
A STUDY OF CNN CAPACITY APPLIED TO LEFT VENTRICLE
SEGMENTATION IN CARDIAC MRI∗

ARXIV PREPRINT

Marcelo Arruda†, Daniel Lima, José Krieger, Marco Gutierrez
Biomedical Informatics Lab

Heart Institute (InCor/HC.FMUSP)
Avenida Doutor Eneas Carvalho de Aguiar 44, Cerqueira César, 05403-904, Sao Paulo, SP, BR

May 10, 2021

ABSTRACT

CNN (Convolutional Neural Network) models have been successfully used for segmentation of the
left ventricle (LV) in cardiac MRI (Magnetic Resonance Imaging), providing clinical measurements.
In practice, two questions arise with deployment of CNNs: 1) when is it better to use a shallow model
instead of a deeper one? 2) how the size of a dataset might change the network performance? We
propose a framework to answer them, by experimenting with deep and shallow versions of three
U-Net families, trained from scratch in six subsets varying from 100 to 10,000 images, different
network sizes, learning rates and regularization values. 1620 models were evaluated using 5-fold
cross-validation by loss and DICE. The results indicate that: sample size affects performance more
than architecture or hyper-parameters; in small samples the performance is more sensitive to hyper-
parameters than architecture; the performance difference between shallow and deeper networks is not
the same across families.

Keywords deep learning · model selection · medical imaging · magnetic resonance imaging

1 Introduction

The use of deep learning has been growing and becoming very relevant for some types of medical image analysis. Deep
learning includes CNN (Convolutional Neural Network) models, which have been successfully used for segmentation
of the left ventricle (LV) in cardiac MRI (Magnetic Resonance Imaging) by Chen et al. [2020]. The myocardium
segmentation (Figure 1) is the basis for other steps that provide measurements of ventricular function and myocardial
viability (such as ejection fraction and ventricular mass), and is used for diagnosis of heart diseases, e.g. coronary
artery disease [Aziz et al., 2013]. One of the most successful CNN architectures for medical image segmentation is
the U-Net [Ronneberger et al., 2015]. It has been successfully applied in several medical imaging analyses such as
pancreas detection [Oktay et al., 2018] and prostate segmentation [Ghavami et al., 2019]. Figure 1 shows an example of
LV segmentation in cardiac MRI.

One of the limitations of deep learning approaches in many medical applications is the need for large labeled datasets,
which are not always available. Creating labelled datasets requires clinical specialists for visual inspection and manual
marking of images, which is costly and takes significant time. By considering this limitation, the U-Net architecture was
designed for fast convergence and sufficiently accurate segmentation in relatively small datasets [Oktay et al., 2018].
U-Net is a CNN architecture with many possible variations such as different neural blocks, block width and network
depth, so it is possible to balance the performance according to the images under study.
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Figure 1: Cardiac MRI images are acquired in two different axis: short-axis (a-c) and long-axis (d). In (a) we see a
cardiac short-axis MRI of heart, centred in the heart, and cropped to frame the right and left ventricles; in (b) the left
ventricle myocardium is highlighted, and (c) only shows the left ventricle myocardium segmentation mask. Images
(a-c) are reproduced from the dataset analysed in [Nikolov et al., 2018] and (d) is reproduced from the Atlas of Human
Cardiac Anatomy website [Spencer et al., 2013].

However, with the deployment of CNNs in medical practice, another two questions arise: 1) when is it better to use a
small and shallow model instead of a larger and deeper one? 2) how the number of samples in a dataset might change
the network performance? These questions motivate our work, which provides a framework of analysing the CNN
capacity and dataset sizes for medical applications, and demonstrate its applicability to LV segmentation in cardiac
MRI.

Our Contributions

In order to grasp how dataset size affects U-Net performance in segmentation, this paper describe a framework where we
train 18 different U-Nets of different sizes (number of network parameters and depth) and families: VGG [Simonyan and
Zisserman, 2015], ResNet [He et al., 2016] and EfficientNet [Tan and Le, 2019]. These U-Net variations were trained
from scratch in six dataset sizes (suppose patients submitted to MRI study), and also with variations of hyper-parameters
learning rate and L2 regularization. They were evaluated with 5-fold cross-validation by the loss and DICE index,
and each fold was tested in a separate holdout set. We then analyse the variables and results in a factorial study using
GAM (Generalized Additive Model), ANOVA (Analysis of Variance) and HSD (Honest Significant Difference) tests.
In summary, our objectives in this paper are:

• Observe the relationship between prediction error, dataset size and network size;

• Identify hyper-parameter effects on performance by linear models, ANOVA and HSD;

• Provide a framework to check when the choice for the network to be used in an application might change due
to the number of images available in a training dataset.

This paper is organized as follows: Section 2 (Related work) reviews the base CNN architectures for image segmentation
and related studies of neural network capacity; Section 3 (Materials and Methods) present the dataset preparation,
the neural networks, hyper-parameters, linear models, ANOVA and HSD tests; Section 4 (Experiments) present the
experiments, metrics, results and discussion; and Section 5 (Conclusion) summarizes our goals, the proposed framework,
achievements and ideas for future investigations.

2 Related work

In this section we review related literature in the two main aspects of our framework: biomedical image segmentation
(2.1), and how to evaluate neural network capacity (2.2).

2.1 Biomedical Segmentation with U-Net and its backbones

U-Net is an encoder-decoder CNN architecture for biomedical image segmentation, which encodes the input image in a
sequence of four down-scaling layers (blocks), then up-scales the encoded tensors, concatenates them to the previous
input and combines the results in the reversed order, forming a network that resembles an “U”. It is possible to change
its backbone by replacing the original convolution blocks for well-known blocks from other CNNs, e.g. residual blocks
[Zhao et al., 2017], while keeping the U shape encoder decoder structure. The U-Net is trained by minimizing the
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cross-entropy between the class probabilities of each pixel in the output image and the segmentation mask given as
class labels. The success of U-Net led to the proposal of backbone innovations, such as newer versions of the skip
connections [Chaurasia and Culurciello, 2017, Zhou et al., 2018]. Other encoder-decoder architectures have also been
proposed, some keeping the general U-net structure, and others with novel structures such as feature pyramids [Lin
et al., 2017] and pooling pyramids [Zhao et al., 2017]. The standard U-Net backbone is based on VGG [Simonyan and
Zisserman, 2015], but we extended our analysis by considering two more state-of-the-art backbones: ResNet [He et al.,
2016] and EfficientNet [Tan and Le, 2019].

2.2 Evaluating Neural Network Capacity

Given that there are several U-Net architectures available, making an appropriate choice is challenging and can impact
the results of developing applications. These reflect in two critical aspects of medical studies planning: a) estimating the
size of the sample needed for developing an effective solution (both in terms of images and patients) and b) selecting
appropriate models, because different medical applications solve problems of different complexities, which thus require
different network models of adequate capacity. However, there is no established method for calculating network capacity
nor a consolidated understanding of how it relates to CNN depth and to the number of parameters [Bartlett et al., 2017,
Neyshabur et al., 2019]. Addressing these aspects in a clinical study is not trivial. While bigger networks might be
prone to over-fit in small datasets, smaller networks might not have the required capacity for the challenge at hand. A
further complication, at least for LV segmentation, is the fact that the relationship between U-Net, dataset sizes and
generalization error is not well understood. Recent literature [Benkendorf and Hawkins, 2020, Shahinfar et al., 2020]
have been investigating sample size issues, so in our approach we extend this investigation to hyper-parameters and
network architecture. Next we present our methodology, then experiments, results and conclusion.

3 Materials and Methods

In this section we present the dataset characteristics, preparation and splitting (Section 3.1, the U-Net CNN architecture
and backbones based on VGG, ResNet and EfficientNet (Section 3.2), hyper-parameter optimization (Section 3.3), and
the linear models and statistical tests used in the analysis (Section 3.4).

3.1 Dataset preparation

All of the datasets we created are sub-samples of the publicly available Left Ventricle Segmentation Challenge (LVSC)
dataset [Nikolov et al., 2018]. The LVSC training set has cardiac cine-MRI pictures of 100 patients, with diverse number
of slices (8–24), slice thickness (6–8mm), slice gaps (2–4mm), number of phases in the cardiac cycle (18–35), image
sizes (138×192 to 512×512 pixels) and acquisition devices (GE, Phillips or Siemens MRI scanner systems with 1.5 or
3.0T). All images were loaded into float32 arrays, had the pixel values rescaled to [0,1], resized to 256×256 pixels with
area and bi-cubic interpolation respectively for downscaling and up-scaling, and zero padding to maintain aspect ratio.

Due to anatomical and positional differences, patient id is a major source of variation, so we sub-sampled 100
images from each patient. In order to stratify samples in the whole cardiac volume, we selected an approximately
equal number of images from each slice, regularly spaced throughout the cardiac cycle (images bi × phases ×
slices/100c for i in [1, 100]). This resulted in 10,000 images (100 patients × 100 images per patient). Then, an 80-20%
holdout group split was performed for development (training + validation) and test. Afterwards, five smaller datasets
were sub-sampled from the bigger dataset (10k), with 200, 500, 1000, 2500, and 5000 images. For each of those
datasets, the development set was sub-sampled from the initial development set with 8000 images, while the test set
was sub-sampled from the holdout test set with 2000 images. Both the holdout and the sub-sampling were performed
by randomly selecting of patients, such that a given patient had either all of her/his images in one set only. In each
execution the development set is again split in 5-folds of equal sizes for cross-validation: each fold is taken for validation
using a model trained on the remaining four folds. Next we present the neural networks, hyper-parameters and linear
models and statistical tests.

3.2 Neural Networks

U-Net [Ronneberger et al., 2015] implements the downscaling path similarly to the VGG network [Simonyan and
Zisserman, 2015], using a sequence of 2D convolutions, ReLU activations and max-poolings. We also tested U-Net
with modern backbones based on ResNet [He et al., 2016] and EfficientNet [Tan and Le, 2019]. ResNets divide the
pathway in an input identity map path (a short-cut connection), and a residual path, that learns a residual function (which
model the residuals from the inputs). By learning the residuals instead of the main signal, more convolution blocks can
be stacked to build deeper neural networks without compromising their training. EfficientNets are based on mobile
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inverted bottleneck convolution blocks[Sandler et al., 2018] with squeeze–excitation optimization[Hu et al., 2018] and
a loss function that balances accuracy and speed, by adjusting network depth, width and resolution hyper-parameters
[Tan and Le, 2019, Tan et al., 2019].

To study network size we selected small and medium-large sizes for each backbone: EfficientNets B0 and B5; ResNets
18 and 50, with approximately the same numbers of parameters to the chosen EfficientNets; and VGG 16 and 19, the
two most common VGG sizes in literature. EfficientNet B0 has 5.3 million parameters and achieved 76.3% top-one
accuracy in the ImageNet classification task, while B5 has 30 million parameters and achieved 83.3% accuracy in that
same task. This is a bigger gain for scaling up than for other families of networks [Tan and Le, 2019]. Another aspect
that impacts performance and convergence of neural networks is the choice of hyper-parameters, presented next.

3.3 Hyper-parameter optimization

Given that training strategies might differ regarding dataset and network size, we also chose to analyse some optimization
parameters. However, as the time to compute all hyper-parameter space is combinatorial, only some values were
selected. For each model and dataset combination, we tested different initial learning rates (10−2, 10−3 and 10−4)
and different L2 regularization values (10−2, 10−4 and 10−6). The initial learning rate balances training speed and
convergence stability. The regularization has a further implication in model capacity, as it balances accuracy and
over-fitting by constricting network weights. In order to understand the effect of hyper-parameters in combination to
dataset and network size, we analyse these variables with linear models, ANOVA and HSD tests of next section.

3.4 Linear Models, ANOVA and HSD

To understand the effect of CNN choices on the performance, we develop a linear regression model based on the
dataset size, model architecture, model size, and hyper-parameters as input variables. Linear regression models are
statistical approaches to analyse the dependence of a response variable Y on the linear combination of input variables
X = x1, x2, ..., xn. These models follow the general formula Y = aX + b+ ε, where a corresponds to weights for
each variable xi, and b is a bias term (intercept), and ε is the error of the model. The parameters a and b are commonly
adjusted by ordinary least squares regression (OLS). ANOVA for regression models tests the statistical significance of
input variables (groups), with respect to the sums of squares (SS) of regressed variables and observed data. The HSD
test was developed by Tukey for pairwise comparison of multiple group means, and is used as a post hoc adjustment
[Tabachnick and Fidell, 2007].

Generalized linear models (GLM) extend linear models by applying a link function that transforms the predicted
distribution, e.g. log(Y ) = aX + b→ Ŷ = exp(aX + b) in the case of log link. Generalized additive models (GAM)
further extends GLM by applying transformations in each variable, e.g. g(E[Y ]) = f1(x1)+ f2(x2)+ ...+ fn(xn)+ b,
and discovering the most appropriate functions fi for each input variable [Hastie and Tibshirani, 1990]. The linear
models are evaluated by Akaike Information Criterion (AIC), according to the maximum likelihood of estimates and
number of parameters of the model [Akaike, 1974]. We tested several linear models and settled our analysis with
DICE ∼ ls + ls : Family + log(Dataset) + log(lr) : ls : Family + log(reg), which is presented in the next
section along experiments, metrics, results and discussion.

4 Experiments

In this section we present the experimental configuration (4.1), evaluation metrics (4.2), results (4.3) and discussion
(4.4). In Section 4.3 (Results) we present the experimental results, report the DICE index and BCE Loss of all models,
compare their differences, and analyse the model’s dependences on the chosen parameters by linear regression models,
ANOVA and HSD tests. In Section 4.4 (Discussion) we comment our findings in relation to literature and place general
considerations.

4.1 Experimental configuration

For each of the 324 different combinations of variables (model, dataset, initial learning rate, L2 regularization), the
model was trained from scratch using 5-fold cross-validation. The development dataset was divided into 5 equally-sized
subsets (folds) and each one is used for validation while the remaining four are used to fit the model. For each fold,
every combination of parameters is trained for 50 epochs or less. We stopped training when there was no improvement
in the validation loss after 5 epochs (early stopping). This results in 1620 training/evaluation runs, corresponding to 5
folds × 324 different conditions.
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After all runs, we computed the metrics and fitted a linear regression model to the experiment parameters and results,
then performed statistical ANOVA and HSD tests to assess significant differences. All experiments were performed in a
Foxconn HPC M100-NHI with eight NVIDIA V100-SXM2-16GB GPUs, using the software we implemented with
Python, PyDicom, Tensorflow, SegmentationModels, Slurm and StatsModels. Next we present the evaluation metrics,
then results and discussion.

4.2 Evaluation metrics

To evaluate the quality of each model, we use two metrics: BCE (Binary Cross-Entropy) loss and DICE index [Dice,
1945]. These are computed on the validation set of each training run, and also separately on the held-out test set
from the corresponding dataset. We then compare all configurations across datasets and models, considering the best
hyper-parameters for each configuration. BCE and DICE formulas are given below:

BCE = − 1

N

∑
y · log(ŷ) + (1− y) · log(1− ŷ)

DICE =
2TP

2TP + FP + FN
= 2

∑
y · bŷe∑
y + bŷe

Where TP, FP, FN are true positives, false positives and false negatives, respectively, N is the number of pixels in the
dataset, y are the binary labels for all pixels, ŷ are the corresponding predictions and b·e denotes rounding. BCE is a
positive value which gives the amount of entropy mismatch in the predictions, the lower the better. DICE range from
0% (no correspondence) to 100% (images are perfectly equal) and is equivalent to F1-score. In the next section we
present the results of the experiments, our analyses and discussion.

4.3 Results

All networks performed badly on the smallest dataset (due to insufficient training cases) and improved gradually when
fed with more data. The network performed similarly well on the larger datasets (Figure 2). However, the networks
behaved very differently in the middle sizes (between 400 and 2000 samples), both in absolute performance and
variability of the metrics. Loss function behaved similarly, showing a similar improvement related to increasing dataset
size. Although, we opted to focus this report on DICE index because it is easier to interpret, has close relation to the
task, and is common in literature.

After all runs, we fitted a linear regression model (Table 1) to the experiment parameters and results, then performed
statistical ANOVA and HSD tests to assess significant differences (Table 2 and Figure 2). The variables Family, ls, lr
and reg correspond to the network architecture family (VGG, ResNet or EfficientNet), model version size (Long or
Short, ls), initial learning rate (lr) and L2 regularization parameters (reg), respectively. The nesting of Family within
model version size (ls/Family = ls + ls : Family) in the regression formula is a way to access a rough effect of
model size while not treating different architectures (long and short versions) as equivalents.

We also fitted a linear model with a similar formula and using a log link function instead of the log transformations on
predictors: log(DICE) ∼ ls+ ls : Family +Dataset+ lr : ls : Family + reg, but it had a bigger AIC value of
-582. According to the results, the dataset size had overall larger absolute coefficients (Table 1) and more significant
effect (Tables 1 and 2) in DICE than architecture, initial learning rates or L2 regularization values in the linear model.
HSD test was applied to the mean DICE and confidence intervals (Figure 2). EfficientNets had consistently higher
DICE scores up to 2000 images. ResNets and VGGs required more data to achieve a comparable level of performance,
but slightly surpassed EfficientNets in the two largest datasets. In the next section we discuss these results in relation to
other evidence in literature, and place general considerations.

4.4 Discussion

Apparently, smaller models (EfficientNet-B0, VGG16 and ResNet18) are not too small for LV segmentation tasks, and
were able to achieve good levels of performance when given sufficient data. One could expect that different models
would reach different plateaus. But we observed in all families that, as the training dataset size increases, the gain in
DICE performance of deeper networks vanishes as the performance of shallower models levels up. Considering each
network family separately, the network size effect is greater for the EfficientNets than for the ResNets and VGGs (Table
1 coefficients). As in the case of ImageNet classification, the gain of scaling up is bigger for the EfficientNets than in
other families. We noticed that in all dataset sizes B5 performed significantly better than B0 (Figure 2), showing that it
did not over-fit more easily with the increased number of parameters, even considering that B0 reached comparable
performance with more data.
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Figure 2: Evaluation of models: the left panel shows DICE index (upper) and BCE Loss (lower) on the test set for all
1,620 network models, in all datasets and all folds. Each dataset (x-axis) contains six medians and IQRs for B0, B5,
R18, R50, V16 and V19, respectively, corresponding to EfficientNets B0 and B5, ResNets 18 and 50 and VGGs 16 and
19. All networks performed worse in the smaller datasets and similarly well on the larger datasets. We observe mixed
results with a gradual performance increase in the middle ground between 400 and 4,000 images. The right panel shows
Mean DICE scores across datasets and models. The error bars are 95% confidence intervals calculated using HSD test.
The results of all models are directly comparable, and overlapping intervals should be interpreted as the corresponding
null hypothesis (no statistical difference).

These results contradict the common sense that bigger models would suffer more from over-fitting in smaller datasets,
decreasing their performance, and that they would gain more performance as more data was made available [Martin and
Mahoney, 2018]. Our findings with EfficientNet support the idea of Neyshabur et al. [2019] that bigger models does not
necessarily over-fit, but this pattern does not hold for other families. Considering the ResNets, the deeper ResNet50
starts with a DICE performance below the shallow counterpart (ResNet18), but improved faster and caught up with
4000 samples. We observed that VGGs never differed significantly, probably because of their smaller differences in
depth and number of parameters, and they also have high sensitivity to hyper-parameters. VGG16 had a particular
tipping point from the worst results in the 800 images dataset to scoring near the top contenders on the next dataset with
2000 images.

A general consideration in the intermediate dataset sizes is that all models were relatively more sensitive to hyper-
parameters than to architecture, as their performances had higher variance than when more data was made available.
This might affect sample size and model choice, as with 2000 images EfficientNet B5 performed significantly better
than the ones from other families, but with 8000 images all models had no practical difference. Thus, in scenarios where
bigger datasets are unavailable and acquisition is costly, it might be possible to use smaller data samples with deeper
networks and careful optimization. When a bigger dataset size is available, neither model selection or optimization
provides much performance gain, different approaches such as changing pre-processing or loss function might be
required. However, as in the demonstrated case, any method should be tested in a range of training dataset sizes in order
to guarantee its performance. In the next section we conclude this paper, summarizing our goals, experiments, results
and future investigations.
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Figure 3: Predictions of DICE index for each model in each dataset size given by the linear regression model (large X
marks connected with lines), and the observed values for the corresponding DICE data (small +, x and arrow marks).

Term coef. z p-value
Intercept -0.5810 -178.383 0.0000
ls[T.short] 0.0016 0.039 0.9686
ls[long] : Family[T.ResNet] -0.0936 -23.476 0.0189
ls[short] : Family[T.ResNet] -0.1107 -27.771 0.0055
ls[long] : Family[T.V GG] -0.3903 -97.863 0.0000
ls[short] : Family[T.V GG] -0.3237 -81.173 0.0000
log(Dataset) 0.1627 787.068 0.0000
log(lr) : ls[long] : Family 0.0158 40.202 0.0001
log(lr) : ls[short] : Family[EfficientNet] 0.0193 49.085 0.0000
log(lr) : ls[long] : Family[ResNet] 0.0130 32.955 0.0010
log(lr) : ls[short] : Family[ResNet] 0.0111 28.156 0.0049
log(lr) : ls[long] : Family[V GG] -0.0281 -71.467 0.0000
log(lr) : ls[short] : Family[V GG] -0.0193 -49.051 0.0000
log(reg) -0.0003 -0.383 0.7021

Model: DICE ∼ ls+ ls : Family + log(Dataset) + log(lr) : ls : Family + log(reg)
Table 1: Coefficients and p-values for the linear model, with AIC: -2213.

5 Conclusion

In this work we described a framework to check when the choice for the network to be used in an application
might change due to the number of images available in a training dataset. We demonstrated an application of this
framework for LV segmentation in cardiac MRI images using the LSVC dataset. In our experiments we observed
the relationship between prediction error, dataset size and network size; and also identified hyper-parameter effects
on network performance, by modelling with linear model DICE ∼ ls + ls : Family + log(Dataset) + log(lr) :
ls : Family + log(reg) and executing and ANOVA of its interaction terms. The results indicated that: sample size
affected performance more than architecture or hyper-parameters; in small samples the performance was more sensitive
to hyper-parameters than architecture; the performance difference between shallow and deeper networks was not the
same across families.

Further investigation and extension of these experiments will focus on analysing the regularization effects’ patterns
regarding network size. Also, we plan to use similar strategies in Neural Architecture Search (NAS) and Automatic
Deep Learning (AutoDL) to discover better segmentation networks for evolving and multi-centric medical imaging
datasets.
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Term SS F p-value η2p
ls 0.0145 0.9802 0.3223 0.0001
ls : Family 1.7284 29.1844 <10−22 0.0145
log(Dataset) 91.7177 6194.7601 <10−30 0.7693
log(lr) : ls : Family 1.9866 22.3631 <10−24 0.0167
log(reg) 0.0022 0.1463 0.7021 0.0000
Residuals 23.7779 - - 0.1994

Table 2: ANOVA table for linear model variables and their interaction. η2p is the effect size, measuring the proportion of
SS explained by each term, while Residuals measure the unknown SS. The terms ls : Family, log(Dataset) and
log(lr) : ls : Family are responsible for 80% of DICE index variance in the trained models. We observe that gross
performance increment comes from larger datasets, while learning rates and network size give small but significant
increments depending on the network architecture (Family).
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