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Abstract
COVID-19 is spreading around the world like wildfire. Chest X-rays are used as one of the primary tools for diagnosing 
COVID-19. However, about two-thirds of the world population do not have access to sufficient radiological services. In this 
work, we propose a deep learning-driven automated system, COVIDXception-Net, for diagnosing COVID-19 from chest 
X-rays. A primary challenge in any data-driven COVID-19 detection is the scarcity of COVID-19 data, which heavily dete-
riorates a deep learning model’s performance. To address this issue, we incorporate a weighted-loss function that ensures the 
COVID-19 cases are given more importance during the training process. We also propose using Bayesian Optimization to 
find the best architecture for detecting COVID-19. Extensive experimentation on four publicly available COVID-19 datasets 
shows that our proposed model achieves an accuracy of 0.94, precision 0.95, recall 0.94, specificity 0.997, F1-score 0.94, 
and Matthews correlation coefficient 0.992 outperforming three widely used architectures—VGG16, MobileNetV2, and 
InceptionV3. It also surpasses the performance of several state-of-the-art COVID-19 detection methods. We also performed 
two ablation studies that show our model’s accuracy degrades from 0.994 to 0.950 when a random search is used and to 0.983 
when a regular loss function is employed instead of the Bayesian and weighted loss, respectively.
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Introduction

On December 31, 2019, the Chinese authorities informed the 
World Health Organization (WHO) about several cases of 
pneumonia caused by an unknown virus. This virus was later 
identified as a new strain of the coronavirus, now known 
as the Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2), causing the disease COVID-19. This 
virus belongs to the family of viruses called Coronaviridae 
[1]. Two viruses of this family, i.e., Severe Acute Respira-
tory Syndrome Coronavirus 1 (SARS-CoV-1) and Middle 
East Respiratory Syndrome (MERS) coronavirus, have 

previously caused epidemics. The mortality rate for these 
two viruses was high, with SARS 11% and MERS over 30% 
[2]. COVID-19 has a lower mortality rate of 5.7% [3]. How-
ever, its transmission rate is much higher. The virus spreads 
exponentially with new cases being identified worldwide, 
resulting in the WHO declaring it as a global pandemic on 
March 11, 2020 [4]. Six months from its first appearance, the 
virus has taken over the world by storm, with over 10 mil-
lion confirmed cases and over 500,000 deaths. It has forced 
governments worldwide to shut off their borders and close 
various institutions to reduce the spread of the virus [5]. As 
a result, the world is heading towards an economic reces-
sion [6]. Nevertheless, there is a bigger problem—research 
suggests that about 40–45% of the patients are asympto-
matic. That means they do not show any symptoms of the 
disease [7]. These asymptomatic patients, unaware of their 
infection, silently contribute to the spread of the virus. Thus, 
widespread testing and isolation is the only solution in this 
situation, emphasized by the WHO [8].

At present, Reverse Transcription Polymerase Chain 
Reaction (RT-PCR) is the most widely used method for test-
ing COVID-19 patients [9]. The process involves detecting 
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viral Ribonucleic Acid (RNA) in a respiratory specimen 
collected from the patient. The RT-PCR method has sev-
eral drawbacks. It provides low sensitivity to detection of 
COVID-19 [10]. Moreover, the result varies for the same 
patient at distinct points in time, even during the patient’s 
diagnosis and treatment [11]. Hence, repeated tests are often 
required to get an accurate result [12]. The process is also 
time-consuming, and requires specific material and equip-
ment which are not easily accessible [13, 14].

Radiological images like Chest X-Ray (CXR) and Com-
puted Tomography (CT) can be used as an alternative to 
RT-PCR, as the COVID-19 primarily affects the respiratory 
system of the human body [15]. In COVID-19, the most 
common CXR and CT findings are Ground Glass Opacity 
(GGO) and lung consolidation [16]. CT was found helpful in 
early diagnosis of COVID-19, even when the patient did not 
show any respiratory symptoms or fever [17]. In some cases, 
GGO was seen in CT images of patients who were initially 
tested negative using RT-PCR tests. However, these patients 
were tested positive for COVID-19 later [18]. One experi-
ment shows that the sensitivity of CT for detecting COVID-
19 is 98% compared to RT-PCR, which is only 71% [10]. 
Although CT’s sensitivity for detecting COVID-19 is more 
than RT-PCR, CT is not widely available, and it requires 
intense decontamination after scanning each COVID-19 
patient, which disrupts the service. This is why the Ameri-
can College of Radiology (ACR) suggests using portable 
chest radiography to minimize the risk of cross-infection 
[19]. CXR is widely available, and the infection control issue 
is much less compared to CT [20].

Even though the radiological imaging techniques to detect 
COVID-19 give better sensitivity and can be done faster 
compared to RT-PCR, the system still relies heavily on radi-
ologists for the detection of disease. Nevertheless, there is 
a global shortage of radiologists [21], and therefore, Arti-
ficial Intelligence (AI)-based diagnostic system can reduce 
the pressure on radiologists and help in faster diagnosis [22].

Deep learning is a sub-field of AI that is inspired by 
the brain’s structure and function. It uses Artificial Neu-
ral Networks (ANN) to perform different tasks, including 
identifying objects from images, speech recognition, senti-
ment analysis, and many more [23]. It can also be applied 
to various types of medical images like X-ray, CT Scan, 
Magnetic Resonance Imaging (MRI), and Positron Emission 
Tomography (PET). These images can be used to segment, 
denoise, and classify diseases [24–28]. Convolutional Neural 
Network (CNN), a variant of ANN, has been used before to 
detect diseases from CXR [29]. It has also been applied to 
classify lung nodule from CT images [30].

CNN has parameters and hyperparameters. Parameters 
are weights and biases of a neural network that are learned 
during the training process and hyperparameters control 
the learning process of the neural network. Examples of 

hyperparameters are the number of layers or the number 
of nodes in each layer of a neural network. There are many 
hyperparameters of a neural network which can take any 
value. Selecting the right values of hyperparameters is very 
important as the neural network’s performance is greatly 
affected by our choice. Nevertheless, the manual method 
of choosing hyperparameter is an arduous and time-con-
suming task. There are some automatic methods for tuning 
hyperparameters, e.g., random search, grid search, etc. [31]. 
However, the random search does not guarantee optimal 
results when the hyperparameter space is large, and the grid 
search is computationally expensive. Bayesian optimization 
is a more efficient method of tuning hyperparameters [32, 
33]. It can give better results in fewer function evaluations 
compared to the grid and random search [34]. Using Bayes-
ian optimization, it is also possible to take humans out of 
the loop of tuning hyperparameters [35]. In this paper, we 
used Bayesian optimization to tune the hyperparameters 
of the neural network. Our proposed network can classify 
X-ray images into three classes—normal, pneumonia, and 
COVID-19.

Data imbalance is a common problem for COVID-19 
studies [36]. The amount of COVID-19 samples are much 
less compared to samples of other classes. To solve this 
issue, most of the early research on the diagnosis of COVID-
19 from CXR used data augmentation [37–41] and class 
resampling [42–46]. In our approach, instead of using data 
augmentation or class resampling, we used a weighted loss 
function that ensures that the COVID-19 cases are given 
more importance while updating a neural network’s param-
eters using the gradient of calculated loss.

The workflow of our proposed framework is presented 
in Fig. 1.

At first, a dataset is chosen which has three classes—
normal, pneumonia, and COVID-19. Then, the data are 
pre-processed by performing resize and rescale operations. 
After pre-processing, the data were split into train, test, and 
validation sets. The train and validation set were used for 
model development and tuning. Models are built using four 
powerful CNN architectures—VGG16, MobileNetV2, Incep-
tionV3, and Xception. These architectures were tuned using 
the Bayesian optimization technique to find the best-perform-
ing model. The best-performing model obtained from each 
architecture were then evaluated on the test data. To, evalu-
ate the models, confusion matrix, accuracy, precision, recall, 
specificity, F1-score, Matthews correlation coefficient, and 
ROC curve were used. Based on the results obtained using 
these evaluation matrices, the best model was identified.

The overall contributions of the paper are listed below:

•	 We developed a novel model for diagnosis of COVID-19 
called COVIDXception-Net based on Bayesian optimiza-
tion of the Xception-Net architecture [47].
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•	 We performed extensive experiments to determine the 
impact of Bayesian optimization in building our model. 
In addition, we demonstrated how each hyperparameter 
influences our model using Partial Dependence Plots.

•	 We proposed to use a weighted loss function to deal with 
the skewed distribution of samples due to the scarcity of 
the COVID-19 data.

The rest of the paper is organized as follows: Sect. “Related 
Works” discusses the related works that have been done in 
this field. The work methodology is discussed in Sect. “Our 
Approach”. Section “Experimental Results” presents the 
results of the conducted experiments. Section “Discus-
sion” discusses the findings from experimental results. Sec-
tion “Conclusion” concludes the paper.

Related Works

The authors in [48] sought to analyze the findings obtained 
during the SARS and MERS outbreaks to help combat the 
COVID-19 pandemic. Both SARS and MERS were caused 
by distinct strains of the coronavirus family and produced 
similar respiratory symptoms. The authors have identified 
a substantial overlap of the imaging features of COVID-19 
with that of SARS and MERS. They also found abnormali-
ties in the early stage chest images of 85% of patients, sug-
gesting that imaging techniques can help early diagnosis of 
infection.

In [49], the authors used CNN techniques to classify 
COVID-19 cases from CXR images. They used transfer 
learning to classify three classes from the CXR images: 
COVID-19, bacterial pneumonia, and normal. The CXR 
images were collected from publicly available medical 
repositories. The authors developed a neural network model 
that yielded the best accuracy of 96.78%, which suggests 

the feasibility of using such techniques for the diagnosis of 
COVID-19 cases.

The authors in [38] also explored the feasibility of using 
deep learning techniques for the diagnosis of COVID-19 
from CXR. For this purpose, the authors created a public 
dataset of CXR images that combines three existing pub-
licly available databases and images collected from various 
recent publications on this subject. The dataset comprises 
190 cases of COVID-19, 1345 cases of viral pneumonia, and 
1341 normal images. To mitigate the problem of large data 
requirements for CNNs, the authors used transfer learning to 
develop a classifier using four different pre-trained models: 
AlexNet, ResNet18, DenseNet201, and SqueezeNet. The 
authors developed both two-class and three-class classifica-
tion model. The two-class classification model can classify 
normal and COVID-19 X-rays, whereas three-class clas-
sification model can also classify viral pneumonia X-rays 
along with normal and COVID-19 X-rays. Both the models 
were trained with and without augmentation. The authors 
found that CheXNet achieved best accuracy of 97.74% on 
three-class classification problem when the dataset was not 
augmented and DenseNet achieved best accuracy of 97.94% 
when the dataset was augmented.

In [50], the authors developed an open-source deep CNN 
named COVID-Net to detect COVID-19 cases from CXR 
images. COVID-Net classifies the CXR images into either 
of the three classes—no infection, non-COVID-19 infec-
tion, and COVID-19 infection. Its architecture comprises a 
lightweight design pattern consisting of a mix of convolu-
tion layers with diverse kernel sizes and grouping configura-
tions. The performance of the COVID-Net was evaluated by 
comparing it with two popular architectures—VGG19 and 
ResNet50. COVID-Net achieved a test accuracy of 93.3%, 
which was higher than the other two. The authors also devel-
oped an open-source bench-marking dataset termed as COV-
IDx, which was used for training and evaluation purposes. 

Fig. 1   Workflow of proposed framework for detection of COVID-19 using CNN
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The COVIDx dataset consists of 13,975 CXR images from 
13,870 patients, which were compiled from publicly avail-
able data repositories.

The authors in [37] did similar work to automate the 
diagnosis of COVID-19 using deep learning. They used 
the COVIDx dataset developed in [50], which we already 
discussed. To deal with the shortage of COVID-19 images 
in the dataset, they augmented the input images by vertical 
flipping, random rotation within 15◦ , and varying lighting 
conditions. The authors used the ResNet50 CNN architec-
ture pre-trained on the ImageNet dataset. They trained the 
network in three stages using a progressive resizing tech-
nique. In each of the three stages, the images were resized, 
starting from the smallest size of 128 × 128 × 3 to the largest 
size of 229 × 229 × 3 . It was possible to train the model in 
fewer epochs using this progressive resizing technique. They 
achieved an accuracy of 96.23% after training for only 41 
epochs. The authors named their resultant CNN architecture 
as COVID-ResNet.

Authors in [39] used Bayes-SqueezeNet to diagnose 
COVID-19 from CXR images. They applied different 
augmentation techniques like shearing, adding noise, and 
increasing and decreasing brightness on the COVID-19 
images to eliminate the negative effect of the imbalanced 
distribution of the raw dataset. The SqueezeNet archi-
tecture was pre-trained on ImageNet. They improved the 
SqueezeNet architecture by tuning hyperparameters using 
Bayesian optimization, and achieved an overall 98.3% 
accuracy, 98.3% correctness, 98.3% completeness, 99.1% 
specificity, 98.3% F1-score, and 97.4% Matthews correla-
tion coefficient.

Most of the early studies to diagnose COVID-19 from 
CXR images uses CNNs. CNNs need a considerable amount 
of data to work efficiently, but a large amount of data is 
not yet available, as the COVID-19 situation is relatively 
new. CNNs have another disadvantage—it loses spatial 

information between image instances. To mitigate these 
problems, the authors in [51] proposed a model based on 
Capsule Networks named as COVID-CAPS. COVID-CAPS 
is capable of operating on small datasets. A small dataset 
comprises CXR images of COVID-19, bacterial pneumonia, 
viral pneumonia, and normal samples were used to train the 
model. Before training the model, the authors binarized the 
dataset’s labels to COVID positive and COVID negative. 
Then binary classification was performed using COVID-
CAPS to diagnose COVID and non-COVID cases. Using 
this small dataset, the model achieved an accuracy of 95.7%, 
sensitivity of 90%, and specificity of 95.8%.

As mentioned earlier, the primary challenge in any 
COVID-19 detection is the data imbalance issue due to the 
scarcity of COVID-19 image data. Therefore, the existing 
methods resort to different approaches, e.g., oversampling, 
under-sampling, data augmentation, and weighted loss to 
address the issue of skewness in the data. In oversampling, 
the number of images of one or more minority classes is 
increased by replication or selective data augmentation. In 
contrast, under-sampling reduces the number of images of 
one or more majority classes by random elimination. Data 
augmentation is also used to increase the number of samples 
and diversity by modifying the original data. Weighted loss 
function is used to control the learning process of an algo-
rithm for better learning by assigning different weights to 
different parts of the loss function based on the number of 
appearances of different classes on the entire dataset.

A summary of the related works is given in Table 1 where 
we observe that the data imbalance issue was not addressed 
in [52]. The works in [37–39, 45, 50, 53] performed over-
sampling using different data augmentation techniques, 
whereas [45, 51, 53] used a weighted loss function to address 
the issue of data imbalance. The proposed method deals with 
the data imbalance issue in a way similar to the works in [51, 
53, 54] and [45] using a weighted loss function. Even though 

Table 1   Summary of literatures

’-’ implies ’not addressed’

Reference Method Data augmenta-
tion

Method to resolve data imbalance Transfer learn-
ing

Hyperparam-
eter optimiza-
tion

[52] DenseNet No – Yes No
[50] Tailored CNN Yes Oversampling Yes No
[51] Capsule networks No Weighted loss No No
[37] ResNet50 Yes Oversampling Yes No
[38] Sgdm-SqueezeNet Yes Oversampling Yes No
[39] COVIDiagnosis-Net Yes Oversampling Yes Yes
[53] Model ensemble Yes Oversamping & Weighted loss Yes No
[45] NASNet-Large Yes Oversampling & Weighted loss Yes No
Our approach Bayes-XceptionNet No Weighted loss Yes Yes
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the loss function used is quite similar, there are some differ-
ences in the methodology and experimentation. Zhu et al. 
[54] developed a model incorporating weighted loss to clas-
sify severe and non-severe COVID-19 classification from 
CT scan images, which is different from ours. Punn et al. 
[45] also used a weighted loss function to detect COVID-19 
from CXR. However, their task was slightly different, since 
they tried to classify CXR images into four classes—normal, 
COVID-19, pneumonia, and tuberculosis. Afshar et al. [51] 
developed a model using the Capsule network to distinguish 
between COVID and non-COVID images. Our task mostly 
resembles Goodwin et al. [53] who developed a model that 
classifies CXR images into one of the three classes—normal, 
pneumonia, and COVID-19. They used both: a weighted loss 
function and data augmentation. An ensemble of 14 archi-
tectures was used to make predictions. However, they did not 
use any algorithm for optimizing hyperparameters, whereas 
we used Bayesian optimization. Our model outperforms 
theirs in terms of accuracy and other evaluation metrics.

In a similar manner to ours, Ucar and Korkmaz [39] used 
Bayesian optimization to tune the hyperparameters of neu-
ral networks. However, they tuned a different set of hyper-
parameters, i.e., initial learning rate, momentum value and 
L2-regularization, whereas we tuned learning rate, number 
of dense layers, number of dense nodes, and activation func-
tion. The approach in [39] tuned only a single architecture, 
whereas we tuned four architectures and presented a quan-
titative comparative analysis of different models after the 
optimization. We obtained better results in terms of accuracy 
and other evaluation metrics in comparison to the method 
in [39].

Our Approach

We use a deep learning approach to classify CXR images 
into three classes—normal, pneumonia, and COVID-19. 
Here, we formulate the problem and describe our proposed 
model for solving the problem. We discuss the three impor-
tant components of our solution approach namely feature 
extraction, learning classifier, and hyperparameter tuning 
using Bayesian optimization.

Problem Formulation

Assume we have a labeled training set that consists of N 
CXR images, Xi = {x1, x2, ...., xn} of k = 3 distinct classes, 
{Yc}

k
c=1

 , that represent normal, pneumonia, and COVID-19. 
Given a test X-ray sample Xtest , our goal is to assign a label 
Ŷc by learning an end-to-end deep leaning model on the 
training set, � = {(Xi, Yc) ∶ i ∈ [1,N] and c ∈ [1, k]}.

Proposed Framework

In this paper, Bayesian optimization technique is used to 
optimize neural network. The overall process consists of 
three components—feature extraction, classification, and 
hyperparameter optimization. The feature extraction and 
classification is done by the CNN and the hyperparameter 
optimization is done using the Bayesian optimization tech-
nique. At first, the CNN is trained using the training data 
and the validation error is calculated. The validation error 
is used to update the Gaussian process model. After the 
approximation of the Gaussian process model, the expected 
improvement function proposes a new set of hyperparameter 
values. The expected improvement function decides whether 
to take the next set of hyperparameter values randomly or 
by exploiting the Gaussian process model. The new set of 
hyperparameter values are used to update the CNN model. 
Then, the CNN model is trained using the training data. The 
process continues for b iterations. After b iterations, the best 
model is picked based on the validation error and the model 
is evaluated on the test set. Figure 2 illustrates our proposed 
approach. Each of the three components is discussed in 
detail in the next sections.

Feature Extraction

CNN architectures have two basic parts—the feature extrac-
tion and the classification. The purpose of feature extrac-
tion layers is to extract important features from the data. In 
this study, feature extraction layers from four different CNN 
architectures: VGG16 [55], MobileNetV2 [56], InceptionV3 
[57], Xception [47] are used. All these architectures are pre-
trained on ImageNet [58].

Classification

The purpose of the classification layers is to learn to clas-
sify the data based on the features obtained using the feature 
extraction layer. The classification layers consist of one or 
more fully connected layers. Each layer has some number 
of nodes. Various non-linear activation functions are used in 
each layer to learn complex function mapping from input to 
output. In this study, Bayesian optimization technique was 
used to learn the configuration of the classification layer.

Hyperparameter Tuning Using Bayesian Optimization

At the core of Bayesian optimization, we have the Bayes 
theorem. According to Bayes theorem:

(1)P(H|E) ∝ P(H) × P(E|H).
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Here, H is the hypothesis. E is the evidence. P(H) is the prior 
probability. P(E|H) is the likelihood. P(H|E) is the posterior 
probability.

The actual or true function that the Bayesian optimiza-
tion technique tries to estimate is called the objective func-
tion. Bayesian optimization optimizes this function with-
out knowing its gradient by taking sample points from the 
hyperparameter space. From the result of evaluating the 
function at these sample points, it tries to estimate the objec-
tive function. This estimation of the objective function is 
the surrogate function. It acts as the prior of our objective 
function.

Here, f̂  is the surrogate function. f is the objective function.
Bayesian optimization incorporates prior belief about the 

objective function f using the surrogate function f̂  . It then 
updates the prior by drawing samples from f to get a pos-
terior f̂  that approximates f better. Gaussian Process (GP) 
is used as surrogate function in our experiments. There are 
two reasons for choosing GP—it is cheap to evaluate—and 
it approximates the objective function very well.

While choosing the sample points for evaluating the 
function, Bayesian optimization makes ’educated guess’. 

(2)f̂ ≈ f .

Acquisition function helps Bayesian optimization to make 
these educated guesses. It decides which point will have to 
be sampled next, based on mean and variance of the surro-
gate function. It also does the trade-off between exploration 
and exploitation. Exploration is the desire to look at an area 
or point where the variance of surrogate function is high, 
i.e., high uncertainty. Exploitation is the desire to look at an 
area or point where the mean of surrogate function is high, 
i.e., high promise.

There are different types of acquisition functions like 
Probability of Improvement (PI), Expected Improvement 
(EI), and Upper Confidence Bound (UCB). EI is used as 
acquisition function in our experiments.

EI can be defined by the equation:

Here, x+ represents the location of the best sample and f (x+) 
represents the value of the best sample so far.

Using GP model, we can evaluate expected improvement:

(3)EI(x) = �max(f (x) − f (x+), 0).

(4)

EI(x) =

{
(𝜇(x) − f (x+) − 𝜁 )𝜙(Z) + 𝜎(x)𝜙(Z) if 𝜎(x) > 0

0 if 𝜎(x) = 0

Fig. 2   Feature extraction, classification, and hyperparameter optimization
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Here, �(x) represents the mean of GP posterior predictive at 
x and �(x) represents the standard deviation of GP posterior 
predictive at x. Φ is the Cumulative Distribution Function 
(CDF) of standard normal distribution and � is the Probabil-
ity Density Function (PDF) of standard normal distribution. 
(�(x) − f (x+) − � )�(Z) maintains exploitation and �(x)�(Z) 
maintains exploration. The amount of exploration is con-
trolled by � . If � is more, the amount of exploration is more. 
If � is less, the amount of exploration less.

To summarize the discussion so far: at first, an approxi-
mate function of the objective function called surrogate 
function is built. This function acts as the prior. Then, 
another function called acquisition function is used to decide 
whether to look at an area of high uncertainty or high prom-
ise. Based on the decision, the function is evaluated at that 
point and a posterior is obtained.

In this paper, the objective function is the validation loss 
and the sample points are values of the hyperparameters that 
are allowed to be tuned. The hyperparameters that we will 
tune are number of dense layers, number of dense nodes, 
learning rate, and activation function.

The algorithm of our proposed framework is shown in 
Algorithm 1.

(5)Z =

{
𝜇(x)−f (x+)−𝜁

𝜎(x)
if 𝜎(x) > 0

0 if 𝜎(x) = 0.

configuration. Based on the initial configuration, a neural 
network is built and the objective value is calculated by 
training the neural network. After that, the variables xbest , 
ybest and the training set D which is used to update the sur-
rogate model are initialized. Training Di contains the set 
hyperparameter configurations and their objective values 
obtained until iteration i. After initialization, a loop runs 
for n iterations. A new hyperparameter configuration xi is 
generated at each iteration by modifying an acquisition func-
tion �i . Afterwards, objective value yi is calculated for this 
hyperparameter configuration. This new configuration and 
objective value are then added to the training set Di , and the 
surrogate model is updated. If the calculated objective yi is 
less than ybest , both xbest and ybest are updated. After running 
for n iterations, the algorithm returns the best hyperparam-
eter configuration and best objective value associated with it.

Dealing with Imbalanced Data: Weighted Loss

Since we have three classes in the problem under study, 
we use the categorical cross-entropy loss function given as 
follows:

Here, L(total) is the total categorical cross-entropy loss. 
L(X, ynormal) , L(X, ypneumonia) , and L(X, yCOVID) are the 

(6)
L(total) = L(X, ynormal) + L(X, ypneumonia) + L(X, yCOVID).

cross-entropy losses for normal, pneumonia, and COVID 
samples, respectively.

However, since the dataset is imbalanced, we use the fol-
lowing weighted loss function instead that helps to ensure 
each class is given the same relative importance [59]:

 

The proposed framework takes as input a defined hyper-
parameter space � , a objective function f(x) which can be 
evaluated by training a neural network, and the maximum 
number of iterations n. The outputs are xbest and ybest , which 
are the best hyperparameter configuration and the best objec-
tive value, respectively. The first step is to select an initial 
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Fig. 3   Random samples of CXR from the dataset

Table 2   Class distribution of the dataset

Class Total Train Validation Test

Normal 1341 1261 20 60
Viral Pneumonia 1345 1265 20 60
COVID-19 220 140 20 60

Table 3   Training configuration

Training configuration

Optimizer Adam
Loss function Weighted cat-

egorical cross-
entropy

Number of epochs 250
Early stopping Yes
Patience 5
Transfer learning Yes
Mini-batch size 8

In Eq. 7, weight of each class is calculated using the follow-
ing formula:

Here, N is the total number of observations in the training 
dataset and k is the total number of classes, whereas wc and 
Nc denote the weight and total number of observations in 
class c, respectively.

Experimental Results

In this section, we present the experimental setup, evaluation 
process, results, and two ablations studies.

Dataset Description

We used the dataset compiled by Chowdhury et al. [38]. To cre-
ate the dataset, normal, pneumonia and COVID-19 X-ray images 
from four different datasets were combined. Out of 220 COVID-
19 X-ray images, 85 were collected from Italian Society of Medi-
cal and Interventional Radiology (SIRM) COVID-19 Database 
[60] and the rest were collected from different articles by Cohen 

(7)
L(total) =wnormal × L(X, ynormal) + wpneumonia

× L(X, ypneumonia) + wcovid × L(X, ycovid).

(8)wc =
N

k × Nc

. et al. [61] and Chowdhury et al. [38]. Rest of the images of viral 
pneumonia and normal X-rays were collected from labeled CXR 
dataset on Mendeley [62]. The dataset was chosen, because it is 
open source and annotated by expert radiologists. Random sam-
ples of normal, viral pneumonia, and COVID-19 X-rays from the 
dataset are shown in Fig. 3.

The dataset was randomly split into train, test, and valida-
tion set. The distribution of data is shown in Table 2.

To train the deep learning model, the images were resized to 
224 × 224 for VGG16, MobileNetV2, and InceptionV3 archi-
tecture and 299 × 299 for Xception architecture. In terms of per-
centage, only 7.2% of X-ray images were of COVID-19. That 
means the dataset is highly imbalanced. As mentioned earlier, 
we used the weighted loss function in Eq. 7 to address this issue.

Implementation Details

The details of training configurations are presented in 
Table 3.

The experiments were performed on a laptop with 
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, NVIDIA 
GeForce RTX 2080  GPU, and 32  GB RAM. All the 
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architectures were trained using Adam optimizer [63], and 
a weighted categorical cross-entropy loss function was used. 
The equation for the weighted loss function is given in Eq. 7. 
The weight for each class is calculated using Eq. 8. The 
number of epochs was set to 250 with patience of 5 for early 
stopping. The mini-batch size was set to 8. All the networks 
were pre-trained on ImageNet [58].

Hyperparameter Optimization of Neural Networks 
Using Bayesian Search

In our experiments, the Bayesian optimization technique was 
used to tune four hyperparameters of the neural networks. 
These hyperparameters were number of dense layers, num-
ber of dense nodes, learning rate, and activation function. 
Feature extraction layers were taken from VGG16, Mobile-
NetV2, InceptionV3, and Xception architecture.

Figure 4 presents the convergence plot of four optimized 
models.

The Y-axis of the plot indicates the minimum value of the 
objective function f(x) or the validation loss after n number of 
calls or trials. The X-axis represents the number of calls to the 
objective function. The validation losses after 20 iterations for 
InceptionV3, MobileNetV2, and Xception were very close. The 
VGG16 model achieved slightly higher validation loss.

The details of each iteration of Bayesian optimization on 
Xception architecture are presented in Table 4. The table pre-
sents two things—the observed value of the objective function 
and the hyperparameters of the model. In our experiments, the 
objective function was validation loss, and the model hyperpa-
rameters were learning rate, number of dense layers, number 
of dense nodes, and activation function. Each row of the table 
corresponds to the observed value of the objective function in a 
particular iteration and the model hyperparameters used to get 
that observed value. It is observed that the best or minimum 
value of the objective function was 0.0006 which was found 

in the 20th iteration. The model hyperparameters at that itera-
tion were learning rate 6.92e − 05 , number of dense layers 4, 
number of dense nodes 107, and tanh activation.

Figure  5 presents three partial dependence plots for 
Bayesian optimization on Xception architecture with three 
hyperparameters—number of dense layers, number of dense 
nodes, and learning rate. Partial Dependence Plot (PDP) pro-
vides a relation between target response and target features. 
In this paper, the target response was the validation loss, 
and the target features were learning rate, number of dense 
layers, number of dense nodes, and activation function. A 
partial dependence plot can take one or more target features 
and express its relationship with the target response. The plot 
has two extreme regions:

•	 The yellow regions in the plots are the regions where the 
function value is minimum, i.e., the validation loss is 
minimum.

•	 The blue regions in the plots are the regions where the 
function value is maximum, i.e., the validation loss is 
maximum.

We are interested in the observations of yellow regions, as 
these are the regions where we get minimum validation loss. 
Each black dot represents a point in search space that was 

Fig. 4   Convergence plot for Bayesian search on four architectures

Table 4   Iteration results for Bayesian optimization on Xception archi-
tecture with model hyperparameters

Iteration 
no.

Objective Learning 
rate

No. of 
Dense 
layers

No. of 
dense 
nodes

Activation

1 1.1405 1e-25 1 1 tanh
2 1.0885 6.62e-11 5 129 relu
3 1.0323 3.88e-10 3 45 tanh
4 1.1380 6.55e-19 3 122 tanh
5 1.1202 6.60e-16 5 51 relu
6 1.0938 1.61e-16 6 22 relu
7 1.1024 6.92e-14 5 79 relu
8 0.1052 1.04e-07 4 81 relu
9 1.0944 4.44e-23 3 29 relu
10 1.0821 2.59e-20 2 49 tanh
11 1.1208 3.61e-20 3 135 tanh
12 0.0011 3.11e-05 6 124 relu
13 0.0383 2.53e-06 3 109 relu
14 1.0984 1.85e-06 6 1 relu
15 0.0536 6.87e-04 6 98 relu
16 0.0434 2.65e-04 5 121 tanh
17 0.0383 6.34e-06 6 93 relu
18 1.1647 6.51e-02 1 150 relu
19 0.0160 7.68e-06 4 98 relu
20 0.0006 6.92e-05 4 107 tanh
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sampled. The red star shows where the best value of the 
hyperparameter was found.

From the PDP with the number of dense layers and the learning 
rate, we observe that the model performance was worse, or the vali-
dation loss was more when the learning rate was low. Performance 
improved with the increase of the learning rate and was dropped 
again after reaching a learning rate of 10−1 . Performance did not 
get much affected by the number of dense layers.

From the PDP with the number of dense nodes and the 
learning rate, we observe similar pattern for the learning 
rate. The performance was better when the learning rate 
was high. However, this time, the number of dense nodes 
had a large impact. Performance improved or validation loss 
decreased with the increase of the number of dense nodes. 
However, the impact was much less when the learning rate 
was low. When the learning rate was high, changing the 
number of dense nodes highly affected the performance of 
the model. Model performance was better when the learning 
rate was above 10−4 . The best value of the learning rate and 
the number of dense nodes were found in the red star point.

From the PDP with the number of dense layers and the number 
of dense nodes, we observe that the model performance was more 
dependent on the number of dense nodes. When the number of 
dense nodes was less, it did not matter how many layers we use, 
the performance was still bad. Model performance was better 
when the number of dense nodes was between 80 and 100. The 
best value of the number of dense layers and the number of dense 
nodes was found in the red star point.

Evaluation of the Optimized Models

In this subsection, we introduced different metrics for evalu-
ating the optimized models and discussed the results of the 
evaluations.

Evaluation Metrics

Accuracy, precision (correctness), recall (completeness), 
specificity, F1-score, Matthews Correlation Coefficient 
(MCC), confusion matrix, and Receiver-Operating Charac-
teristic (ROC) curve were used to evaluate the models.

Accuracy is the ratio of the number of samples correctly 
classified to the total number of samples.

Here, TPc , TNc , FPc , and FNc denote the number of true-
positive, true-negative, false-positive, and false-negative 
samples for class c, respectively.

Precision or correctness is the ratio of number of correct 
positive results to the number of all predicted positives.

(9)Accuracy =
TPc + TNc

TPc + FPc + TNc + FNc

.

(10)Precision =
TPc

TPc + FPc

.

Fig. 5   Partial dependence plots

(a) PDP with number of dense layers and
learning rate

(b) PDP with number of dense nodes and
learning rate

(c) PDP with number of dense layers and
number of dense nodes
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Recall or completeness is the ratio of number of correct 
positive results to the number of all samples that should be 
identified as positives.

Specificity is the ratio of number of correct negative results 
to the number of all samples that should be identified as 
negatives.

 F1 score is the harmonic mean of precision and recall. It 
can take values ranging from 0 to 1. The model is perfect 
when the F1 score is 1 and the model is failure when the F1 
score is 0.

Here, Precisionc is the precision for class c and Recallc is 
the recall for class c.

Precision, recall, specificity, and F1-score are all 
asymmetric evaluation metrices. That means, their val-
ues change when the class labels are swapped. Matthews 
Correlation Coefficient (MCC) is a symmetric evaluation 
metrics. It does not change with the change of class label. 
It can take values between − 1 to 1. − 1 means the model 
misclassified all the data, 0 means the prediction of the 
model is random, and 1 means the model perfectly clas-
sified all the data.

(11)Recall =
TPc

TPc + FNc

.

(12)Specif icity =
TNc

TNc + FPc

.

(13)F1 = 2 ×
Precisionc × Recallc

Precisionc + Recallc
.

(14)MCC =

(
TPc × TNc

)
−
(
FPc × FNc

)

√(
TPc + FPc

)
×
(
TPc + FNc

)
×
(
TNc + FPc

)
×
(
TNc + FNc

) .

Evaluation Results

The classification performance of all four optimized models 
is presented in Table 5. The Xception model outperforms 
all the other models in terms of accuracy, precision, recall, 
specificity, F1-score, and Matthews correlation coefficient 
on the test set.

The confusion matrices for four optimized models are 
presented in Fig. 6.

From the confusion matrices, it is observed that none 
of the models managed to predict all 60 COVID-19 cases 
correctly. For the other two cases (normal and pneumonia), 
VGG16 misclassified 1, and MobileNetV2 and InceptionV3 
misclassified 3, but the Xception model did not misclassify 
any case. The Xception model misclassified only 1 X-ray 
in total. The actual X-ray was of COVID-19, but the model 
predicted it as normal. The confusion matrices clearly dem-
onstrate the superiority of the Xception model over the other 
three models.

The training loss, training accuracy, validation loss, and 
validation accuracy of four best-performing models found by 
optimizing VGG16, MobileNetV2, InceptionV3, and Xcep-
tion using Bayesian Optimization technique are shown in 
Fig. 7.

All the models were set to train for 250 epochs. How-
ever, since early stopping was used, models which did not 
show any improvement in validation loss for five consecu-
tive epochs were early stopped. The final validation losses 
achieved by the MobileNetV2, InceptionV3, and the Xcep-
tion model were very close. The validation loss for VGG16 
is slightly higher compared to the other three models. At 

Table 5   Classification 
performance of four optimized 
models

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient

Model ACC​ PRE REC SPE F1 MCC

VGG16 0.989 0.989 0.989 0.994 0.989 0.983
MobileNetV2 0.978 0.978 0.978 0.988 0.978 0.967
InceptionV3 0.978 0.978 0.978 0.988 0.978 0.967
Xception 0.994 0.995 0.994 0.997 0.994 0.992
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some point during the training, all models achieved the high-
est validation accuracy of 1.0, except for the VGG16 model, 
which achieved a maximum validation accuracy of 0.95.

A Receiver-Operating Characteristic (ROC) curve shows 
the performance of the model at different thresholds. The 

Area Under the Curve (AUC) is used to summarize the find-
ings of an ROC curve. It represents the ability of a model to 
distinguish among different classes. The ROC curves for the 
VGG16, MobileNetV2, InceptionV3, and Xception models 
are depicted in Fig. 8.

Fig. 6   Confusion matrix of four 
optimized models

(a) VGG16 (b) MobileNetV2

(c) InceptionV3 (d) Xception

Fig. 7   Loss and accuracy plots 
of best models obtained from 
each architecture

(a) Loss and accuracy plot for VGG16. (b) Loss and accuracy plot for MobileNetV2.

(c) Loss and accuracy plot for InceptionV3. (d) Loss and accuracy plot for Xception.
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From Fig. 8, it is observed that the Xception model has 
the highest AUC value for the normal and pneumonia class, 
which is 1. A large AUC value for a particular class signifies 
that the model is capable of discriminating that class from 
the other two classes very well. The AUC value of 1.0 for the 
normal class in the Xception model implies that the Xcep-
tion model can discriminate normal samples from pneumo-
nia and COVID-19 samples perfectly. And, the AUC value 
of 1.0 for pneumonia in the Xception model signifies that 
the Xception model can discriminate pneumonia samples 
from normal and COVID-19 samples perfectly. The AUC 
values for the normal and pneumonia classes for the VGG16, 
MobileNetV2, and InceptionV3 are less than 1. It means 
that the discrimination of each class (normal or pneumo-
nia) from the other two classes is not perfect. In case of the 
COVID-19 class, the Xception and the InceptionV3 model 
have the highest AUC value, which is 0.9999. This means 
that even though the discrimination of COVID-19 class from 

the other two classes is not perfect for these two models, 
but it discriminates very well. With AUC values of 0.9986 
and 0.9971, respectively, the VGG16 and the MobileNetV2 
models do not discriminate as well between the COVID-19 
class and the other two classes as the Xception and Incep-
tionV3 models do.

Complexity Comparison

The comparison of the complexity of four optimized models 
along with two existing approaches is shown in Table 6. To 
compare the complexity among different models, we took 
into account training time, inference time, model size, num-
ber of parameters, Multiply-Accumulate (MAC) Operations, 
and Floating-Point Operations Per Second (FLOPS).

Training Time: MobileNetV2 took the most time to train 
- 5982.9s. InceptionV3 also took a similar amount of time 
(5815.9s). Xception took only 2255.0s which is the least.

Fig. 8   Receiver-Operating 
Characteristic (ROC) Curve

(a) ROC Curve for VGG16. (b) ROC Curve for MobileNetV2.

(c) ROC Curve for InceptionV3. (d) ROC Curve for Xception.

Table 6   Comparison of 
complexity of different models

Model Training time Inference time Model size Number of 
parameters

MACs FLOPS

VGG16 2882.3 s 26.8 ms 219.8 MB 18.31 M 30.7 G 15.4 G
MobileNetV2 5982.9 s 28.9 ms 32.1 MB 2.63 M 0.613 G 0.307 G
InceptionV3 5815.5 s 33.7 ms 335.1 MB 27.86 M 5.71 G 2.85 G
Xception 2255.0 s 26.8 ms 513.9 MB 42.8 M 16.8 G 8.41 G
CheXNet [38] 5532.1 s 40 ms 65.7 MB 28.1 M 5.7 G 2.85 G
VGG19 [49] 4907.3 s 27 ms 277.8 MB 23.14 M 39.0 G 19.5 G
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Inference Time: Among the four trained models, the 
inference time for the VGG16 model and the Xception 
model is the lowest, which is 26.8 ms. MobileNetV2 and 
InceptionV3 took 28.9ms and 33.7ms, respectively.

Model Size: MobileNetV2 is the most lightweight model 
with a size of only 32.1 MB. VGG16 comes in the second 
with a size of 219.8 MB. InceptionV3 and Xception are 
335.1 MB and 513.9 MB, respectively.

Number of Parameters: MobileNetV2 has the least 
number of parameters—2.63 M. The number of parameters 
in VGG16, InceptionV3, and Xception is 18.31 M, 27.86 M, 
and 42.8 M, respectively.

Multiply-Accumulate (MAC) Operations: VGG16 
requires the highest MAC operations, whereas Mobile-
NetV2 requires the least. The number of MAC operations 
for VGG16, MobileNetV2, InceptionV3, and Xception is 
30.7 G, 0.613 G, 5.71 G, and 16.8 G, respectively.

Floating-Point Operations Per Second (FLOPS): 
VGG16 requires the highest FLOPS, whereas Mobile-
NetV2 requires the least. The number of FLOPS for VGG16, 
MobileNetV2, InceptionV3, and Xception is 15.4  G, 
0.307 G, 2.85 G, and 8.41 G, respectively

From Table 6, it is observed that, among the four models 
that we optimized using the Bayesian optimization technique, 
the Xception model is the most expensive in terms of model 
size and number of parameters, whereas the VGG16 model 
is the most expensive in terms of MACs and FLOPS. The 
MobileNetV2 model is the least expensive in terms of model 
size, number of parameters, MACs, and FLOPS. Even though 
MobileNetV2 is the least expensive model, from Table 5, it 
is observed that the MobileNetV2 is also the most under-
performing model, whereas the VGG16 and the Xception 
models are the best-performing ones. Hence, a clear trade-off 
between the complexity of the models and their performance 
are observed. It is possible to design lightweight models but 
at the expense of performance. In the healthcare sector, there 
is no room for error. Hence, deploying a larger model which 
performs better is an obvious choice.

The complexity of the four optimized models were also 
compared with two approaches from the literature. The 
CheXNet [38] and the VGG19 [49] models from these litera-
tures were trained on our dataset. The VGG19 model [49] is 
more expensive in terms of MACs and FLOPS compared to 
our models, and the inference time for the CheXNet model 
[38] is very high. From Table 10, it is observed that the 
Xception model outperforms these two models in terms of 
accuracy, precision, recall, specificity, F1-score, and Mat-
thews correlation coefficient.

COVIDXception‑Net: Best Model Obtained Using 
Bayesian Search

The Xception architecture tuned using Bayesian optimiza-
tion technique performed the best. We named this architec-
ture COVIDXception-Net. The backbone of the COVIDX-
ception-Net architecture is the Xception network, which is 
used to extract features from the images. The feature extrac-
tion network is followed by dense fully connected layers 
to perform classification. The architecture of COVIDXcep-
tion-Net is demonstrated in Fig. 9. The architecture takes 
as input an X-ray image of size 299 × 299 . The input layer 
is followed by two convolution layers with ReLU activa-
tion function. After the first two convolution layers, three 
convolution layer blocks—ConvA, ConvB, and ConvC—are 
linearly stacked one after another. Instead of using regular 
convolution operations, these layers mostly use depthwise 
separable convolution operations. This is the salient fea-
ture of the Xception architecture. The advantage of using 
depthwise separable convolution over regular convolution 
is they require much fewer parameters. Due to the use of 
fewer parameters, they are also less prone to overfitting and 
are faster.

In block ConvA, there are two depthwise separable convo-
lution layers. Batch normalization is used after the first layer. 
The output of the second depthwise separable convolution 
layer enters into a max-pooling layer. A skip connection with 
a convolution layer is also used in this block. The output 
obtained from the max-pooling layer and the Conv1 × 1 layer 
is added. Three ConvA layers are stacked one after another. 
The output from the third ConvA block enters into the ConvB 
block.

In ConvB block, three depthwise separable convolu-
tion layers with batch normalization are used. The first two 
depthwise separable convolution layers used ReLU non-
linearity, but the third one did not use any non-linearity. 
The output of the third depthwise separable convolution 
layer is added with the input of the ConvB block using a 
skip connection. Eight ConvB are linearly stacked one after 
another. The output of the eighths ConvB block enters into 
the ConvC block.

The input of the ConvC block passes through two depth-
wise separable convolution layers, followed by a max-pool-
ing layer. The output from the max-pooling layer is added 
to the convoluted input of the ConvC block using a skip 
connection. The output obtained after performing the addi-
tion operation then passes through two depthwise separable 
convolution layers.
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The output of ConvC enters into the global average pool-
ing layer. With the global average pooling layer, the feature 
extraction part of the network ends. The output obtained 
from the global average pooling layer is flattened and enters 
into the classification layers of the COVIDXception-Net.

The classification layer of the COVIDXception-Net archi-
tecture consists of four dense layers. Each dense layer con-
sists of 107 neurons with tanh activation function. The final 
layer of the COVIDXception-Net architecture consists of 
three neurons with softmax non-linearity representing the 
three classes—normal, pneumonia, and COVID-19.

The classification performance for the COVIDXception-
Net is presented in Table 7.

Both normal and pneumonia classes were classified with 
an accuracy of 1.0. However, one COVID-19 sample was 
misclassified as normal. Hence, the accuracy was reduced to 
0.983. Precision and recall for the COVID-19 class were 1.0 
and 0.983, respectively. F1-score for pneumonia class was 
1.0, which means that both precision and recall for pneu-
monia were 1.0. Specificity for the COVID-19 class is 1 
as all the non-COVID-19 classes were predicted correctly. 
The COVIDXception-Net model also achieved a high overall 
Matthews correlation coefficient. The overall classification 
accuracy, precision, recall, specificity, F1-score, and Mat-
thews correlation coefficient for the Xception model were 
0.994, 0.995, 0.994, 0.997, 0.994, and 0.992, respectively.

Ablation Study

In this section, we discuss two ablation studies that we per-
formed to evaluate the impact of Bayesian optimization and 
weighted loss function on our model.

Impact of Bayesian Search

To evaluate the impact of optimization using Bayesian 
search, we compared it with random search.

Figure 10 presents a convergence plot of Xception archi-
tecture tuned using both Bayesian and random search. The 
final converged validation loss for Bayesian search was 
0.0006, which was lower than the final converged valida-
tion loss for random search, 0.0641791.

Table 8 presents the classification performance of Xcep-
tion architecture tuned using both Bayesian and random 
search. Xception architecture tuned using Bayesian search 
outperformed the same architecture tuned using random 
search in terms of accuracy, precision, recall, specificity, 
F1-score, and Matthews correlation coefficient.

Both Fig. 10 and the Table 8 suggest that Bayesian opti-
mization was far better compared to random guessing of 
hyperparameters.

Impact of Weighted Loss Function

The Xception architecture was trained without using a 
weighted loss function to see how it affected the perfor-
mance. From Table 9, it is observed that all accuracy, preci-
sion, recall, specificity, F1-score, and Matthews correlation 
coefficient dropped when the weighted loss function was not 
used. It proves that the weighted loss function helps in the 
generalization of the neural network.

Qualitative Analysis

To understand the decision making process of our COV-
IDXception-Net model, we implemented class activation 

Table 7   Classification 
performance for the 
COVIDXception-Net model

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient

Class ACC​ PRE REC SPE F1 MCC

COVID 0.983 1.000 0.983 1 0.992 0.988
Normal 1.000 0.984 1.000 0.992 0.992 0.988
Pneumonia 1.000 1.000 1.000 1 1.000 1
Overall 0.994 0.995 0.994 0.997 0.994 0.992

Fig. 10   Convergence plot for Bayesian and random search on Xcep-
tion architecture
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mapping using the Gradient-weighted Class Activation 
Mapping (Grad-CAM) [64] technique. Class activation map-
ping provides a way of visually understanding the rationale 
behind making a certain prediction. It also helps to identify 
whether the model is leveraging the right features to make 
predictions or it is using erroneous features which is leading 
to the right decision.

To generate a class activation map, an X-ray sample 
is forward propagated through the COVIDXception-Net 
model. Then, a heatmap is generated from the gradient 
information flowing into the final convolutional layer of the 
model for that X-ray sample. The heatmaps represent the 
regions responsible for making a certain prediction by the 
COVIDXception-Net model. The generated heatmap is then 
superimposed over the original X-ray image to identify the 
important regions for a certain prediction.

Class activation maps generated for some sample test 
images from the dataset along with predictions are shown 
in Fig. 11. The heatmaps in the figure are indicated by the 
red and yellow areas, with red indicating more significant 
and yellow indicating slightly less significant regions of the 
X-ray responsible for making the prediction. From Fig. 11, 
it is observed that the heatmaps generated from the COV-
IDXception-Net architecture point out the salient regions 
of the X-ray, i.e., the region surrounding the lungs, to make 
decisions rather than relying on erroneous visual indicators 
or imaging artifacts, etc.

Comparison with the State‑of‑the‑Art Methods

The problem with the comparison of works related to 
COVID is that most studies used different datasets and the 
split of the dataset into train, validation, and test sets are 
not publicly available. For this reason, to compare with our 
results, we trained and tested other studies approaches using 

our dataset. CheXNet model of Chowdhury et al. [38] was 
trained and tested on our dataset, and it obtained an accuracy 
of 98.3% on the test set. VGG19 model of Ioannis et al. [49] 
was also trained and tested on our dataset, and it obtained an 
accuracy of 96.1%. Our proposed model COVIDXception-
Net achieved an accuracy of 99.4%. The comparison is pre-
sented in Table 10.

Comparison of our model with state-of-the-art methods 
on similar datasets is presented in Table 11. The nature of 
the dataset was similar in all cases, but the distribution of 
data and the evaluation protocols were different. Some stud-
ies used cross-validation, whereas some split the entire data-
set into train, validation, and test sets. The datasets contain-
ing the three classes had normal, pneumonia, and COVID-19 
X-rays. The datasets containing the two classes had nor-
mal and COVID-19 X-rays. Li and Zhu [52] developed a 
DenseNet-based model to classify three classes. They used 
a very small dataset of 377 X-rays. They obtained an overall 
accuracy of 0.889 on the test set. Wang and Wong [50] used 
a tailored CNN. They used a large dataset of 13,962 X-ray 
images. The tailored CNN model obtained overall accuracy 
0.923, precision 0.913, and recall 0.887. Afshar et al. [51] 
proposed a capsule network-based binary classification 
model. Their model achieved an accuracy of 0.957 and recall 
of 0.90. Farooq and Hafeez [37] developed an ResNet50-
based model to detect four classes—normal, COVID-19, 
viral pneumonia, and bacterial pneumonia. Using data 
augmentation and transfer learning, they achieved an over-
all accuracy 0.962, precision 0.969 and recall 0.969 and 
F1-score 0.969. Chowdhury et al. [38] tried different CNN 
architectures, and used both transfer learning and data aug-
mentation to improve the performance of the model. Using 
DenseNet architecture, they obtained an overall accuracy 
of 0.979, precision 0.979, recall 0.979, and F1-score 0.979. 
Ucar and Korkmaz [39] used Bayes-SqueezeNet. To improve 

Table 8   Classification 
performance for Bayesian and 
random search

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient

Method ACC​ PRE REC SPE F1 MCC

Bayesian search 0.994 0.995 0.994 0.997 0.994 0.992
Random search 0.95 0.952 0.95 0.975 0.95 0.926

Table 9   Classification 
performance of Xception model 
with and without weighted loss

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient

Method ACC​ PRE REC SPE F1 MCC

Xception without weighted loss 0.983 0.984 0.983 0.991 0.983 0.975
Xception with weighted loss 0.994 0.995 0.994 0.997 0.994 0.992
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the performance and faster learning of the model, they used 
both data augmentation and transfer learning. Their Bayes-
SqueezeNet model achieved 0.983 overall accuracy, 0.983 

precision, 0.983 recall, 0.991 specificity, 0.983 F1-score, 
and 0.974 Matthews correlation coefficient. Narin et al. 
[65] trained a ResNet50 model that can distinguish between 

(a) True Label: COVID-19
Predicted Label: COVID-19

(b) True Label: COVID-19
Predicted Label: COVID-19

(c) True Label: Pneumonia
Predicted Label: Pneumonia

(d) True Label: Normal
Predicted Label: Normal

Fig. 11   Class activation map generated for different X-ray samples with COVIDXception-Net architecture

Table 10   Comparison between 
the proposed model with 
previous state-of-the-art 
methods on the same dataset

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient

Study Class ACC​ PRE REC SPE F1 MCC

[38] 3 0.983 0.983 0.983 0.992 0.983 0.975
[49] 3 0.961 0.961 0.961 0.981 0.961 0.942
COVIDXcep-

tion-Net
3 0.994 0.995 0.994 0.997 0.994 0.992

Table 11   Comparison between 
the proposed model with 
previous state-of-the-art 
methods on similar datasets

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient. ’-’ indicates ’not mentioned’

Study Method Class ACC​ PRE REC SPE F1 MCC

[52] DenseNet 3 0.889 – – – – –
[50] Tailored CNN 3 0.923 0.913 0.887 – 0.900 –
[51] Capsule network 2 0.957 – 0.900 0.958 – –
[37] ResNet50 4 0.962 0.969 0.969 – 0.969 -
[38] DenseNet 3 0.979 0.979 0.979 0.990 0.979 –
[39] SqueezeNet 3 0.983 0.983 0.983 0.991 0.983 0.974
[65] ResNet50 2 0.980 1.000 0.960 – 0.980 –
COVIDXcep-

tion-Net
Xception 3 0.994 0.995 0.994 0.997 0.994 0.992
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normal and COVID X-ray. They used a small dataset of 100 
X-ray images. Their model achieved an accuracy of 0.98, 
precision 1.000, recall 0.96, and F1-score 0.980. We used 
a dataset of 2,906 X-ray images. We did not use any aug-
mentation on data. Our model achieved 0.994 overall accu-
racy, 0.995 precision, 0.994 recall, 0.997 specificity, 0.994 
F1-score, and 0.992 Matthews correlation coefficient. Com-
pared to the previous results, our proposed model COVIDX-
ception-Net achieved the highest overall accuracy, recall, 
specificity, F1-score, and Matthews correlation coefficient.

Comparison of our model with state-of-the-art methods 
for COVID-19 class is presented in Table 12. Wang and 
Wong [50] achieved COVID-19 class accuracy of 0.933, 
precision 0.989, and recall 0.910 using their proposed model 
COVID-Net. Farooq and Hafeez [37] achieved COVID-
19 class accuracy, precision recall, and F1-score of 1.000 
using their proposed model COVID-ResNet, but their test 
set contained only 8 COVID-19 images which is very small 
to meaningfully represent the COVID-19 cases that may 
arise in real world. Ucar and Korkmaz [39] also achieved 
a COVID-19 class accuracy of 1.000, but their test set was 
augmented. The raw test set contained only 10 COVID-19 
images which is also very small to meaningfully represent 
the entire population. We used 60 non-augmented COVID-
19 images in our test set out of which only 1 image was 
misclassified as normal, and hence, we obtained COVID-19 
class accuracy of 0.983. Our model also achieved a precision 
and specificity of 1 and overall accuracy of 0.994 which is 
the highest to date.

Discussion

In this study, we developed an Xception Network-based 
architecture referred to as the COVIDXception-Net for diag-
nosis of COVID-19 disease from CXR images. We applied 
the Bayesian optimization technique on four pre-trained 
architectures—VGG16, MobileNetV2, InceptionV3, and 
Xception. The results were compared using convergence 
plot, accuracy, precision, recall, specificity, F1-score, and 
Matthews correlation coefficient. We found that the model 

based on Xception architecture performed best. To tackle the 
class imbalance problem, a weighted loss function was used. 
COVIDXception-Net achieved a satisfying performance on 
the test set with an accuracy of 99.4%. The impact of each 
hyperparameter that we tuned on the COVIDXception-Net 
was analyzed using multiple partial dependence plots. We 
compared our model COVIDXception-Net with previous 
state-of-the-art methods, and found that our model outper-
forms previous methods in terms of accuracy, precision, 
recall, and F1-score on our dataset. When the dataset is 
similar in nature but not the same, our model still outper-
forms previous state-of-the-art methods in terms of accu-
racy, recall, and F1-score.

Our proposed model, COVIDXception-Net misclassified 
one COVID-19 CXR as normal. The misclassified case is 
shown in Fig. 12. The ground truth label of this CXR was 
COVID-19 in our dataset. We asked five separate doctors to 
diagnose this CXR and found that the case was a bit confus-
ing for them as well. Two doctors said that the patient was 
infected with COVID-19, but the infection was at an early 
stage. One of the doctors said the patient was not infected 
with COVID-19, but he might have other lung conditions. 
Another doctor said the patient was in normal condition. 
The last doctor refused to diagnose, saying he could not 
diagnose without knowing the patient history. The rest of 
the COVID-19 chest X-rays were classified accurately by 
our COVIDXception-Net model.

Table 12   Comparison between 
proposed model with previous 
state-of-the-art methods for 
COVID-19 class

’ACC’ refers to accuracy. ’PRE’ refers to precision or correctness. ’REC’ refers to recall or completeness. 
’SPE’ refers to specificity or true-negative rate. ’F1’ refers to F1-score. ’MCC’ refers to Matthews Correla-
tion Coefficient. ’-’ indicates ’not mentioned’

Study Method ACC​ PRE REC SPE F1 MCC Overall Accuracy

[50] Tailored CNN 0.933 0.989 0.910 – – – 0.933
[37] ResNet50 1.000 1.000 1.000 – 1.000 - 0.962
[39] SqueezeNet 1.000 0.994 1.000 0.997 0.997 0.995 0.983
COVIDX-

ception-
Net

Xception 0.983 1.000 0.983 1.000 0.992 0.988 0.994

Fig. 12   Misclassified COVID-19 case
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Two ablation studies were performed to measure the 
impact of Bayesian optimization and weighted loss func-
tion on our model. In the first ablation study, the impact of 
Bayesian optimization was measured by comparing it with 
random search. To compare both the techniques convergence 
plot, accuracy, precision, recall, and F1-score were used. 
It was found that the best model obtained from the Bayes-
ian search provided an accuracy of 99.4%, whereas the best 
model obtained from random search provided an accuracy 
of 95%. Bayesian optimization significantly improved the 
performance of the final model also in terms of precision, 
recall, and F1-score. In the second ablation study, COV-
IDXception-Net was trained using a regular loss function 
instead of a weighted loss function. An accuracy of 98.3% 
was obtained when regular loss function was used compared 
to 99.4% when weighted loss function was used. From these 
two ablation studies, we concluded that Bayesian search can 
be used to efficiently tune the hyperparameters of a neural 
network, whereas weighted loss can be used to improve the 
performance of our neural network.

The complexities of the optimized models were cal-
culated in terms of training time, inference time, model 
size, number of parameters, MACs, and FLOPS. Even 
though the COVIDXception-Net model is a bit expensive 
in terms of model size and number of parameters, it can 
perform inference much faster, and it is the best-performing 
model in terms of accuracy, precision, recall, specificity, 
F1-score, and Matthew correlation coefficient. When it 
comes to healthcare, making a mistake can have serious 
consequences. Therefore, it makes more sense to deploy the 
best-performing model than to deploy a lightweight model 
like MobileNet that is computationally cheaper. Gradient-
weighted Class Activation Mapping (Grad-CAM) was used 
to perform qualitative analysis of the COVIDXception-Net 
model. By analyzing class activation maps for different 
X-ray samples, it was observed that the model was using 
important regions of the X-ray, i.e., regions surrounding the 
lungs to make predictions.

Conclusion

In this study, we introduced COVIDXception-Net, a deep 
convolutional neural network that can diagnose COVID-19 
from chest X-ray images without any human intervention. 
We improved the Xception architecture using the Bayesian 
optimization technique to diagnose COVID-19 accurately. 
To tackle the class imbalance problem, the weighted loss 
function was used. The complexities of the optimized mod-
els are compared in terms of training time, inference time, 
model size, number of parameters, MACs, and FLOPS. 
COVIDXception-Net achieved a satisfying performance 
on the test set and outperformed state-of-the-art methods in 

overall accuracy, recall, and F1-score. We also performed 
two ablation studies to measure the impact of Bayesian 
optimization and weighted loss function on our model, and 
found that these techniques significantly improved the per-
formance of the model. The qualitative analysis of COV-
IDXception-Net was done using the GRAD-CAM technique. 
The qualitative analysis suggest the model leveraging the 
salient regions from the X-ray to make predictions. A future 
research direction may include developing a model that can 
classify Chest X-rays based on mild, moderate, and severe 
symptoms of COVID-19 which will be helpful for the man-
agement of patients in a clinical setting.
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