
Vol.:(0123456789)

SN Computer Science (2021) 2:423 
https://doi.org/10.1007/s42979-021-00810-6

SN Computer Science

ORIGINAL RESEARCH

Decision Intelligence for Nationwide Ventilator Allocation During 
the COVID‑19 Pandemic

Jiajun Xu1 · Suvrajeet Sen2 

Received: 5 February 2021 / Accepted: 5 August 2021 / Published online: 21 August 2021 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Many states in the U.S. have faced shortages of medical resources because of the surge in the number of patients suffering 
from COVID-19. As many projections indicate, the situation will be far worse in coming months. The upcoming challenge 
is not only due to the exponential growth in cases but also because of inherent uncertainty and lags associated with disease 
progression. In this paper, we present a collection of models for decision intelligence which provide decision-support for 
ventilator allocation based on predictions from well-accepted oracles of disease progression. It is clear from our study that 
without coordination among states, there is a very high risk of ventilator shortages in certain states. However, such shortages 
can be reduced, provided neighboring states agree to share ventilators as suggested by our models. We show that despite the 
explosive growth in cases and associated uncertainty in ventilator demand, our simulation results hold the promise of reduc-
ing unmet demand, even in the face of significant uncertainty. This paper also provides the first evidence that coordination 
between neighboring states can lead to significant reduction in ventilator shortages across the U.S.

Keywords  COVID-19 · Resource allocation · Stochastic optimization · Decision intelligence · Predictive and Prescriptive 
modeling

Introduction

The novel Coronavirus pandemic (COVID-19), which 
appeared in December 2019, has spread to most countries 
around the world. As of now (Jan. 2021), more than 100 
million people have been infected, and more than 2 million 
of them have died worldwide [6]. The surge in the number 
of infected patients in several areas is predicted to lead to 
severe shortages of many essential resources and services, 
from ventilators to ICU beds, and even qualified health-care 

professionals. Several states in the U.S., such as New York 
and New Jersey, have already faced a shortage of ventila-
tors during the first surge in the Spring of 2020. In addition, 
with predictions of a more severe outbreak in the upcoming 
Spring [5, 9, 19, 21, 25], it is wise to start planning to miti-
gate the impact of a worsening pandemic.

Coordination between states might have helped the short-
age situation, but there was no effective mechanism to help 
states meet their ventilator needs in the absence of coordi-
nation tools. The tools we refer to here are allocation algo-
rithms that would allow states to share ventilator inventory, 
thus minimizing shortages across the country. With disease 
spread being a spatio-temporal process and the resource allo-
cation needs among states leading to combinatorial explo-
sion, it is impossible for human intelligence to provide the 
type of decision-support which would minimize the number 
of patients with unmet ventilator needs. What is necessary is 
a decision intelligence system to augment the human analyti-
cal capacity so that collaborative solutions can be obtained 
and shortages minimized.

In preparation for the next surge, we have designed a 
system that integrates predictions of state-by-state ventila-
tor demand, together with data on the current location of 
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all ventilators and cost of transportation to come up with 
a plan. This plan allows decision makers in all 50 states 
to work towards a solution that reduces the likelihood of 
not providing ventilator support for patients throughout the 
U.S. Unfortunately, the surge appears to be at our doorstep 
in the U.S. The Institute for Health Metrics and Evaluation 
(IHME) website for COVID-191 reported about 300,000 
deaths since the start (until December 17, 2020), and pre-
dicted approximately 470,000 deaths by March 1, 2021. As 
for hospitalizations, the number of cases on November 1, 
2020, were approximately 101,000, and by the first week of 
December 2020, that number (hospitalizations) had more 
than doubled to 205,000 individuals. This snapshot should 
give the reader pause; the speed with which COVID-19 was 
spreading disease and death in the U.S. was very alarming.

We hope that by combining modern tools of decision 
intelligence, together with predictive models of uncertainty, 
one may slow down this raging pandemic by planning pre-
cision deployment of critical resources and hopefully sav-
ing lives! As more and more people contract COVID-19 
across the U.S., current hospital resources may not meet 
the demand for critical resources, such as ventilators. The 
pandemic’s pace induces a dynamic demand for ventilators, 
and an agile nationwide allocation policy is necessary to 
respond to predictions, especially if and when the next surge 
does materialize. To allocate resources effectively, the first 
challenge is to forecast the needs in this fast-changing envi-
ronment accurately. Due to many unpredictable factors, the 
forecasts may only be reliable for only a couple of weeks. 
In addition, overestimating needs in one state might induce 
shortage in another, while underestimating will automati-
cally lead to insufficient supplies. Without decision intel-
ligence to guide human teams, the response to COVID-19 
may continue to look like a “whac-a-mole” game, with 
the pandemic popping up across the country in its march 
through the U.S. all winter. In this paper, we wish to provide 
evidence that coordination between states has the potential 
to help reduce the number of deaths by giving timely ventila-
tor support as needed on a dynamic basis.

Due to our specific focus on COVID-19, this paper only 
focuses on ventilators, but the applicability of the approach 
extends beyond ventilators, or even beyond COVID-19 for 
that matter. Moreover, due to the potential for broader com-
munity interest in this topic, we have organized this paper 
in a manner that should be accessible to a wider audience. 
Because of this goal, our recipe for this paper includes a 
non-mathematical preview in the next two sections dedi-
cated to predictions and optimization for resource allocation. 
These are then followed by specific modeling approaches 
for stochastic optimization (SO) in the “Methods” section. 

We expect that all readers will be able to appreciate that 
balancing model-fidelity with algorithmic SO bears fruit in 
the form of a more effective allocation of scarce resources 
during the COVID-19 pandemic.

Oracle‑Driven Demand Prediction

While our optimization models will coordinate allocations 
based on requirements from all states in the U.S., the pre-
dictions of COVID-19 cases will be undertaken on a state-
by-state basis. There are several reasons to justify this, most 
of which have to do with the manner in which the states 
manage their affairs, especially data for their patients. For 
this reason, we record the need for ventilator requirements 
provided by each state, which in turn works with hospitals 
within the state to predict demand for ventilators over time. 
One of the challenges with demand prediction for COVID-
19 is that there can be a significant lag, as well as the uncer-
tainty associated with disease progression. As a result, allo-
cation methods necessary for this kind of pandemic call for 
plans which can adapt as the uncertainty unfolds. Moreover, 
it is crucial to bear in mind that the choice of planning hori-
zons are critical. Indeed, the nature of disease progression 
appears to suggest a rolling horizon approach, in which plans 
are put forward weekly for a week-long window, and then 
these need to be updated as the weeks march on.

One reasonably well-accepted approach for such planning 
models is a formalism known as “Stochastic Optimization 
(SO) with Recourse” [3]. Normally, such SO models assume 
that the distribution associated with future uncertain events 
is available for use within the decision model. However, the 
large number of states in the U.S. and the rapidly chang-
ing forecasts of the disease suggests that an oracle-driven 
approach may be the most appropriate. The specific oracle 
we use is the IHME model [5] mentioned in the first foot-
note. In other words, we will accept the uncertainty bands 
created by the IHME model for each state and combine these 
uncertain forecasts with a two-stage SO model as mentioned 
above. In the IHME model, the forecasts are based on empir-
ically confirmed COVID-19 population death rate curves, 
which take the transmission of the virus and the fatality rate 
into consideration. The data on confirmed COVID-19 deaths 
by day is collected from different sources, such as local gov-
ernments, WHO websites with third-party aggregators [6]. A 
nonlinear mixed-effects model is fitted based on these data 
sources, where the cumulative death rate at each location 
is assumed to follow a parametrized Gaussian error func-
tion. The advantage of using the death rate is that it is more 
accurately reported than the infection rate, since the testing 
capacity is limited, and the patients with severe symptoms 
are more likely to be tested. With the projected death rates, 
the demand for hospital resources, such as ICU beds and 1  https://​covid​19.​healt​hdata.​org/​united-​states-​of-​ameri​ca.

https://covid19.healthdata.org/united-states-of-america
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ventilators, can be estimated with an individual-level micro-
simulation model.

The plans resulting from such SO models consists of two 
parts: (a) a first stage plan which is intended to position 
resources before the uncertain demands of the future are 
revealed, and (b) a collection of second-stage contingency 
plans which reflect a “recourse/adjustment” depending on 
how the future unfolds [3]. While the aforementioned book 
discusses more general sequential (multi-stage) decision 
processes as well, the two-stage setup, with weekly stages, 
appears to be most appropriate for two reasons: (a) there is 
significant evidence to believe that the incubation period of 
the virus is about 2 weeks, and most prediction models are 
also updated on a weekly basis. This suggests a week-by-
week decision process, with a “look-ahead” (second) week, 
which accommodates prediction uncertainty. It is important 
to recognize that the role of the second stage is mainly to 
let the first stage decision-making process/model recognize 
that future decisions will be contingency plans that depend 
on how the future may unfold. By having these contingency 
decisions of the second-stage incorporate the “what-if” sce-
narios, the first stage decisions are able to assess the impact 
of positioning resources “intelligently”, without over-com-
mitting to any one future scenario. In the presence of fore-
cast uncertainty, accommodating second-stage contingency 
plans helps overcome myopic decisions.

In addition to spatio-temporal uncertainty associated with 
disease progression, the question of coordinating allocation 
decisions across the entire U.S. is an impossible task for 
humans because of several factors: (a) the number of states 
in the U.S. leads to a combinatorial explosion in the uncer-
tainty space, (b) the lack of a coordinated system of nation-
wide response, and (c) from a methodological perspective, 
the challenge of coordinating predictive approaches under 
uncertainty with decision intelligence requires an integration 
of both predictive and prescriptive approaches. This paper 
presents a model which accommodates the requirements set 
forth above, and discusses the computational results dem-
onstrating many of the advantages of using decision intel-
ligence for planning under uncertainty.

Many models have been proposed to predict the spread 
of the virus and the speed of infection [1, 14, 20, 24]. For 
our formulation, the prediction oracle we use is the model 
from IHME. The demand for ventilators released on Dec. 17, 
2020, for the U.S. is shown in Fig. 1, where the data before 
the release date are regarded as the confirmed data, and the 
demand after Dec. 17, 2020, are based on the predictive 
models. The upper and lower bounds of the predictions give 
us the 95% prediction intervals, and the mean is the esti-
mated expected value for ventilator demand. To prepare for 
the upcoming surge, we use back-testing data during the first 
surge, from March 25 to June 02, 2020, and the early stage 
of the upcoming surge, from November 19 to December 

16. The ivory areas in Fig. 1 illustrate the back-testing time 
periods. We will test the performance of alternative decision 
models using the above data and recommend the winner as 
the tool for future resource allocation.

Resource Allocation Under Uncertainty

In contrast with parameter optimization required for model-
fitting in machine learning, optimization approaches for 
decision intelligence (also known as decision-support) usu-
ally give rise to constrained optimization models that enforce 
properties that should be satisfied by decisions. For instance, 
in applications that model resource allocation, such as ven-
tilator allocation, constraints often represent bounds on uti-
lization, e.g., one cannot allocate more ventilators than is 
available. Accordingly, such prescriptive approaches call for 
constrained optimization models. Moreover, as the demand 
for resources changes over time, the requirement constraints 
also evolve. In this sense, such decision models must track 
both disease progression as well as resource requirements. 
It is also essential to recognize that because predictions of 
disease progression are error-prone, resource utilization 
decisions lead to stochastic optimization models designed 
to avoid clairvoyant decisions [22].

The motivation for our models is that with appropriate 
ventilator allocation, we can satisfy more requests, thus 
improving the chances of saving more patient-lives. We 
will also present the situation without any coordination, in 
which every state is an “island unto itself”. In the following, 
we will begin our study using the expected value from a 
prediction model commonly used for infectious disease pro-
gression [5]. When the error-bars around the prediction are 
relatively small, point-forecasts may be sufficient for mod-
eling, and a deterministic resource allocation approach may 
be used to meet expected demand. However, when error-bars 

Fig. 1   Demand for ventilators in the U.S., according to data released 
by [25] on Dec. 17, 2020
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associated with predictions are significant, planning for 
expected demand may lead to poor (over-confident) deci-
sions, analogous to overfitting in machine learning. Thus, 
considering the different levels of projected demand, we 
will adopt a Stochastic Optimization (SO) [3] paradigm that 
allows us to incorporate forecast uncertainty in the allocation 
model. Unlike deterministic optimization models formulated 
with point-forecasts as input parameters, real-world systems 
often involve uncertainty in demand. The objective of an SO 
model is to recommend decisions that optimize the expecta-
tion or even some measure of risk associated with a function 
whose value depends on both the decision variables and the 
random variables. The decision variables will be required to 
belong to some feasible set of choices, whereas the random 
variables represent the uncertainty associated with demand 
predictions.

To curtail the unmet demand for hospital resources (e.g., 
ventilators) across the United States, we develop a variety 
of optimization models that include a point-forecasts model, 
a simple recourse model that considers the variance of the 
predictions, and a general recourse model. The first one is 
a deterministic model, and the other two are SO models. 
Each model reflects a set of assumptions on data and deci-
sion processes. Different models lead to alternative alloca-
tion of ventilators from their current locations (i.e., all 50 
states, and Washington, D.C.) to neighboring states, based 
on demand projections. Other studies for ventilator alloca-
tion have investigated situations covering in-state [18] allo-
cation, or allocation among alternative types of patients [2, 
8]. Within the framework of in-state collaboration, studies 
have also analyzed the risk of shortage with given resources 
[15]. Hence, our approach will address a macro-allocation 
problem, where the goal is to satisfy nationwide demands 
by transferring resources among neighboring states so that 
most requests may be fulfilled, provided states which ship 
ventilators to other states have the ability to bring them back 
when their own needs may be in jeopardy of not being met. 
In this sense, our model allows a framework that lets each 
state help their neighbors without hurting the response to 
their own citizens. We believe that combining these two 
kinds of allocations will provide better support for patients 
during the pandemic.

Methods

In our models, we consider an interval of time, say T days, 
prior to which an allocation is undertaken. The objec-
tive of the model is to minimize the unmet demand for 
resources by optimally distributing them across all states, 
assuming that only a subset (e.g., neighbors) can share 
their resources. This is done based on a T day projection 
of demand across the 50 states and Washington, D.C. 

Transfer of hospital resources from one location to another 
is assumed to be completed within a single day. If the 
resources are transferred on day t, they will be ready for 
use at the new location on day t + 1 . It is not difficult to 
see that our models can also accommodate cases, where 
shipments from state-to-state take longer, or is determined 
by the pair of states (i, j) under consideration. In this case, 
the calculation of the unmet demand should consider the 
resources as being in-transit, and so long as the travel 
times are known to be deterministic, our model is appli-
cable. Under this assumption, resources which leave the 
origin i on day t, and require integer travel days of �ij ≥ 0 , 
the resources will arrive at destination j on day t + �i,j . Due 
to the fact that most adjacent states are able to ship to each 
other within a day, we fix �i,j = 1 , although more exact 
shipment estimates can be easily envisioned.

Before getting into further details regarding the models, 
let us mention that this section is divided into two subsec-
tions, one for deterministic and one for stochastic optimiza-
tion models. The latter will be subdivided into two further 
sub-subsections, which will be devoted to SO models under 
different assumptions. These assumptions lead to different 
types of models: simple recourse (SR) and general recourse 
(GR). As the names suggest, the assumptions underlying SR 
make those models easier to solve, but back-testing suggests 
that GR model is more effective.

We will begin with notation which span all subsections, 
and then, proceed to notation which is specific to each par-
ticular section (or subsection). We first define the following 
sets:

–	 S = {0, 1, ..., 50} , the index set of all states and Washing-
ton, D.C.

–	 S
+=S ∪ {51} , where 51 is the index for the Strategic 

National Stockpile. We assume that once SNS transfers 
the ventilators to a state, these ventilators belong to the 
state.

–	 Sj = a subset of S , which includes the indexes of the 
states able to ship resources to location j, ∀j ∈ S

+.
–	 T  = {1, 2, ..., T} , the set of days which the plan covers.

To setup these allocation models, we need to have the data 
associated with the demand, supply and policy considera-
tions for each state. Our models can also be extended to 
allocate the multiple resources, if necessary. However, for 
the current study, we will only consider ventilator allocation.

The supply data includes the number of ventilators that 
are available for COVID-19 patients in all states and in the 
Strategic National Stockpile. The policy definitions (or 
functions) reflect decision rules which may be provided by 
decision makers (e.g., governors or their surrogates). Such 
parameters may constrain the maximum number of resources 
shipped to neighboring states, or set a minimum availability 
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of resources. The data used for the decision-making models 
may be summarized as follows:

–	 ajj = the initial total number of resources that are avail-
able at j ∈ S

+ , and belongs to state j.
–	 aij = the initial total number of resources that are avail-

able at j ∈ S
+ , and belongs to i ∈ Sj.

–	 Uji = the maximum number of ventilators belonging to 
j ∈ S

+ , and can be transferred to i ∈ S.
–	 Gj = the minimum number of ventilators belonging to 

state j which must be retained at location j ∈ S.
–	 �j = the maximum fraction of ajj used for Uji , that is 

Uji = �jajj
–	 �j = the maximum fraction of ajj used for Gj , that is 

Gj = �jajj

In the above notation, Uji,Gj are guidance from the admin-
istration. If the decision makers are conservative and do not 
wish to share too many resources, they can set a low value 
for Uji and a high value for Gj . For example, Uji = 0.2ajj 
means that state j is willing to send at most 20% of its stock 
to another state. Similarly, Gj = 0.6ajj implies that state j 
keeps at least 60% of its own ventilators for itself. These two 
policy parameters can also depend on the predictions, thus 
creating a non-deterministic policy.

Resource Allocation with Point‑Forecasts

We first consider a deterministic decision model which seeks 
plans according to point-forecasts (i.e., assume that there 
are no errors in forecasting). This is, of course, unrealistic 
because of prediction errors are inevitable. However, this 
unrealistic model will help setup for more realistic SO mod-
els which will include the necessary prediction errors. We 
use the demand data, which includes the daily requirement 
for ventilators in all states. Let

–	 djt = the expected demand for resources at j ∈ S on day 
t ∈ T .

For a deterministic model (using point forecasts), the deci-
sions we need to make are the number of ventilators shipped 
from one location to another at t = 0 . We also define the 
variables representing the number of available ventilators 
in all states after the initial allocation, the flow (shipment) 
variables, and the variables for the unmet demand. The vari-
ables are defined as follows:

–	 xij = the number of ventilators shipped from location 
i ∈ S

+ to location j ∈ S
+ at time 0. The flow matrix is X, 

with xij as the element at (i, j).
–	 sjj = the total number of ventilators that are available in 

j ∈ S
+ after initial allocation, and belongs to j.

–	 sij = the total number of ventilators that are available in 
j ∈ S

+ after initial allocation, and belongs to i ∈ Sj.
–	 �jt = unmet demand for ventilators at location j ∈ S on 

day t ∈ T  . The matrix representation is �.

The allocation problem aims to minimize the total amount of 
unmet demand across the country in the periods indexed by 
T  . We assume that once the ventilators are shipped from the 
SNS to states, they will belong to the state which received 
them from SNS first. The constraints include flow balance 
constraints for all locations, policy constraints with Gj and 
Uij , and the shortfall, which is either zero or the difference 
between the demand and available ventilators. We further 
penalize the number of ventilators which are on loan from 
other states. This penalty can reduce unnecessary sharing. 
If we choose the penalty coefficient � between 0 and 1, it is 
equivalent to the situation that one should not send ventila-
tors to other states unless they can reduce one more unmet 
demand. The problem can be formulated as 

 Note that although one of the inequalities in problem (1) 
involves a nonlinear function due to the “max” operator, the 
problem can be solved as a linear program by replacing the 
“max” operator with two inequalities requiring each term 
inside the “max” to be less-than-or-equal-to �jt . We adopt 
this formulation style to compress the presentation, espe-
cially because some formulations later in the paper have 
many such conditions. Constraints (1b) indicate the balance 
of stock in each state, where the right hand side is the ini-
tial stock minus the outflows plus the support from SNS. 

(1a)Min
�

j∈S,t∈T

�jt + �

⎛
⎜⎜⎝

�
j∈S,i∈Sj

sij

⎞
⎟⎟⎠
,

(1b)s.t. sjj = ajj −
∑
i∈Sj

xji + x51,j,∀j ∈ S,

(1c)s51,51 = a51,51 −
∑
j∈S

x51,j,

(1d)sij = aij + xij,∀j ∈ S, i ∈ Sj,

(1e)�jt ≥ max

⎧
⎪⎨⎪⎩
0, djt − sjj −

�
i∈Sj

sij

⎫
⎪⎬⎪⎭
,∀j ∈ S, t ∈ T,

(1f)sjj ≥ Gj,∀j ∈ S
+
,

(1g)− aij ≤ xij ≤ Uij,∀i, j ∈ S
+
.
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Constraint (1c) shows the stock in SNS, which equals the 
initial amount minus the support to states. Constraints (1d) 
denote shipments of ventilators among states. The unmet 
demand �jt in constraints (1e) is a non-negative value. If the 
demand is greater than the supply, �jt equals their non-neg-
ative difference. When the demand is less than the supply, 
the unmet demand is 0. Equations (1f) and (1g) represent the 
policy constraints, where the former sets the lower bound 
for the stock value sjj , and the latter implements the upper 
bound for the flow value xij . State i may return the borrowed 
resources from state j, in which case xij is negative. In this 
case we have −aij ≤ xij , as shown in Eq. (1g).

Resource Allocation to Accommodate Forecast 
Uncertainty

Compared with the prediction model used in the previous 
subsection, we now consider approaches that accommodate 
uncertainty. It is important to note that using point-forecasts 
in an optimization model with data uncertainty gives the 
optimization algorithm a false sense of data certainty, which 
in turn, exacerbates the bias due to optimization [3]. Moreo-
ver, decisions based on point estimates, as in the previous 
section, ignore prediction errors, and lead to less generaliz-
able decisions. This concept of generalizability, borrowed 
from Machine Learning (ML), is explored in greater detail 
for SO applications in [7].

In this section, we replace point forecasts of the previous 
subsection with a collection of demand samples, where each 
sample represents a sample path of potential demands for 
each day of a week for any given state. In this conceptualiza-
tion, we model a sample path via a scalar � which param-
eterizes demand paths from low to high for an entire period, 
for a state j. Given this setup, one is able to associate the first 
percentile of the IHME forecast as the lowest trajectory, and 
the highest as the 99th percentile. The remaining percentiles 
can also be simulated by drawing � ∈ [0, 1] . Formally then, 
we define such a random variable for each state as follows.

–	 𝜔̃j ≡ a random variable which traces a weekly path repre-
senting daily demand for state j (using IHME predictions 
for the week). We use (�j,Fj,ℙj) to denote the probabil-
ity space consisting of the sample space �j , its meas-
urable collection of subsets Fj , and the measure itself 
denoted ℙj.

–	 𝜔̃ = [𝜔̃0, 𝜔̃1,… , 𝜔̃50] . We use (�,F,ℙ) to denote the 
probability space, thus � = �0 ×�1 ×… ×�50 . We 
use � to denote one sample of 𝜔̃.

–	 djt(�) = The demand for ventilators for state j ∈ S on 
day t ∈ T  under sample/outcome � ∈ [0, 1] . Thus, for 
a given � , the daily demands for state j is composed of 
dj1(�),… , djT (�) , where T = 7 . Note that the trajectory 
for a week is clearly correlated according to IHME fore-

casts. Correlation across states can also be modeled via 
correlations between �k and �

�
 ( � ≠ k).

The Simple Recourse (SR) Model

The first stochastic model we consider is the simple recourse 
model, where we decide to ship ventilators on day t = 0 , 
considering all random variables to be independent by state. 
This assumption of independence among states allows a 
model which is separable by state. This formulation is called 
the simple recourse model, since the recourse action will 
simply calculate linear penalties on the shortage of scarce 
resources [27]. In the stochastic case, the variables for unmet 
demands depend on the outcome. We add superscript � to 
emphasize this dependency:

–	 ��
jt
 = the unmet demand for ventilators at location j ∈ S 

on day t ∈ T  under sample � ∈ �.

In this case, the problem can be formulated as a two-stage 
SO model as follows: 

 where the expectation is taken with respect to the random 
variable 𝜔̃ . For any sample � ∈ � , we have 

 In this model, the first stage problem (2) is similar to the 
deterministic formulation (1), although the objective func-
tion is replaced by the expectation (denoted by � ) of short-
age calculated via the second-stage problem (3). If the pre-
dictions for each state are independent of the other states, 
then a major simplification arises. The objective function 
evaluation can be subdivided into 51 separable pieces, 
including 50 states and Washington D.C. In this case, we can 
define auxiliary variables uj = sjj +

∑
i∈Sj

sij in Eq. (2). This 
allows us to separate the unmet demand by state, and then, 
we have

(2a)Min 𝜆

⎛
⎜⎜⎝

�
j∈S,i∈Sj

sij

⎞
⎟⎟⎠
+ �[h(s, 𝜔̃)],

(2b)s.t. (1b) − (1d), (1f ) − (1g),

(3a)h(s,�) =Min
∑

j∈S,t∈T

��
jt
,

(3b)

s.t. ��
jt
≥ max{0, djt(�) − sjj −

∑
i∈Sj

sij}, ∀j ∈ S, t ∈ T.

(4)�[h(s, 𝜔̃)] =
∑
j∈S

�[hj(uj, 𝜔̃j)],
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where the the expectation on the right hand side is for 𝜔̃j . 
With the sample �j , we have 

 The function in (5) calculates linear penalties of shortfalls, 
and for this reason, the SO literature refers to such a model 
as the “simple recourse” model, which is equivalently known 
in Machine Learning as a model with weighted �1 penalty. 
With this simplification, one is able to evaluate subgradients 
of hj for use in the classical Benders/L-Shaped algorithm 
[3, 26].

General Recourse (GR) Models

Unlike the simple recourse formulation which only considers 
penalties for deviations from the first-period plan, the gen-
eral recourse (GR) formulation looks ahead one more period 
(a week) in order to estimate a reassignment or recourse 
that may be incurred in the next period. In essence the pen-
alties do not accommodate positioning, and re-positioning 
of resources in a manner which reflects decisions. The GR 
model will accommodate such shipments. In fact, the general 
recourse model is general enough to even allow correlations 
between �

�
 and �k , for � ≠ k . However, to avoid confound-

ing our conclusions by choosing a completely different 
stochastic process with dependence, we continued with the 
statewise independence assumption from the SR model so 
that would have fewer uncontrollable outputs of our com-
parative study. It suffices to say that if IHME produces corre-
lated predictions among states, then, our methodology would 
be able handle dependent random variables as well.

This second-stage recourse builds in a recognition that 
as more information becomes available, the allocation of 
ventilators should be adjusted. Thus depending on the infor-
mation, there will be a second allocation decision in the 
GR formulation at the beginning of the second period. We 
define T+ = {T + 1, ..., 2T − 1, 2T} as the time-periods of 
the second stage. Such a model is also referred to as a “look-
ahead” model which tries to foresee adjustments as future 
contingencies. Accordingly, decisions for the “look-ahead” 
phase are defined as follows:

–	 r�
jj
 = the total number of ventilators that are available in 

j ∈ S
+ after initial allocation, and belongs to j after day 

T under sample � ∈ �.
–	 r�

ij
 = the total number of ventilators that are available in 

j ∈ S
+ after initial allocation, and belongs to i ∈ Sj after 

day T under sample � ∈ �

(5a)hj(uj,�j) =Min
∑
t∈T

�
�j

jt
,

(5b)s.t. �
�j

jt
≥ max{0, djt(�j) − uj}, ∀t ∈ T.

–	 y�
ij
 = number of ventilators shipped from location i ∈ S

+ to 
location j ∈ S

+ at time T under sample � ∈ �.

For the general recourse model, we allocate ventilators at time 
t = 0 , and then adjust the allocation at day T. This model can 
be formulated as a more general two-stage stochastic optimiza-
tion problem. The first stage problem is the same as the one 
in the simple recourse model (i.e., Eq. (2)). Even though the 
independence assumption is still in effect, we cannot separate 
one state’s model from another, because the allocation lin-
ear program creates dependence of the value function across 
different states. For this reason, we adopt a sampling-based 
algorithm. Thus, the expectation is replaced by a sub-sampled 
estimate of the expected value, denoted �̂ . Then, the first stage 
problem is 

 The second-stage subproblem, which can support alterna-
tive formulations, is the contingency model. If we suppose 
at t = T  , the total number of ventilators remains the same, 
then the second-stage problem is as follows: 

(6a)Min 𝜆

⎛
⎜⎜⎝

�
j∈S,i∈Sj

sij

⎞
⎟⎟⎠
+ �̂[h(s, 𝜔̃)],

(6b)s.t. (1b) − (1d), (1f ) − (1g).

(7a)h(s,�) =Min
�

j∈S,t∈T∪T+

��

jt
+ �

⎛
⎜⎜⎝

�
j∈S,i∈Sj

r�
ij

⎞
⎟⎟⎠
,

(7b)

s.t. ��
jt
≥ max

⎧
⎪⎨⎪⎩
0, djt(�) − sjj −

�
i∈Sj

sij

⎫
⎪⎬⎪⎭
, ∀j ∈ S, t ∈ T,

(7c)r�
jj
= sjj −

∑
i∈Sj

y�
ji
+ y�

51,j
,∀j ∈ S,

(7d)r�
51,51

= s51,51 −
∑
j∈S

y�
51,j

,

(7e)r�
ij
= sij + y�

ij
,∀j ∈ S, i ∈ Sj,

(7f)��
jt
≥ max

⎧
⎪⎨⎪⎩
0, djt(�) − r�

jj
−
�
i∈Sj

r�
ij

⎫
⎪⎬⎪⎭
,∀j ∈ S, t ∈ T

+
,

(7g)r�
jj
≥ Gj,∀j ∈ S,
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 It is important to distinguish between the “value functions” 
defined in Eqs. (3) and (7). While they have been defined 
using the same variables for notational consistency, the for-
mer does not use any flows. In contrast, the latter allows the 
first stage decision to be adjusted based on observations of 
flows in Eq. (7). The variables r� represent the stock in the 
second week, while the variable s is the stock in the first 
week. The superscript � shows the dependence on the spe-
cific scenario (outcome). Equations (7c)–(7h), which con-
strain the decision variables in the second week, correspond 
to the constraints (1b)–(1g), respectively. Moreover, if state 
j ∈ S builds or buys new ventilators that are available at T, 
we may modify the constraints (7c). If the number of new 
ventilators is known as nj , the subproblem is formulated by 
replacing the constraints (7c) with the following:

Computational Experiments

With the confirmed case data (Mar. 25–Dec. 16, 2020), 
we observe many states with a shortage of resources. We 
run back-testing exercises based on out-of-sample histori-
cal data. For the following computational experiments, the 
projected data on patients’ need for ventilators are based on 
predictions made by IHME [5]. We focus on dates around 
the first demand peak (Mar. 25–June 02, 2020) and the early 
stage of the next surge (Nov. 19–Dec. 16, 2020). We ensure 
that for each planning run, we only use data and predic-
tions that were made before the dates for which ventilator 
allocations are planned. In this exercise, we notice that the 
demand between June 03 and November 18 is relatively low 
compared with other weeks used in our study. Due to the 
lower demand for resources, the supply is able to satisfy 
requirements for all states. In addition, thus, no shipments of 
resources are required. The supply remains unchanged dur-
ing this period. We aim to provide insights to better prepare 
for the upcoming surge in winter/spring 2021. The need for 
ventilators in the U.S. is shown in Fig. 1. For our models, 
we make decisions for sharing resources every week. There 
are 10 weeks in the first surge, starting from Mar. 25, 2020. 
Moreover, we make four decisions between November 19 
and Dec. 16, 2020. According to [4], Strategic National 
Stockpile (SNS) has around 12,000 ventilators at the begin-
ning of the pandemic. We collect the number of currently 
available ventilators in each state and assume that these data 
were the initial stock on Mar. 25, 2020. Subsequently, venti-
lator inventory in each week starts from the end state of the 

(7h)− sij ≤ y�
ij
≤ Uij,∀i, j ∈ S

+
.

(8)r�
jj
= sjj −

∑
i∈Sj

y�
ji
+ y�

51,j
+ nj,∀j ∈ S.

previous week. We further assume that the initial alloca-
tion on Nov. 19, 2020, is the same as the ending inventory 
on June 02, 2020; that is, there were no transfers between 
states during the Fall when there were no significant surges 
in cases.

We create projections on a rolling-horizon basis, using 
data generated before the allocation dates. These predicted 
demands are based on fitting a model using previously con-
firmed cases. With these projections, we build the decision 
models to recommend actions, which are then validated 
against actual demand for the period. The projections are 
updated weekly, as are the allocation decisions. The avail-
able resources in each state are also updated based on these 
decisions. At time t (= 0, T , 2T ,… ), we exploit the predicted 
demand in day t + 1,… , t + T  (for point-forecasts/SR mod-
els), or t + 1,… , t + 2T  (for GR model), to find the optimal 
allocation decision. We then implement this decision at time 
t. We should emphasize that in the GR model, only the deci-
sion at t will be implemented, although the second- stage 
decisions are also included in the decision model to avoid 
“end-of-horizon” effects. When we are at time t + T  , the 
decision made on t will be evaluated based on the actual data 
on day t + 1,… , t + T  . Then, this process will continue for 
the following week.

For the point-forecasts model, we use the prediction mod-
el’s expected value as the demand projection. The problems 
are formulated using Pyomo [10] with CPLEX as the linear 
programming solver. For the two classes of forecast uncer-
tainty models (i.e., the simple recourse (SR) and the general 
recourse (GR) model), we restrict each random variable 𝜔̃j 
to a small set of values, representing the low/medium/high 
cases. Even with this coarse discretization, the total number 
of potential multi-dimensional (vector) realizations is as 
high as O(351)(around 1024 ), assuming that errors around the 
mean forecast are independent. However, the SR model can 
be solved without much trouble because of the simplification 
in Eq. (4). We choose the medium value of demand as the 
expectation; the midpoint between the predicted upper limit 
and the medium demand is treated as the high demand; the 
midpoint between the predicted lower limit and the medium 
demand is used as the low demand. As in empirical risk 
minimization, we use an estimated probability of 1/3 for 
each demand outcome for an individual state. For the SR 
model, we use the predicted demand in the following week, 
while for the GR model, we use the prediction model to look 
ahead one additional week. To find the forecast uncertainty 
models’ solution, we use the codes programmed in C lan-
guage with CPLEX 12.8 solver. The SR model is solved with 
the classical Benders/L-Shaped algorithm. As for the gen-
eral recourse model, we apply a sampling-based algorithm, 
called Stochastic Decomposition (SD), with compromise 
decision, where each problem is solved using three replica-
tions. We provide a brief overview of SD below.
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The SD algorithm is a sequential sampling method that 
was originally proposed for two-stage stochastic linear 
programming problems in [12]. It has since been extended 
by allowing a finite collection of affine functions in [13], 
and further elaborated in a monograph [11]. As with most 
sampling-based algorithms, [17] has demonstrated that 
optimization produces a biased objective function estimate. 
However, [23] has shown how such bias can be reduced sig-
nificantly using an extension of “Bagging” which is referred 
to as a “Compromise Decision”. We provide a brief over-
view of SD in the next couple of paragraphs and point read-
ers to further references below.

The basic idea of the method is to approximate the objec-
tive function by the maximum of several piecewise affine 
functions (subgradients) carried over from past iterations, 
as well as one generated in the current iteration. By solv-
ing a regularized version of the current approximation, one 
obtains the next decision in the sequence, as well as a col-
lection of Lagrange multipliers during the current iteration. 
The Lagrange multipliers, which are zero points to those 
affine pieces which can be purged without sacrificing con-
vergence properties [13]. It can be shown that this process 
maintains a finite number of affine inequalities throughout 
the algorithm, and the resulting sequence of iterates provides 
an optimal solution for the GR version of the SO model with 
probability one, asymptotically. Nevertheless, the scheme 
is required to stop in finite time. While the stopping rules 
of SD are beyond the scope of this presentation, we refer to 
[16] and [23] for further details on stopping each replication 
in finite time.

It turns out that the process of producing one decision 
after running several replications is the key to a variance-
reduced decision that can be implemented. This last phase of 
SD requires one more algorithmic step based on a proximal 
point iteration that finds an aggregate decision known as the 
“compromise decision” [23]. This last phase is an extension 
of the concept of “Bagging” commonly used in Machine 
Learning, although unlike bagging, the compromise deci-
sion also incorporates a stopping rule. It is this stopping rule 
which discovers the sample size based on accuracy require-
ments imposed on the algorithm via tolerance settings com-
mon to numerical optimization. As a result, the user is not 
required to choose a particular sample size, provided that the 
data set has a sufficiently large sample. An implementation 
of the SD algorithm is available through NEOS2, and its 
open-source version is available on github3.

The computational times to obtain the recommended 
decision for all instances covering 14 weeks of tests is sum-
marized in Table 1. We have not reported the solution times 
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for the point forecast setup, because it uses an off-the-shelf 
LP solver. For all SO models, the recommended decision is 
found in less than a minute, although the general recourse 
model takes more time than the simple recourse model. 
However, in the next section, we will show that decisions 
provided by the GR model perform much better than those 
provided by SR models.

Model Evaluation for Decision Intelligence

We evaluate the allocation decisions resulting from all three 
models: one point-forecast (i.e., deterministic) model and 
two forecast uncertainty models. Each model is tested over 
a 14-week “rolling horizon” period in which decisions are 
made 1 week at a time, with the ending state of 1 week 
providing the starting point of ventilator inventory of the 
following week. For all models, the connection between 
states is based on an adjacency matrix4 which is predefined 
and essentially captures which states in the database are 
neighbors of a particular state. The maximum amount of 
ventilators transferred from state i to state j, and the mini-
mum amount of ventilators that state j want to keep, are 
policy parameters that can be adjusted by decision makers 
(e.g., governors). Because ours is a trial experiment, we will 
explore different setups for these policy parameters.

Since the ventilators will not only be used for COVID-
19 patients but also for patients with other conditions (e.g., 
brain injury, child birth, collapsed lung, coma, etc.), we 

explore different ratios of ventilators to be used for COVID-
19 patients. We let Pcovid denote the percentage of total avail-
able ventilators to be used for the COVID-19 patients. Thus, 
the initial value of ventilators for the COVID-19 patients in 
each state is the number of currently available multiplied by 
Pcovid . We study situations for which Pcovid assumes values in 
the set {50%, 60%, 70%, 80%} of the total available ventila-
tors for the COVID-19 patients. As the pandemic becomes 
severe, these percentages may change. In our study, we also 
include a “no-coordination” policy as a baseline. For the 
“no- coordination” policy, we first distribute the ventilators 
in SNS to all states proportional to the population. Then, 
the available resources in each state remain the same at all 
times. Table 2 shows the total amount of unmet demand in 
the U.S. in the period from Mar. 25 to June 02, and from 
Nov. 19 to Dec. 16, with different Pcovid . Before examining 
the contents of Table 2, we should remind the reader that 
these quantities are based on the out-of-sample confirmed 
demand data with the implementation of decisions at the 
beginning of each week. As we can see, coordination among 
states indeed helps the entire nation, and as the supply of 
resources increases, there is a more significant benefit from 
coordination. Overall, the forecast uncertainty models out-
perform the point-forecasts model, since they consider the 
randomness in the prediction. Besides, the general recourse 
model, which exploits the projections over a more extended 
period, has a more significant impact on reducing unmet 
demand in most cases.

We compared the performance across all models with 
different policy parameters representing (a) the minimum 
percentage of ventilators ( �j ) that state j might want to retain 
from its own stock, and (b) the maximum percentage of ven-
tilators ( �j ) transferred from state j to its neighbors. Note that 
we apply a static policy in the experiments. Table 3 shows 
the total unmet demand for all models under different policy 

Table 2   Total amount of national unmet demand for different models in the period from Mar. 25 to June 02, and from Nov. 19 to Dec. 16, 2020. 
Each column represents a different percentage of total ventilators available for COVID-19 patients

Model Pcovid = 50% Pcovid = 60% Pcovid = 70% Pcovid = 80%

No-coordination 151,541 124,335 104,330 87,655
Point-Forecasts 46,372 24,176 10,894 6074
Forecast Uncertainty-SR 35,595 8896 372 125
Forecast Uncertainty-GR 28,125 4365 359 127

Table 3   Total unmet demand, in 
the period from Mar. 25 to Jun. 
02, and from Nov. 19 to Dec. 
16, 2020, for all models under 
different policy parameters. 
Pcovid is set as 0.6

Model �j = 0.6, �j = 0.2 �j = 0.5, �j = 0.2 �j = 0.5, �j = 0.3 �j = 0.4, �j = 0.3

No-coordination 124,335 124,335 124,335 124,335
Point-Forecasts 23,987 24,176 16,104 15,602
Forecast Uncertainty-SR 9734 8896 5322 4535
Forecast Uncertainty-GR 4468 4365 1396 1170

4  Although our computations use an adjacency matrix for each state, 
our models can use any other connection matrix as well. For exam-
ple, we can connect California with New York or any other state, as 
required.
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parameters in the covered 14 weeks. We notice from Table 3 
that a smaller �j and a larger �j will help the nation reduce 
more unmet demand and exploit the benefits of resource 
sharing. If a state sends too many extra ventilators to other 
states, it may face a high risk of not meeting its own demand. 
However, we can minimize this risk by setting a large pen-
alty parameter � for lending resources and building a better 
prediction model.

Figure 2 shows the total amount of unsatisfied demand 
in each week with Pcovid = 60% , �j = 0.5 and �j = 0.2 . The 
values for the unmet demand are summarized in Table 4. 
Although the point-forecasts model can substantially reduce 
the unmet demand, forecast uncertainty models make better 
decisions under the same policy parameters and quota. The 
forecast uncertainty models take advantage of the predic-
tion intervals and consider multiple possibilities of future 
outcomes. Besides, since the general recourse model looks 
ahead one more week, more information will be considered 
when making decisions. Since the spread of the disease 
changes rapidly, the prediction for two successive weeks 
reflects reality in a reasonable manner. Predictions that are 
further out in time may be less reliable. Thus, we believe that 
the general recourse model, which considers the demand in 
two successive weeks with 1 week being uncertain, is suit-
able for resource sharing purposes.

In general, an examination of unmet demand in Table 4 
reveals that the “no-coordination” strategy of simply ship-
ping out ventilators based on the states’ population at the 
start is not a very smart policy. From the results reported in 
Table 4, the unmet demands for the “no-coordination” policy 
were the worst among all policies, because its level of unmet 
demand is the highest for the period that we tested.

Fig. 2   Amount of unmet demand in different weeks based on the 
decisions from all models
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Of the remaining models, the point-forecasts model is, 
in general, better than one without coordination. However, 
because it lacks any foresight regarding uncertainty, it ends 
up in a poor situation for the start of the second study period 
in mid-November. As a result, the point forecast model is the 
only model that fares poorly in the starting phase of the sec-
ond surge. In fact, the “no-coordination” scheme worked bet-
ter for the start of the second surge, because the latter did not 
ship ventilators to other states, which, by our assumptions, 
had not re-positioned before the start of the second surge. 
Of course, this situation can be remedied by re-positioning 
to the initial state during Fall 2020 (September–November 
2020).

The GR model’s performance is much better than other 
models, especially during peak-demand. In addition to the 
“column-by-column” instantaneous advantage of the GR 
model, there is an accumulated effect as well. To elaborate 
on this effect, note that during the first 4 weeks of Table 4 
the differences between the row for the “Forecast Uncer-
tainty-SR” and that for “Forecast Uncertainty-GR” increases 
from 0 in week 1, to 127 in week 2, to 1610 in week 3, and 
then 1539 in week 4, and finally tapers down to 0 in week 5. 
This pattern is also exhibited for differences when compar-
ing other rows in the same table with the row for “Forecast 
Uncertainty-GR”. These differences emphasize that flex-
ible positioning (due to flows that accommodate demand 
changes) helps prepare for a surge and potential shortages. 
Moreover, positioning inventory well makes a continuing 
difference instead of a model that simply introduces linear 
penalties, as in the SR model. In other words, accounting for 
pre-and-re-positioning via the recourse variables r in (7c) 
supports the kind of decision intelligence which leads to 
smarter planning.

In periods with lower demand (May 06–Jun. 02, 2020), 
we can satisfy all the requests, and the unmet demand is 

reduced to zero. Besides, during the peak of the demand 
(Apr. 01–21, 2020), the GR model’s decisions can reduce 
the unmet demand up to 95.3% compared with the “no-coor-
dination” case. When the demand is lower, we might not 
need resource allocation. However, for the other cases, such 
as the time between April and May, the allocation decisions 
make a huge contribution to satisfy extra demand for the 
resources. We observe that the demand from June to Octo-
ber is relatively low. However, starting in November, the 
number of confirmed cases has rapidly accelerated, and the 
prediction for the forthcoming spring is much higher than 
the past surge. Once again, these data suggest that coopera-
tion among states and models such as the GR model may be 
necessary again for an agile response.

As the three models perform differently, we investigate 
the decisions made by them. Figure 3 shows the change of 
supply and demand in New York and Kansas. The demand 
line shows the confirmed demand across time, while the 
supply lines indicate the number of available ventilators in 
each state. We should emphasize that the supply decisions 
are based on the predicted demand instead of the confirmed 
demand. In Fig. 3a, based on the GR model, New York 
acquires more ventilators on Apr. 08, while the point-fore-
casts model suggests that it should reduce the stock and use 
fewer ventilators from other states. The main reason is that 
the demand in the neighboring states, such as New Jersey, 
increases dramatically. Thus, New York has to return the 
loaned resources. However, the demand in the following 
2 weeks in neighboring states first increase, achieve their 
peak, then decrease. Since the GR model considers 2-week 
demand instead of 1 week, it can predict the decrease. Con-
sidering that New York has a higher peak value, the rate 
of demand decrease is slower than others. Thus, it would 
be more beneficial to send more SNS ventilators to New 
York instead of other states. Besides, the prediction data 

(a) Supply and demand in NY (b) Supply and demand in KA

Fig. 3   Supply and demand for the ventilators in New York and Kansas in different time. These figures show the results of the experiment with 
Pcovid = 60%, � = 0.5, � = 0.2 . The states are connected with adjacent states
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underestimates the peak demand in New York. Since the 
GR model considers the projection’s variance, more ventila-
tors are transferred from other neighboring states, such as 
Pennsylvania and Massachusetts. Recall from the results in 
Table 4, the unmet demand in the entire nation after May 
06 is reduced to zero when applying the Point Forecasts 
and GR models. Although the supply remains quite high in 
New York in the latter period, compared to the demand (as 
shown in Fig. 3a), no reallocation is needed. In Fig. 3b, as 
the demand in Kansas increases starting around Nov. 19, 
2020, all the models suggest that the supply should increase 
as well. However, since the forecast uncertainty models con-
sider various predictions, Kansas obtains more resources 
from other states.

We also analyze the decisions for “flows”, that is, the 
number of ventilators transferred from one state to another. 
It helps decision makers understand the reason why the 
unmet demand decreases when implementing our alloca-
tion decisions. Figure 4 provides a visualization of the 
GR model’s “flows” on Apr. 01, and Apr. 08, 2020. The 
actual connections between two states are marked with a 
square. A negative value of flow in the figure implies that 
a state returns ventilators to the origin state. As shown in 
Fig. 4a, New York (NY) and Alabama (AL) get the most 
support from the SNS (see the last row). The reason is 
that, based on the demand prediction data between Apr. 01 

and Apr. 07, these two states are the states which suffered 
most shortages. Moreover, the states neighboring New 
York, such as New Jersey (NJ) and Massachusetts (MA), 
send ventilators to meet demand in New York. The arrows, 
labeled with ‘NJ-NY’ and ‘MA-NY’, indicate the number 
of resources transferred from New Jersey and Massachu-
setts to New York, respectively. As shown by the ‘NJ-NY’ 
arrow in Fig. 4b, on Apr. 08, New York returns the loaned 
ventilators to New Jersey, since New Jersey is predicted to 
face increasing demand for the resources. In the meantime, 
New York gets more supply from Massachusetts (MA), as 
pointed out by the ‘MA-NY’ arrow, to meet its surging 
demand. Such decision intelligence is possible due to the 
ability of optimization and statistical models to collaborate 
in a manner which can leverage their strengths in unison.

As the pandemic becomes more severe, more medi-
cal resources are ordered from multiple manufacturers. 
The supply in states as well as in SNS will increase over 
time. However, the supply may increase linearly, while the 
demand may have an exponentially increasing rate. Our 
models provide a system for integrating the demand pro-
jections with decisions under uncertainty. They can mini-
mize the loss or unmet demand with limited resources. 
Besides, our models’ rolling horizon scheme can provide 
the decision starting from any given time and accommo-
date the case with increasing supply.

Fig. 4   These two figures illustrate the network flow from one state to 
another based on the decisions from the general recourse model on 
April 01 and April 08, 2020. The actual connections between the two 

states are marked with a box. These figures show the results of the 
experiment with Pcovid = 60%, �j = 0.5, �j = 0.2
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Conclusion

The healthcare system in the U.S. encountered extraordinary 
challenges due to COVID-19, and there are forecasts for 
variants in the future. The methods of this paper are likely 
to be useful for managing future pandemics. In this paper, 
we proposed multiple models, including models with point 
forecasts (i.e., deterministic) and those which allow forecast 
uncertainty (i.e., stochastic). Because of the spatio-temporal 
nature of uncertainty and lags in disease propagation, we 
propose two stochastic optimization (SO) approaches: one 
based on the familiar weighted �1 penalty, also known as 
“Simple Recourse”, and another with a “look ahead” known 
as “General Recourse”. These SO models, especially the 
latter, provide significant decision intelligence under uncer-
tainty and improve flexibility in responding to the pandemic. 
Because of their flexibility, the computational results with 
General Recourse provides evidence that the most reliable 
plans (with the least number of unmet demands) can relieve 
the most difficult situations that we have examined in our 
back-testing exercise. If cases continue to rise, as is being 
predicted currently, we recommend that the Coronavirus task 
force prepare to adopt either this or other similar decision 
intelligence technologies for responding to the pandemic.5
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