detect anomalies in log 
messages using isolation forest with two autoencoder net-
works for feature extraction was presented in [11]. However, 
a detection threshold is required for each data set which is 
difficult to determine in practice.

Deeplog [7] uses a long short-term memory (LSTM) net-
work [19] for anomaly detection. First, each log is mapped 
to its print statement (in the source code) using a log parser. 
Thus, each log is represented by a number (feature) and a 
session of logs is parsed to a sequence of numbers. Then, an 
LSTM network is trained as a multi-class classifier using a 
window with normal sequences (corresponding to normal 
system operation) [7]. The trained LSTM network is then 
used to predict the probabilities of numbers occurring at 
a given time step. If the actual number is unlikely to occur 
based on the LSTM prediction, then it is considered to be 
an anomaly. While this approach may be effective, it can be 
difficult to obtain labeled logs for normal system operation. 
The proposed model uses both normal (positive) and abnor-
mal (negative) log messages for training and unsupervised 
algorithms are used to prune positive and negative logs. 
Once the reliable positive and negative logs are selected, an 
LSTM network is used for anomaly detection. Further, while 
log parsing is used by most ML/DL log message anomaly 

detection models such as Deeplog, only simple text log pre-
processing is used in the proposed model.

Since the log messages are unstructured, they are usually 
parsed before being input to an ML model. There are several 
different log parsing methods including LogSig and IPLoM 
[18]. An example of a log message is given in Fig. 1. The 
purpose of log parsing is to differentiate between constant 
and variable parts of the message so that the constant ele-
ments are mapped to a list of log events. However, systems 
are continually changing, so it is difficult to develop effec-
tive automated log parsing methods [18]. Figure 2 shows 
examples of positive and negative logs from Openstack1. 
Although the verbosity level for both logs is INFO, the posi-
tive log is a declaration which may show a claim was suc-
cessful on a node and the negative log may show the system 
has been terminated due to failing to start. This indicates 
that considering just one log message component may be 
insufficient for detecting anomalies.

K-means is a well-known clustering method which has 
been widely used in tasks such as detecting network intru-
sions [34]. Gaussian mixture model (GMM) is a clustering 
method that assumes the data was created from a combi-
nation of Gaussian distributions. It has been used to solve 
problems such as detecting anomalies in flight operation data 
[24]. The Dirichlet process Gaussian mixture model with 
variational inference (BGM) is a Bayesian mixture model 
(an extension of finite mixture models), which has been used 
for tasks such as anomaly detection in hyperspectral data 
[35]. An LSTM network [19] is a recurrent neural network 
(RNN) which uses a cell to preserve sequence information 
and recall long-term dependencies. LSTM networks have 
been used for various tasks such as text classification [37] 
and texture classification in images [4]. An LSTM network 
is suitable for sequential data such as log messages [10] and 
is effective with big data [8]. Another advantage of an LSTM 
network is robustness so it can be used with complex data. 

Fig. 1   An example of a log 
message consisting of time 
stamp, verbosity level and raw 
content

Fig. 2   Examples of positive 
and negative log messages from 
Openstack

1  https://​github.​com/​logpai/​loghub/​tree/​master/​OpenS​tack.

https://github.com/logpai/loghub/tree/master/OpenStack
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However, training an LSTM network can be time-consuming 
[16].

In this paper, a hybrid model is proposed which employs 
unsupervised K-means, GMM and BGM methods for data 
pruning and a supervised LSTM network for anomaly 
detection using reliable data. First, reliable positive logs 
are obtained using a GMM. Although GMMs are widely 
used for anomaly detection, we use a GMM to prune only 
positive logs in the first step. Then, reliable negative logs 
are obtained using pruning with the unsupervised K-means, 
GMM and BGM methods. Finally, a portion of the reliable 
positive and negative logs are used for anomaly detection 
using an LSTM network. The amount of data used for LSTM 
training is very small even though convergence with deep 
networks typically requires a significant amount of training 
data. The proposed model is evaluated using the accuracy, 
precision, recall and F-measure criteria [12], and three log 
message data sets, namely BlueGene/L (BGL)2, Openstack 
and Thunderbird3, are considered. The parameters of the 
proposed model are the same for all data sets to illustrate 
the robustness of this approach.

The main contributions of this paper are as follows. 

1.	 An unsupervised algorithm is presented which uses a 
GMM method to select reliable positive logs.

2.	 An unsupervised algorithm is presented which employs 
K-means, GMM, and BGM methods iteratively to select 
reliable negative logs.

3.	 An LSTM network is used with the pruned logs for 
anomaly detection.

The rest of this paper is organized as follows. In the next 
section, the K-means, GMM, BGM, and LSTM architec-
tures are presented and the proposed model is described. 
Experimental results for the three data sets are given in the 
third section along with a discussion of the model perfor-
mance. Finally, the fourth section provides some concluding 
remarks.

System Model

In this section, the K-means, GMM, BGM, and LSTM archi-
tectures are given and the proposed model is described.

K‑Means

K-means is an iterative clustering method. Given k classes, 
each cluster has a center which is the average of the samples 

in the cluster. The set of clusters is S = {S1, S2,… , Sk} and 
a sample is assigned to the cluster whose center it is closest 
to. First, the cluster centers are initialized randomly. Next, 
the Euclidean distances between each sample and the clus-
ter centers, ci , are calculated. Then, each sample is reas-
signed to the closest cluster and new centers are calculated 
for each cluster. This process continues until the clusters do 
not change or the maximum number of iterations is attained. 
This corresponds to minimizing the objective function given 
by

where k is the number of clusters, ci is the center of cluster 
Si , x is a data sample, and ||x − ci||2 is the Euclidean distance 
from x to ci.

Gaussian Mixture Model (GMM)

Gaussian mixture model (GMM) is a clustering method. It 
is assumed that each cluster consists of data with a normal 
(Gaussian) distribution. The goal is to estimate the distri-
bution parameters of each cluster and determine the labels 
for the samples, i.e., which cluster each sample belongs to. 
The expectation maximization (EM) algorithm [6] is used to 
obtain estimates for these parameters. The GMM probability 
density function (PDF) of sample xj is given by

where �i , �i and �i are the weight, mean, and covariance 
matrices of the ith distribution, respectively, m is the number 
of distributions (clusters), and � = {�i,�i,�i} is the param-
eter set of the mixture model. For d features, the Gaussian 
distribution of xj is

The EM algorithm iterates two steps, expectation (E-step) 
and maximization (M-step). First, the model parameters � 
are randomly initialized and the expectation and maximiza-
tion steps are performed. The E-step is given by

where t is the iteration number. Then the parameters are 
estimated in the M-step as
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S
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2  https://​github.​com/​logpai/​loghub/​tree/​master/​BGL.
3  https://​github.​com/​logpai/​loghub/​tree/​master/​Thund​erbird.

https://github.com/logpai/loghub/tree/master/BGL
https://github.com/logpai/loghub/tree/master/Thunderbird
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where N is the number of samples. These steps are repeated 
until the criteria are satisfied or a maximum number of itera-
tions is reached.

Dirichlet Process Gaussian Mixture Model (BGM)

The Dirichlet process Gaussian mixture model (BGM) is a 
non-parametric Bayesian mixture model that is an extension 
of finite mixture models. The number of clusters (classes) 
does not need to be explicitly predefined because it is a non-
parametric model. BGM uses the Dirichlet process (DP) 
which is a generalized form of a Dirichlet distribution [13]. 
A DP is composed of a base distribution G0 and a positive 
concentration scaler � . Since this model is not a finite mix-
ture model, variational inference is employed [3]. The model 
parameters are

(5)�t+1
i

=

∑N

j=1
� t
i
(xj)xj

∑N

j=1
� t
i
(xj)

,

(6)� t+1
i

=

∑N

j=1
� t
i
(xj)(xj − �t+1

i
)(xj − �t+1

i
)T

∑N

j=1
� t
i
(xj)

,

(7)�t+1
i

=
1

N

N∑

j=1

� t
i
(xj).

where �0 and �i are the mean and covariance of the Gauss-
ian distribution, s is the scale matrix, and v is the number of 
degrees of freedom for the Inverse-Wishart distribution [39].

LSTM Architecture

An LSTM is a recurrent neural network [19] which has been 
used to solve sequential data problems [15]. Cells are used 
to store information and they are connected recurrently. The 
use of cells solves the vanishing gradient problem. Each 
LSTM block includes input, forget, and output gates. These 
gates can store information longer than feed-forward neural 
networks which improves performance [15]. A block of an 
LSTM network is shown in Fig. 3. The cell input at time t is 
xt and the input, forget, and output gate outputs are

(8)�i ∼ DP(G0, �),

(9)�i ∼ W
−1(v, s),

(10)�i ∼ N(�0,�i),

(11)it = �(Wixt + Uiht−1 + bi),

(12)ft = �(Wf xt + Uf ht−1 + bf ),

(13)ot = �(Woxt + Uoht−1 + bo),

Fig. 3   A block of an LSTM net-
work with input, input, output 
and forget gates [19]
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respectively, where ht−1 is the previous block output, b is 
the bias vector, W and U are weight matrices, and � is the 
activation function (usually the sigmoid function). The block 
input at time t is given by

where bC is the bias vector, WC and UC are the weight matri-
ces, and tanh denotes the hyperbolic tangent activation func-
tion. The cell state at time t is

where ⊙ denotes point-wise multiplication. The block output 
at time t is

Proposed Model

The proposed model architecture has three steps. First, posi-
tive logs are pruned using an unsupervised GMM method. 
Second, negative logs are pruned through multiple rounds 
of the unsupervised GMM, BGM, and K-means methods. 
Finally, anomalies are detected using an LSTM network with 
the selected (reliable) positive and negative logs.

First, simple text pre-processing including changing let-
ters to lowercase, removing hyphens and tokenization are 
applied to the data set D. Next, the sentences are padded to 
40 tokens, and sentences including less than five tokens are 
removed. Then, the number of appearances of each token 
in the data set is computed and the tokens are ordered from 
most frequent to least frequent. Each token is given an index 
starting from zero and the indices are used as the data set 
features. Next, the features are normalized using a min-max 
scaler so all values are between 0 and 1 and the entries in the 
data set are shuffled. Then D is divided into two sets, t1 with 
2% of the data for training and r1 with the remaining 98% of 
the data. The set t1 is small to keep the computational com-
plexity low and have more data for the rest of the algorithm. 
The proportion of negative and positive logs in these sets is 
the same as in D.

Select Reliable Positive Logs

A GMM is used to prune the positive logs. It is trained with 
t1 and tested with r1 . The negative predicted logs (predicted 
output y = 0 ) and positive predicted logs (predicted output 
y = 1 ) are counted and labeled c0 and c1 , respectively. If the 
number of logs predicted as positive is less than the number 
predicted as negative, then c0 and c1 are swapped. This is 
because it is known that the number of anomalies (negative 

(14)Ĉt = tanh(WCxt + UCht−1 + bC),

(15)Ct = ft ⊙ Ct−1 + it ⊙ Ĉt,

(16)ht = ot ⊙ tanh(Ct).

logs) is much less than the number of positive logs (around 
10% ). The variance is given by

where xi is the ith feature, x̂ is the average of the features and 
F is the total number of features in the data set. Let a =

c1

c0
 

and the variances of the negative and positive predicted logs 
be zvar and ovar , respectively. If a > 3 and ovar × c < zvar (c is 
a constant), then the positive and negative predicted logs are 
added to the sets o0 (reliable positive logs) and z0 (rest of the 
data), respectively. The threshold for a was chosen consider-
ing that the majority of the logs are positive. A high value 
of c increases the probability of getting only positive logs 
but if it is too high the algorithm criterion may not be satis-
fied. It was set to c = 1.6 for all data sets based on the experi-
mental results obtained.

The variance measures the spread of a data set. If the 
model predicted most of the positive logs correctly (small 
number of false positives), then the variance of the positive 
logs should be lower than that of the negative logs. A high 
variance may indicate that there is a mix of positive and 
negative logs whereas a small variance indicates that there 
are mostly positive logs predicted correctly. If the criteria are 
met, the results are kept, otherwise the process is repeated.

Select Reliable Negative Logs

The GMM, K-means and BGM methods are now used to 
select negative logs. These models were chosen because they 
are efficient unsupervised models for text data [1]. There are 
n rounds and in each round, GMM, K-means and BGM are 
run m times. In the first round, the models are trained with 
z0 from the previous step. In subsequent rounds, the results 
from the previous round z are used for this purpose. The 
entropy of sample xj is given by

where ni is the ith feature of the sample, d is the length of the 
sample and M is the sum of the sample features.

For a model run, denote the average entropy of the logs 
predicted as negative and positive as sh0 and sh1 , respec-
tively. If sh0 < sh1 , then the predicted negative logs are 
appended to z1 and the predicted positive logs are appended 
to o1 . This is because small features appear frequently in pos-
itive logs so they are more uniform and thus have a higher 
entropy. At the end of a round, z1 is assigned to z for use in 
the next round. The logs in z are counted and ordered from 
most frequent to least frequent and the repetitions discarded. 

(17)
var =

F∑
i=1

(xi − x̂)2

F
,

(18)H = −

d∑

i=1

ni

M
ln(

ni

M
),
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This is done so that each log appears at most once in z and 
the logs that appear more often are used earlier so the mod-
els in the next round can predict better. The logs in z1 are 
discarded at the start of each round.

In each round, the prediction of positive and negative logs 
is done using z. Thus, the number of positive logs is reduced 
and only reliable negative logs are kept. The final z1 contains 
the predicted negative logs from the last round and these are 
used in the next step.

Anomaly Detection

In this step, an LSTM network is used with the reliable nega-
tive ( z1 ) and positive ( o0 ) logs from the previous two steps 
for anomaly detection. Each log in z1 and o1 is counted and 
ordered from most frequent to least frequent and the repeti-
tions are discarded. The first L logs in z1 are selected and 
assigned to z2 (most reliable predicted negative logs), and 
the remaining logs are assigned to o2 . Logs which appear in 
o1 but not in z1 are placed in o3 . The reliable positive logs o0 
obtained in the first step are shuffled, and 10% are randomly 
assigned to o4 and the remainder to o5 . The logs in z2 are 
repeated four times and assigned to xn . A portion of o4 which 
is the same size as the number of elements in xn is randomly 
chosen and assigned to xp . Thus, the reliable negative logs 
are oversampled so the number of reliable positive logs and 
negative logs is the same. This is because LSTM networks 
work better with balanced data and should be trained with a 
sufficient number of positive and negative logs. The logs in 
xn and xp are labeled with y = 0 and y = 1 indicating negative 
and positive logs, respectively, and xn and xp are assigned 
to t2 . The remaining logs in o4 are assigned to o6 , and o2 , o3 , 
o5 and o6 are assigned to t3 . The data set was initially scaled 
so all values are between 0 and 1, but this is reversed for t2 

and t3 to provide training and testing sets, respectively, for 
the LSTM network.

The LSTM network is trained with 90% of t2 , validated 
with the remaining 10% of t2 , and tested with t3 . The parame-
ters used are k = 20 , n = m = 5 , and L = 10000 for the BGL 
and Thunderbird data sets and L = 3000 for the Openstack 
data set. A different value of L is used because the Openstack 
data set is much smaller than the BGL and Thunderbird data 
sets. For training the BGL and Thunderbird data sets, an 
LSTM network with three hidden layers of size 256, batch 
size 128 and a maximum of 10 training epochs is used. To 
prevent overfitting, dropout with probability 0.5 and early 
stopping are used. The softmax activation function is applied 
in the last dense layer. The cross-entropy loss function and 
Adam optimizer are used for training. The Adam optimizer 
is used because it has been shown to provide good perfor-
mance and fast convergence in DL algorithms [33]. For the 
Openstack data set, an LSTM network with a single hidden 
layer of size 512 and embedding dimension of size 512 is 
used. A single-layer network is used for this data set because 
it is smaller than the other data sets. The rest of the archi-
tecture for the Openstack data set is the same as above. All 
network parameters were chosen based on the experimental 
results obtained. An LSTM network is used for anomaly 
detection because it has been shown to provide good results 
in classifying sequential data [15]. However, other DL dis-
criminative networks such as a CNN can be employed. The 
proposed model algorithms are given in Algorithms 1–3 and 
shown in Fig. 4. The data preparation for Algorithm 3 is 
shown in Fig. 5. 

Fig. 4   The proposed model 
architecture
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Fig. 5   The data preparation for Algorithm 3
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Results

In this section, the proposed model is evaluated using the 
BGL, Openstack and Thunderbird data sets. Four perfor-
mance criteria are considered, namely accuracy, precision, 
recall and F-measure [12]. The percentage of data correctly 
predicted is called the accuracy and is given by

where Tp is the number of positive samples predicted by the 
model to be positive, Fp is the number of negative samples 
predicted to be positive, Tn is the number of negative sam-
ples predicted to be negative, and Fn is the number of posi-
tive samples predicted to be negative. Then, the precision is

(19)A =
Tp + Tn

Tp + Tn + Fp + Fn

,
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the recall is

and the F-measure is

(20)P =
Tp

Tp + Fp

,

(21)R =
Tp

Tp + Fn

,

(22)F =
2 × P × R

P + R
.

All experiments were run on the Compute Canada Graham 
cluster with 32 CPU cores, two P100 GPUs and 124 GB of 
memory. The algorithms were implemented using Python, 
Keras4 and Scikit-learn5.

The hyperparameters of the proposed model were not 
tuned so the default values were used in all experiments. 
Each experiment was repeated 10 times and the minimum, 
maximum and average testing accuracy, precision, recall, 
F-measure and computation time were obtained. Table 1a 
gives the proposed model results for the BGL, Openstack 
and Thunderbird data sets using GMM for positive pruning. 
For comparison, the proposed model results using BGM for 
positive pruning are given in Table 1b with the order for 
negative pruning changed to K-means, GMM, and BGM. 
The results for negative logs with the Auto-LSTM [10], 
IKNN, nLSALog [40] and Deeplog algorithms for the (a) 
BGL, (b) Openstack, and (c) Thunderbird data sets are given 
in Table 2. Table 3 gives the average testing accuracy, preci-
sion, recall, F-measure and computation time with the BGM, 
EEnvelope, GMM, K-means, LOF and OC-SVM methods 
for the (a) BGL, (b) Openstack, and (c) Thunderbird data 
sets. Table 4 presents the positive log pruning results for the 
BGL, Openstack and Thunderbird data sets with (a) GMM 
and (b) BGM. Tables 5, 6, 7 give the negative log pruning 
results for the BGL, Openstack and Thunderbird data sets, 
respectively, with (a) GMM, (b) K-means, and (c) BGM for 
n = 5 rounds.

Table 1   The proposed model testing accuracy, precision, recall, F-measure, and average time with (a) GMM for positive log pruning and (b) 
BGM for positive log pruning

The minimum, maximum and average (in parenthesis) values are given for 10 runs with the BGL, Openstack and Thunderbird data sets. Positive 
labels are denoted by 1 and negative labels by 0

Data set Testing accuracy Label Precision Recall F-measure Time (s)

(a)
 BGL 99.3%-(99.5%)-99.6% 0 93.2%-(95.6%)-97.7% 97.1%-(97.8%)-98.7% 95.6%-(96.7%)-97.6% 3725

1 99.8%-(99.8%)-99.9% 99.4%-(99.6%)-99.8% 99.6%-(99.7%)-99.8%
 Openstack 99.8%-(99.9%)-100% 0 99.3%-(99.9%)-100% 97.9%-(99.7%)-100% 99.0%-(99.8%)-100% 177

1 99.7%-(99.9%)-100% 99.9%-(99.9%)-100% 99.9%-(99.9%)-100%
 Thunderbird 99.6%-(99.8%)-99.9% 0 97.1%-(98.9%)-99.9% 99.6%-(99.6%)-99.7% 98.3%-(99.3%)-99.8% 3550

1 99.9%-(99.9%)-99.9% 99.5%-(99.8%)-99.9% 99.7%-(99.9%)-99.9%
(b)
 BGL 99.4%-(99.5%)-99.7% 0 94.0%-(95.4%)-97.4% 97.2%-(98.5%)-99.4% 96.0%-(96.9%)-98.2% 3649

1 99.8%-(99.9%)-99.9% 99.5%-(99.6%)-99.8% 99.7%-(99.7%)-99.8%
 Openstack 99.6%-(99.9%)-100% 0 96.7%-(99.7%)-100% 99.6%-(99.9%)-100% 98.3%-(99.8%)-100% 134

1 99.9%-(99.9%)-100% 99.6%-(99.9%)-100% 99.8%-(99.9%)-100%
 Thunderbird 99.7%-(99.8%)-99.9% 0 97.5%-(99.0%)-99.9% 99.6%-(99.6%)-99.7% 98.6%-(99.3%)-99.8% 3136

1 99.9%-(99.9%)-99.9% 99.7%-(99.8%)-99.9% 99.8%-(99.9%)-99.9%

Table 2   The precision, recall and F-measure for negative logs for (a) 
BGL, (b) Openstack and (c) Thunderbird data sets with the Auto-
LSTM, IKNN, nLSALog and Deeplog algorithms

Algorithm Precision (%) Recall (%) F-measure (%)

(a)
 Auto-LSTM 98.0 91.3 94.5
 IKNN 92.0 91.0 92.0
 nLSALog 82.5 94.7 88.2

(b)
 Auto-LSTM 99.4 92.8 96.0
 Deeplog 94.0 99.0 97.0

(c)
 Auto-LSTM 98.4 99.8 99.1
 IKNN 96.0 96.0 96.0

4  https://​github.​com/​keras-​team/​keras.
5  https://​github.​com/​scikit-​learn/​scikit-​learn.

https://github.com/keras-team/keras
https://github.com/scikit-learn/scikit-learn
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BGL

The BlueGene/L (BGL) data set has 4,399,502 positive logs 
and 348,460 negative logs. From these, 94,960 logs are used 
for the training set t1 and 4,653,002 for the remaining set 
r1 . Using GMM for positive pruning, the final average test-
ing accuracy is 99.5% with average precision, recall and 
F-measure of 95.6%, 97.8% and 96.7% for negative logs, 
and 99.8%, 99.6% and 99.7% for positive logs, respectively. 
Using BGM for positive pruning, the final average testing 
accuracy is 99.5% with average precision, recall and F-meas-
ure of 95.4%, 98.5% and 96.9% for negative logs, and 99.9%, 
99.6% and 99.7% for positive logs, respectively.

The results with Auto-LSTM, IKNN and nLSALog 
for the BGL data set are given in Table 2a. The preci-
sion, recall and F-measure results for negative logs are 
better than the 92%, 91% and 92%, respectively, with the 
improved K-nearest neighbors (IKNN) supervised algorithm 
[36]. The precision, recall and F-measure results for nega-
tive logs are also better than the 82.5%, 94.7% and 88.2%, 
respectively, with the nLSALog algorithm [40]. The preci-
sion, recall and F-measure results for negative logs are also 
better than the 98%, 91.3% and 94.5%, respectively, with 
the Auto-LSTM algorithm [10] (however, the precision with 
Auto-LSTM is higher). Several well-known models were 
also evaluated for anomaly detection. The average testing 
accuracy, precision, recall, F-measure and time with the 
BGM, EEnvelope, GMM, K-means, LOF, and OC-SVM 
methods for the BGL data set using 10-fold cross-validation 
are given in Table 3a. Among existing methods, the GMM 
results for negative logs are the highest with precision, recall 
and F-measure of 38.2%, 50% and 43.3%, but these values 
are lower than those for the proposed model. The proposed 
model results are better because of pruning positive and 
negative logs and using DL. Because of the high complex-
ity of the LOF and OC-SVM methods [2, 9, 29], only 5% of 
the data set was used for these models.

Openstack

The Openstack data set has 137,074 positive log messages 
and 18,434 negative log messages. From these, 3111 logs 
are used for the training set t1 and 152,397 for the remaining 
set r1 . Using GMM for positive pruning, the final average 
testing accuracy is 99.9% with average precision, recall and 
F-measure of 99.9%, 99.7% and 99.8% for negative logs, 
and 99.9%, 99.9% and 99.9% for positive logs, respectively. 
Using BGM for positive pruning, the final average testing 
accuracy is 99.9% with average precision, recall and F-meas-
ure of 99.7%, 99.9% and 99.8% for negative logs, and 99.9%, 
99.9% and 99.9% for positive logs, respectively.

The results with Auto-LSTM and Deeplog for the Open-
stack data set are given in Table 2b. The precision, recall 

and F-measure results for negative logs are better than the 
94%, 99% and 97% obtained with the Deeplog network [7]. 
The precision, recall and F-measure results for negative logs 
are also better than the 99.4%, 92.8% and 96%, respectively, 
with the Auto-LSTM algorithm [10]. Several well-known 
models were also evaluated for anomaly detection. The 
average testing accuracy, precision, recall, F-measure and 
time with the BGM, EEnvelope, GMM, K-means, LOF, 
and OC-SVM methods for the Openstack data set using 
10-fold cross-validation are given in Table 3b. Among exist-
ing methods, the EEnvelope results for negative logs are 
the highest with precision, recall and F-measure of 53.4%, 
44.9% and 48.8%, but these values are lower than those for 
the proposed model. The proposed model results are better 
because of pruning positive and negative logs and using DL.

Thunderbird

From the Thunderbird data set, 3,000,000 positive log 
messages and 324,824 negative log messages are used. Of 
these, 66,497 messages are used for the training set t1 and 
3,258,327 for the remaining set r1 . Using GMM for positive 
pruning, the final average testing accuracy is 99.8% with 
average precision, recall and F-measure of 98.9%, 99.6% 
and 99.3% for negative logs, and 99.9%, 99.8% and 99.9% 
for positive logs, respectively. Using BGM for positive prun-
ing, the final average testing accuracy is 99.8% with average 
precision, recall and F-measure of 99%, 99.6% and 99.3% 
for negative logs, and 99.9%, 99.8% and 99.9% for positive 
logs, respectively.

The results with Auto-LSTM and IKNN for the Thunder-
bird data set are given in Table 2c. The precision, recall and 
F-measure results for negative logs are better than the 96% 
for all criteria with the IKNN supervised algorithm [36]. 
The precision, recall and F-measure results for negative logs 
are about the same as the 98.4%, 99.8% and 99.1%, respec-
tively, with the Auto-LSTM algorithm [10]. Several well-
known models were also evaluated for anomaly detection. 
The average testing accuracy, precision, recall, F-measure 
and time with the BGM, EEnvelope, GMM, K-means, LOF, 
and OC-SVM methods for the Thunderbird data set using 
10-fold cross-validation are given in Table 3c. Among exist-
ing methods, the GMM results for negative logs are the high-
est with precision, recall and F-measure of 27.1%, 70% and 
37.2%, but these values are lower than those for the proposed 
model. The proposed model results are better because of 
pruning positive and negative logs and using DL. Because 
of the high complexity of the LOF and OC-SVM methods, 
only 5% of the data set was used for these models.
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Discussion

Gaussian mixture model (GMM), Dirichlet process Gauss-
ian mixture model (BGM), and K-means are well-known 
clustering algorithms. Clustering algorithms have been 
shown to provide good results with text data [1] and logs 
are mostly text. In addition, clustering algorithms are faster 
to train than DL algorithms [26]. However, an unsupervised 
GMM is used here for pruning positive logs and the unsu-
pervised GMM, BGM, and K-means methods are used for 
pruning negative logs. This eliminates the need to label log 
messages to detect anomalies. The positive and negative 
logs are selected unsupervised using Algorithms 1 and 2, 
respectively. If the conditions in these algorithms are satis-
fied, then the logs predicted to be positive and negative are 
added to o0 and z0 , respectively, for Algorithm 1, and o1 
and z1 , respectively, for Algorithm 2. Then reliable positive 
and negative logs are selected using o0 and z1 , respectively, 
in Algorithm 3. The amount of positive data is far greater 
than the amount of negative data, so the positive data can be 
accurately predicted using clustering algorithms. However, 
the negative cluster contains a lot of positive data and this 
is a disadvantage of using clustering methods with imbal-
anced data [23]. We take advantage of this data imbalance as 
GMM can easily predict positive data. Another disadvantage 
of unsupervised clustering is that clusters may be labeled 
incorrectly [27]. Thus, not only do negative clusters include 
positive logs but clusters may be incorrectly labeled in dif-
ferent runs. As a consequence, the average results shown in 
Table 3 for the BGM, GMM and K-means methods are poor. 
Comparing the results in Tables 1 and 3, it is evident that 
BGM, GMM and K-means alone do not provide good log 
message anomaly detection results. This is also due to the 
complexity of the unstructured log messages. For negative 
pruning, our experimental results indicate that using just one 
model can limit the pruning process so that many unreliable 
logs are retained. Thus, multiple models are employed.

The precision for positive logs is the percentage of true 
positive logs predicted of all logs predicted to be positive. 
Table 4 shows that with GMM and BGM for positive prun-
ing, the average precision of positive logs is 99.9% for the 
BGL, Openstack and Thunderbird data sets, which is very 
high. Thus, most logs that are predicted to be positive are 
correct, and the number of negative log messages predicted 
to be positive ( FP ) is low. This indicates that pruning posi-
tive logs using Algorithm 1 is effective. However, the aver-
age precision for negative logs for the BGL and Thunderbird 
data sets is around 76% and 50%, respectively, which is quite 
low.

In separate experiments, the value of the constant c and 
the threshold for a were varied to determine their effect 
on Algorithm 1. The first set of experiments considered 
c = 1.4, 1.5, 1.6, 1.7 , and 1.8 with a > 3 and the second set 

of experiments considered a > 3 , 4, 6, and 10 with c = 1.6 . 
The criterion for this algorithm is that the set z0 is not empty. 
This is because Algorithm 2 requires this data for training. 
In the first set of experiments, the criterion was satisfied for 
all values of c with the Openstack and Thunderbird data sets 
and for all values except c = 1.8 with the BGL data set. In 
the second set of experiments, the criterion was satisfied for 
a = 3 , 4, and 6 with the BGL and Openstack data sets and 
for a = 3 and 4 with the Thunderbird data set.

The effect of the negative log pruning algorithm is 
shown in Tables 5, 6 and 7 for the BGL, Openstack and 
Thunderbird data sets (with a GMM for positive pruning), 
respectively. Here, precision for the negative logs is the most 
important criterion. For the BGL data set, the average pre-
cision of the negative logs with the GMM, K-means and 
BGM methods increased from 82.4 to 100%, 80.8–95.9% 
and 88.1– 100%, respectively, over the five rounds. For the 
Openstack data set, the average precision of the negative 
logs with the GMM, K-means and BGM methods increased 
from 99.9 to 100% for all models over the five rounds. For 
the Thunderbird data set, the average precision of the nega-
tive logs with the GMM, K-means and BGM methods was 
approximately the same, 99.9–100%, over the five rounds. 
These results indicate that Algorithm 2 is very effective in 
pruning negative logs. Further, the BGL data set required 
five rounds to obtain good results but only two rounds were 
sufficient for the Openstack and Thunderbird data sets. 
The GMM, K-means and BGM methods were used here to 
prune negative logs, but other unsupervised models can be 
employed.

The adjusted Rand index [21] is a measure of the similar-
ity of results and has a value between 0 and 1. A high index 
value means the results are very similar. For negative log 
pruning with the BGL data set, the average adjusted Rand 
index of all rounds for GMM and BGM was 0.94, for GMM 
and K-means was 0.33 and for BGM and K-means was 0.28. 
For negative log pruning with the Openstack data set, the 
average adjusted Rand index of all rounds for GMM and 
BGM was 0.74, for GMM and K-means was 0.49, and for 
BGM and K-means was 0.37. For negative log pruning with 
the Thunderbird data set, the average adjusted Rand index 
of all rounds for GMM and BGM was 0.93, for GMM and 
K-means was 0.19, and for BGM and K-means was 0.17. 
These values show that the GMM and BGM results are more 
similar than the GMM and K-means results and the BGM 
and K-means results.

The anomaly detection results with the LSTM network 
using the reliable positive and negative logs are shown in 
Table 1. The final results with GMM and BGM positive log 
pruning were similar. The proposed model results are better 
than with Auto-LSTM because the data was balanced before 
it was input to the LSTM network for anomaly detection 
whereas in [10], imbalanced data was used in the network. 
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The amount of data used for LSTM training was very small 
(less than 2% for BGL, 3% for Thunderbird, and 18% for 
Openstack) whereas deep networks typically require a sig-
nificant amount of training data for convergence. For the 
Openstack data set, a greater percentage of training data was 
required for convergence because it is small (more than 20 
times smaller than Thunderbird and BGL).

The proposed hybrid model (with unsupervised selection 
of reliable logs), has three advantages over supervised meth-
ods. First, it is suitable for many practical applications as 
there is no need to label data. Second, labeling data is a time-
consuming task and in many cases is not feasible. Third, 
using an unsupervised method eliminates the human error 
inherent in labeling. The default hyperparameters were used 
with the proposed model so better results may be obtained 
with hyperparameter tuning.

Conclusion

Many millions of log messages are generated each day in 
cloud and other systems. These messages are important for 
system maintenance which includes anomaly detection. Log 
messages consist of unstructured data which is mostly text. 
Thus, machine learning (ML) is a good choice for anomaly 
detection. In this paper, a hybrid log message anomaly detec-
tion technique using deep learning (DL) was proposed with 
pruning of positive and negative log messages. An unsuper-
vised algorithm with a Gaussian mixture model (GMM) was 
used to prune positive logs. Then, an unsupervised algorithm 
was used to prune negative logs using the K-means, GMM, 
and Dirichlet Process Gaussian mixture model (BGM) meth-
ods iteratively. The precision with the pruning algorithms 
for positive and negative logs was high, i.e., there were few 
false positives ( FP ). The proposed model was tested on three 
different log message data sets, namely BGL, Openstack and 
Thunderbird. The results obtained show that this model is 
better than other well-known approaches. Future research 
can consider the effect of adding other unsupervised meth-
ods such as isolation forest to the proposed model. Further, 
a CNN network can be used for anomaly detection instead 
of an LSTM network and hyperparameter tuning can be 
investigated.
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