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Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence 
of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the 
development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learn-
ing (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based 
approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, 
and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep 
Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. 
The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem 
(detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical 
data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses 
the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that 
Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% 
use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random 
Forest, Support Vector Machine (SVM) and Regression algorithms are employed.

Keywords  Artificial intelligence · COVID-19 detection · COVID-19 diagnosis · COVID-19 prediction · Machine learning · 
Deep learning · CNN

Introduction

COVID-19 has led to one of the most disruptive disasters in 
the current century and is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The health system 

and economy of a large number of countries have been 
impacted. As per World Health Organization (WHO) data, 
there have been 225,024,781 confirmed cases of COVID-
19, including 4,636,153 deaths as of 14 September 2021. 
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Immediately, after its outbreak, several studies are conducted 
to understand the characteristics of this coronavirus.

It is argued that human-to-human transmission of 
SARS-CoV-2 is typically done via direct contacts and 
respiratory droplets [1]. On the other side, the incuba-
tion of the infection is estimated to a period of 2–14 days. 
This helps in controlling it and preventing the spread 
of COVID-19 is the primary intervention being used. 
Moreover, studies on clinical forms reveal the presence 
of asymptomatic carriers in the population and the most 
affected age groups [2]. After almost a year in this situa-
tion, and the high number of researches conducted in dif-
ferent disciplines to bring a relief, a huge amount of data is 
generated. Computer science researchers find themselves 
involved to provide their help. One of the first registered 

contributions is the visualization of data. The latter was 
mapped and/or plotted in graphs which allows to: (i) better 
track the propagation of the virus over the globe in general 
and country by country in particular (Fig. 1);

ii) better track the propagation of the pandemic over 
the time; iii) better estimate the number of confirmed 
cases and the number of deaths (Fig. 2a, b). Later, more 
advanced techniques based essentially on Artificial Intel-
ligence (AI) are employed. Bringing AI to go against 
COVID-19 has served in the prevention and monitoring 
of infectious patients. In fact, by using geographical coor-
dinates of people, some governments were able to limit 
their movements and locate people with whom they were 

in contact. The second aspect in which AI benefits is the 
ability to classify individuals whether they are affected or 
not. Finally, AI offers the ability to make a prediction on 
possible future contaminations. To this purpose, Machine 
Learning (ML), which is often confused with AI, is pre-
cisely used. Beyond the different ML algorithms, Neural 
Network (NN) is one of the most used to solve real-world 
problems which gives the emergence of Deep Learning 
(DL).

Deep learning is particularly suited to contexts where 
the data is complex and where there are large datasets 
available as it is the case with COVID-19.

In this context, the present paper gives an overview 
of the Machine Learning researches performed to handle 

Fig. 1   Propagation of COVID-19 over the world

Fig. 2   Data-visualization for tracking COVID-19 progress
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COVID-19 data. It specifies for each of them the targeted 
objectives and the type of data used to achieve them.

To accomplish this study, we use Google scholar by 
employing the following search strings to build a database 
of COVID-19 related articles:

•	 COVID-19 detection using Machine learning;
•	 COVID-19 detection using Deep learning;
•	 COVID-19 detection using Artificial intelligence;
•	 COVID-19 diagnosis using Machine learning;
•	 COVID-19 diagnosis using Deep learning;
•	 COVID-19 diagnosis using Artificial intelligence;
•	 COVID-19 prediction using Machine learning;
•	 Deep learning for COVID-19 prediction;
•	 Artificial intelligence for COVID-19 prediction.

We retain all articles in this field which:

•	 Are published in scientific journals;
•	 Propose new algorithms to deal with COVID-19;
•	 Have more than 4 pages;
•	 Are written in English;
•	 Represent complete versions when several are avail-

able;
•	 Do not report the statistical tests used to assess the sig-

nificance of the presented results.
•	 Do not report details on the source of their data sets.

The result is impressive. In fact, since February 2020, sev-
eral papers are published in this area every month. As we 
can see in Fig. 3, India and China seem to be those having 
the highest number of COVID-19 publications. However, 
many other countries showed a strong activity in the number 
of contributions. This is expected as the situation affects the 
entire world. The different papers appeared from various 
well-known publishers such as IEEE, Elsevier, Springer, 
ArXIv and many others as shown in Fig. 4.

In this paper, the surveyed approaches are presented 
according to the Machine Learning classification given in 
Fig. 8. Techniques highlighted in yellow color are those 
employed in the different propositions to go against COVID-
19. We show that most of them are based on Convolutional 
Neural Networks (CNN) which allows making Deep Learn-
ing. Almost half of these techniques use X-ray images. Nev-
ertheless, several other data sources are used at different 
proportions as shown in Fig. 5. They include Computed 
Tomography (CT) images, Text data, Time series, Sounds, 
Coughing/Breathing videos, and even Blood Samples world 
cloud of the works we have summarized, reviewed, and ana-
lyzed in this paper can be seen in Fig. 6.

There are similar surveys on AI and COVID-19 (e.g. in 
the works of Rasheed et al. [3], Shah et al. [4], Mehta et al. 
[5], Shinde et al. [6] and Chiroma et al. [7]). What makes 
this survey different is the focus on specialized Machine 
Learning techniques proposed globally to detect, diagnose, 
and predict COVID-19.

The remainder of this paper is organized as follows. In 
the second section, the definition of Deep Learning and its 

Fig. 3   Number of COVID-19 published articles by countries
Fig. 4   Percentage of identified COVID-19 papers in different scien-
tific publishers

Fig. 5   Proportion of the different data sources used in COVID-19 
publications
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connection with AI and Machine Learning is given with 
descriptions of the most used algorithms. The third section 
presents a classification of the different approaches proposed 
to deal with COVID-19. They are illustrated by multiple 
tables highlighting the most important parameters of each 
of them. The fourth section discusses the results revealed 
from the conducted study in regard to the techniques used 
and their evaluation. It notes the limitations encountered and 
possible solutions to overcome them. The last section con-
cludes the present article.

Artificial Intelligence, Machine Learning 
and Deep Learning

Artificial Intelligence (AI) as it is traditionally known is con-
sidered weak. Making it stronger results in making it capable 
of reproducing human behavior with consciousness, sensi-
tivity and spirit. The appearance of Machine Learning (ML) 
was the means that made it possible to take a step towards 
achieving this objective. By definition, Machine Learning 
is a subfield of AI concerned with giving computers the 
ability to learn without being explicitly programmed. It is 
based on the principle of reproducing a behavior thanks to 
algorithms, themselves fed by a large amount of data. Faced 
with many situations, the algorithm learns which decision 
to make and creates a model. The machine can therefore 
automate the tasks according to the situations. The general 
process to carry out a Machine Learning requires a training 
dataset, a test dataset and an algorithm to generate a predic-
tive model (Fig. 7). Four types of ML can be distinguished 
as we can see in Fig. 8.

Supervised Learning

It is a form of machine learning that falls under artificial 
intelligence. The idea is to “guide” the algorithm on the 

way of learning based on pre-labeled examples of expected 
results. Artificial intelligence then learns from each example 
by adjusting its parameters to reduce the gap between the 
results obtained and the expected ones. The margin of error 
is thus reduced over the training sessions, with the aim of 
being able to generalize learning in the objective to predict 
the result of new cases [8, 9]. The output is called classifica-
tion if labels are like discrete classes or regression if they 
are like continuous quantities. Within each category, there 
exists several algorithms [10, 11]. We define below those 
which was applied in the detection/prediction of COVID-19.

Linear Regression

Linea regression can be considered as one of the most con-
ventional machine learning techniques [12], in which the 
best fit line/hyperplane for the available training data is 
determined using the minimum mean squared error function. 
This algorithm considers the predictive function as linear. 
Its general form is as follows: Y = a ∗ X + b + � with a and 
b two constants. Y is the variable to be predicted, X the vari-
able used to predict, a is the slope of the regression and b is 
the intercept, that is, the value of Y when X is zero.

Logistic Regression

Despite its name, Logistic Regression [13] can be employed 
to perform regression as classification. It is based on the 
sigmoid predictive function defined as: h(z) = 1

1+e−z
 where z 

is a linear function. The function returns a probability score 
P between 0 and 1. In order to map this to two discrete 
classes ( 0 or 1), a threshold value � is fixed. The predicted 
class is equal to 1 if P ≥ � , to 0 otherwise.

Support Vector Machine (SVM)

Similar to the previously defined algorithms, the idea behind 
SVM [14, 15] is to distinctly classifies data points by find-
ing an hyperplane in an N-dimensional space. Since there 

Fig. 6   A world cloud of the works we have summarized, reviewed, 
and analyzed in this paper

Fig. 7   Machine learning prediction process
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are several possibilities to choose the hyperplane, in SVM a 
margin distance is calculated between data points of the two 
classes to separate. The objective is to maximize the value of 
this margin to get a clear decision boundary helping in the 
classification of future data points.

Decision Tree

A Decision Tree [16] is an algorithm that seeks to partition 
the individuals into groups of individuals as similar as pos-
sible from the point of view of the variable to be predicted. 
The result of the algorithm produces a tree that reveals hier-
archical relationships between the variables. An iterative 
process is used where at each iteration a sub-population of 
individuals is obtained by choosing the explanatory vari-
able which allows the best separation of individuals. The 
algorithm stops when no more split is possible.

Random Forest Algorithms

Random Forest Algorithms are methods that provide predic-
tive models for classification and regression [17, 18]. They 
are composed of a large number of Decision Tree blocks 
used as individual predictors. The fundamental idea behind 
the method is that instead of trying to get an optimized 
method all at once, several predictors are generated and their 
different predictions are pooled. The final predicted class is 
the one having the most votes.

Artificial Neural Network (ANN)

Artificial Neural Networks is a popular Supervised clas-
sification algorithm trying to mimic the way human brain 
works. It is often used whenever there is abundant labeled 
training data with many features [19]. The network calcu-
lates from the input a score (or a probability) to belong to 

Fig. 8   Classification of Machine 
Learning Algorithms
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each class. The class assigned to the input object corre-
sponds to the one with the highest score. A Neural Network 
is a system made up of neurons. It is divided into several 
layers connected to each other where the output of one layer 
corresponds to the input of the next one [20, 21]. The cal-
culation of the final score is based on the calculation of a 
linear function from the layers weights and an activation 
function. The weights values are randomly assigned to each 
input at the beginning and then are learned (updated) by 
backpropagation of the gradient to minimize the loss func-
tion associated with the final layer. The optimization is done 
with a gradient descent technique [22].

Unsupervised Learning

Unsupervised learning is a type of self-organized learning 
that learns and creates models from unlabeled training data-
sets (unlike Supervised Learning). There are two practices 
in Unsupervised Learning. The first one is the clustering, 
which is the fact of gathering similar data in homogene-
ous groups. It is performed by applying one of the many 
existing clustering algorithms [23]: K-means, Hierarchical 
clustering, Hidden Markov, etc. The second practice is the 
dimensionality reduction [24] which consists of the reduc-
tion of features in highly dimensional data. The purpose is 
to extract new features and to find the best linear transforma-
tion representing maximum data points by guaranteeing a 
minimum loss of information.

Deep Learning

As illustrated in Fig. 9, Deep Learning [25, 26] is a branch 
of AI that focuses on creating large Neural Network mod-
els that are capable of making decision based on Machine 
Learning models, it is a Neural Networks with many hidden 
neural layers. Indeed, it has been observed that the addition 
of layers of neurons has a great impact on the quality of the 
results obtained.

There are many different deep learning algorithms other 
than ANN. In the following we define the most used ones 
and which are applied in the context of COVID-19.

Convolutional Neural Network (CNN)

Convolutional Neural Networks or ConvNets [27, 28] is a 
type of ANN used to make a Deep Learning that is able 
to categorize information from the simplest to the most 
complex one. They consist of a multilayer stack of neurons 
as well as mathematical functions with several adjustable 
parameters, which preprocess small amounts of information. 
Convolutional networks are characterized by their first con-
volutional layers (usually one to three). They seek to identify 
the presence of a basic and abstract pattern in an object. Suc-
cessive layers can use this information to distinguish objects 
from each other (classification / recognition).

Recurrent Neural Network (RNN)

Recurrent Neural Network [29, 30] is also a type of ANN 
used to make a Deep Learning where information can move 
in both directions between the deep layers and the first lay-
ers. This allows it to keep information from the near past in 
memory. For this reason, RNN is particularly suited to appli-
cations involving context, and more particularly to the pro-
cessing of temporal sequences such as learning and signal 
generation. However, for applications involving long time 
differences (typically the classification of video sequences), 
this “short-term memory” is not sufficient because forgetting 
begins after about fifty iterations.

Generative Adversarial Network (GAN)

GAN [31] is a Deep Learning technique. It is based on the 
competition of two networks within a framework. These 
two networks are called “generator” and “discriminator”. 
The generator is a type of CNN whose role is to create new 
instances of an object which means that outputs are pro-
duced without it being possible to determine if they are false. 
On the other hand, the discriminator is a “deconvolutive” 
neural network that determines the authenticity of the object 
(whether or not it is part of a data set).

Reinforcement Learning

Reinforcement Learning [32, 33] is a method of learning 
for machine learning models. Basically, this method lets the 
algorithm learn from its own mistakes. To learn how to make 
the right decisions, the AI program is directly confronted 
with choices. If it is wrong, it is “penalized”. On the con-
trary, if it makes the right decision, it is “rewarded”. In order 

Fig. 9   Classification of Machine Learning Approaches
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to get more and more rewards, AI will therefore do its best 
to optimize its decision-making.

Overview of Machine Learning approaches 
used to combat COVID‑19

Supervised Learning

Support Vector Machine (SVM)

Zhang et al. [34] applied Support Vector Machine (SVM) 
model for COVID-19 cases detection and classification. The 
clinical information and blood/urine test data were used 
in their work to validate SVM’s performance. Simulation 
results demonstrated the effectiveness of the SVM model 
by achieving an accuracy of 81.48%, sensitivity of 83.33%, 
and specificity of 100%.

Hassanien et al. [35] proposed a new approach based on 
the hybridization of SVM with Multi-Level Thresholding for 
detecting COVID-19 infected patients from X-ray images. 
The performance of the hybrid approach was evaluated using 
40 contrast-enhanced lungs X-ray images (15 normal and 25 
with COVID-19). A similar work was done by Sethy et al. 
[36], in which a combined approach based on the combina-
tion of SVM with 13 pre-trained CNN models for COVID-
19 detection from chest X-ray images were proposed. 
Experimental results showed that ResNet50 combined with 
SVM outperforms other CCN models combined with SVM 
by achieving an average classification accuracy of 95.33%.

Sun et  al. [37] used SVM model for predicting the 
COVID-19 patients with severe/critical symptoms. 220 
clinical/laboratory observations records and 336 cases of 
patients infected COVID-19 divided into training and test-
ing datasets were used to validate the performance of the 
SVM model. Simulation results showed that the SVM model 
achieves an Area Under Curve (AUC) of 0.9996 and 0.9757 
in the training and testing dataset, respectively.

Singh et al. [38] used four machine learning approaches 
(SVM with Bagging Ensemble, CNN, Extreme Learning 
Machine (ELM), Online Sequential ELM (OS-ELM)) for 
automatic detection of COVID-19 cases. The performance 
of the proposed approaches was tested using datasets of 
702 CT scan images (344with COVID-19 and 358 normal). 
Experimental results revealed the efficiency of SVM with 
Bagging Ensemble by obtaining an accuracy, precision, sen-
sitivity, specificity, F1-score, and AUC of 95.70%, 95.50%, 
96.30%, 94.80%, 95.90%, and 95.80%, respectively.

Singh et al. [39] proposed Least Square-SVM (LS-SVM) 
and Autoregressive Integrated Moving Average (ARIMA) 
for the prediction of COVID-19 cases. A dataset of COVID-
19 confirmed cases collected from five the most affected 

countries1 was used to validate the proposed models. It 
was demonstrated that the LS-SVM model outperforms the 
ARIMA model by obtaining an accuracy of 80%.

Nour et al. [40] applied machine learning approaches 
such as SVM, Decision tree (DT), and KNN for automatic 
detection of positive COVID-19 cases. The performance of 
the proposed approaches was validated on a public COVID-
19 radiology database divided into training and test sets with 
70% and 30% rates, respectively.

Tabrizchi et al. [41] used SVM with Naive Bayes (NB), 
Gradient boosting decision tree (GBDT), AdaBoost, CNN, 
and Multilayer perceptron (MLP) for rapid diagnosis of 
COVID-19. A dataset of 980 CT scan images (430 with 
COVID-19 and 550 normal) was used in the simulation 
and results showed that SVM outperforms other machine-
learning approaches by achieving an average accuracy, pre-
cision, sensitivity, and F1-score of 99.20%, 98.19%, 100%, 
and 99.0%, respectively.

Regression Approaches

Yue et al. [42] used a linear regression model for the pre-
diction of COVID-19 infected patients. CT images of 52 
patients collected from five hospitals in Ankang, Lishui, 
Zhenjiang, Lanzhou, and Linxia were used to evaluate the 
performance of the regression model. Simulation results 
demonstrated that the linear regression model outperforms 
the Random Forest algorithm.

Another similar work was done by Shi et al. [43], in which 
a least absolute shrinkage and selection operator (LASSO) 
logistic regression model was proposed. The effectiveness 
of the proposed model was evaluated based on CT images 
taken from 196 patients (151 non-severe patients and 45 
severe patients). Experimental results showed the high per-
formance of the proposed model compared to quantitative 
CT parameters and PSI score by achieving an accuracy of 
82.70%, sensitivity of 82.20%, specificity of 82.80%, and 
AUC of 89%

Yan et al. [44] proposed a supervised regression model, 
called XGBoost, for predicting COVID-19 patients. A 
database of blood samples of 485 infected patients in the 
region of Wuhan, China was used in simulations and results 
showed that XGBoost gives good performance by achieving 
an overall accuracy of 90% in the detection of patients with 
COVID-19.

Salama et al. [45] used the linear regression model with 
SVM and ANN for the prediction of COVID-19 infected 
patients. The effectiveness of the proposed models was 
assessed based on the Epidemiological dataset collected 

1  https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​coron​avirus-​2019/​
situa​tion-​repor​ts.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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from many health reports of real-time cases. Simulation 
results demonstrated that SVM has the lowest mean abso-
lute error with the value of 0.21, while the regression model 
has the lowest root mean squared error with a value of 0.46.

Gupta et al. [46] proposed a linear regression technique 
with mathematical SEIR (Susceptible, Exposed, Infectious, 
Recovered) model for COVID-19 outbreak predictions. It 
was tested using data collected from John Hopkins Univer-
sity repository taking into account the root mean squared 
log error (RMSLE) metric. Simulation results showed that 
SEIR model has the lowest RMSLE with the value of 1.52.

In the work of Chen and Liu [47], Logistic Regression 
with Random Forest, Partial Least Squares Regression 
(PLSR), Elastic Net, and Bagged Flexible Discriminant 
Analysis (BFDA) were proposed for predicting the sever-
ity of COVID-19 patients. The efficiency of the proposed 
models was evaluated using data of 183 severely infected 
COVID-19 patients and results showed that the logis-
tic regression model outperforms other machine learning 
models by achieving a sensitivity of 89.20%, specificity of 
68.70%, and AUC of 89.20%.

Another similar work was done by Ribeiro et al. [48], in 
which six machine learning approaches such as stacking-
ensemble learning (SEL), support vector regression (SVR), 
cubist regression (CUBIST), auto-regressive integrated 
moving average (ARIMA), ridge regression (RIDGE), and 
random forest (RF) were employed for prediction purposes 
in COVID-19 datasets.

Yadav et al. [49] used three machine learning approaches 
(Linear Regression, Polynomial Regression, and SVR) for 
COVID-19 epidemic prediction and analysis. A dataset con-
taining the total number of COVID19 positive cases was 
collected from different countries such as South Korea, 
China, US, India, and Italy. Results showed the superior-
ity of SVR compared to Linear Regression and Polynomial 
Regression. The average accuracy for SVR, Linear Regres-
sion, and Polynomial Regression are 99.47%, 65.01%, and 
98.82%, respectively.

Matos et al. [50] proposed four linear regression models 
(Penalized binomial regression (PBR, Conditional inference 
trees (CIR), Generalised linear (GL), and SVM with linear 
kernel) for COVID-19 diagnosis. CT images and Clinical 
data collected from 106 patients were used in the simulation 
and results showed that SVM with linear kernel gives better 
results compared to other models by providing an accuracy 
of 0.88, sensitivity of 0.90, specificity of 0.87, and AUC of 
0.92.

Khanday et al. [51] proposed Logistic regression with six 
machine learning approaches (Adaboost, Stochastic Gradient 
Boosting, Decision Tree, SVM, Multinomial Naïve Bayes, 
and Random Forest) for COVID-19 detection and classifi-
cation. It was evaluated using 212 clinical reports divided 
into four classes including COVID, ARDS, SARS, and Both 

(COVID, ARDS). Simulation results showed that logistic 
regression provides excellent performance by obtaining 94% 
of precision, 96% of sensitivity, accuracy of 96.20%, and 
95% of F1-score.

Yang et al. [52] proposed Gradient Boosted Decision Tree 
(GBDT) with Decision Tree, Logistic Regression, and Ran-
dom Forest for COVID-19 diagnosis. 27 routine laboratory 
tests collected from the New York Presbyterian Hospital/
Weill Cornell Medicine (NYPH/WCM) were used to evalu-
ate this technique. Experimental results revealed the effi-
ciency of GBDT by achieving a sensitivity, specificity, and 
AUC of 76.10 %, 80.80%, and 85.40%, respectively.

Saqib [53] developed a novel model (PBRR) by combin-
ing Bayesian Ridge Regression (BRR) with n-degree Poly-
nomial for forecasting COVID-19 outbreak progression. The 
performance of the PBRR model was validated using public 
datasets collected from John Hopkins University available 
until 11th May 2020. Experimental results revealed the good 
performance of PBRR with an average accuracy of 91%.

Random Forest Algorithm

Shi et al. [54] proposed an infection Size Aware Random 
Forest method (iSARF) for diagnosis of COVID-19. A data-
set of 1020 CT images (1658 with COVID-19, and 1027 
with pneumonia) was used to assess the performance of 
iSARF. Simulation results demonstrated that iSARF pro-
vides good performance by yielding the sensitivity of 90.7%, 
specificity of 83.30%, and accuracy of 87.90% under five-
fold cross-validation.

Iwendi et al. [55] combined RF model with AdaBoost 
algorithm for COVID-19 disease severity prediction. The 
efficiency of the boosted RF model was evaluated based on 
COVID-19 patient’s geographical, travel, health, and demo-
graphic data. Boosted RF model gives an accuracy of 94% 
and F1-Score of 86% on the dataset used.

In the work of Brinati et al. [56], seven machine learn-
ing approaches (Random Forest, Logistic Regression, KNN, 
Decision Tree, Extremely Randomized Trees, Naïve Bayes, 
and SVM) were proposed for the identification of COVID-
19 positive patients. Routine blood exams collected from 
279 patients were used in the simulation and results demon-
strated the feasibility and effectiveness of the Random Forest 
algorithm by achieving an accuracy, precision, sensitivity, 
specificity, and AUC of 82%, 83%, 92%, 65%, and 84%, 
respectively.

The main characteristics of the predefined Supervised 
Learning approaches are given in Table 1.

Deep Learning Approaches

The most applied method to detect, predict and diag-
nostic COVID-19 are based on Deep Learning with its 
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different techniques. In the following, we summarize the 
found approaches in respect of the classification given in 
Fig. 8. We gather in Tables 2, 3, 4, 5 and 6 are their main 
features.

Convolutional Neural Network (CNN)

Wang et al. [60] proposed a deep CNN model, called Resid-
ual Network34 (ResNet34), for COVID-19 diagnosis in CT 
scan images. The effectiveness of ResNet34 was validated 
using CT scan images collected from 99 patients (55 patients 
with typical viral pneumonia and 44 patients with COVID-
19). Simulation results showed that ResNet34 achieves an 
overall accuracy of 73.10%, specificity of 67%, and sensitiv-
ity of 74%.

Narin et al. [61] used three pre-trained techniques includ-
ing ResNet50, InceptionV3, and InceptionResNetV2 for 
automatic diagnosis and detection of COVID-19. The case 
studies included four classes including normal, COVID-19, 
bacterial, and viral pneumonia patients. The authors dem-
onstrated that ResNet50 gives the highest accuracy in three 
different datasets.

Maghdid et al. [62] proposed a CNN model with AlexNet 
for COVID-19 diagnosis. A dataset of 361 CT images and 
170 X-ray images of COVID-19 disease collected from five 
different sources was used in the simulation. Quantitative 
results demonstrated that AlexNet achieves an accuracy of 
98%, a sensitivity of 100%, and a specificity of 96% in X-ray 
images, while the modified CNN model achieves 94.10% 
of accuracy, 90% of sensitivity, and 100% of specificity in 
CT-images.

Wang et al. [63] employed eight deep learning (DL) mod-
els (fully convolutional network (FCN-8 s), UNet, VNet, 
3D UNet++, dual-path network (DPN-92), Inceptionv3, 
ResNet50, and Attention ResNet50) for COVID-19 detec-
tion. The efficiency of the proposed models was evaluated 
using 1,136 CT images (723 with COVID-19 and 413 nor-
mal) collected from five hospitals. Simulation results dem-
onstrated the superiority of 3D UNet++ compared to other 
CNN models.

In CT scan images, UNet++ was employed by Chen et al. 
[64] for COVID-19 detection. The performance of UNet++ 
was assessed based on a dataset of 106 CT scan images. 
Simulation results showed that UNet++ provides a per-
patient accuracy of 95.24%, sensitivity of 100%, specificity 
of 93.55%. A per-image accuracy of 98.85%, sensitivity of 
94.34%, specificity of 99.16% were also achieved.

Apostolopoulos et  al. [65] proposed five deep CNN 
models (VGG19, MobileNetv2, Inception, Xception, and 
Inception ResNetv2) for COVID-19 detection cases. The 
proposed models were tested using two datasets of 1428 
and 1442 images, respectively. In the first dataset (224 
with COVID-19, 700 with bacterial pneumonia, and 504 Ta
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normal), MobileNetv2 approach provided better results with 
a two-class problem accuracy, three-class problem accuracy, 
sensitivity, and specificity of 97.40%, 92.85%, 99.10%, 
and 97.09%, respectively. In the second dataset (224 with 
COVID-19, 714 with bacterial pneumonia, and 504 normal), 
MobileNetv2 approach also provided better performance by 
achieving a two-class problem accuracy, three-class prob-
lem accuracy, sensitivity, and specificity of 96.78%, 94.72%, 
98.66%, and 96.46%, respectively.

Another deep CNN model was developed by Zhang et al. 
[66] which is composed of three components (a backbone 
network, a classification head, and an anomaly detection 
head). This technique was evaluated using 100 chest X-ray 
images of 70 patients taken from the Github repository. 1431 
additional chest X-ray images of 1008 patients taken from 
the public Chest X-ray14 data were also used to facilitate 
deep learning. Simulation results showed that the proposed 
model is an effective diagnostic tool for low-cost and fast 
COVID-19 screening by achieving the accuracy of 96% for 
COVID-19 cases and 70.65% for non-COVID-19 cases.

Another intersting project was done by Ghoshal and 
Tucker [67], in which a Bayesian Convolutional Neural Net-
works (BCNN) was used in conjunction with Dropweights 
for COVID-19 diagnosis and classification.

Toraman et al. [68] proposed a CNN model, called CAP-
SNET, for fast and accurate diagnostics of COVID-19 cases. 
CAPSNET model was evaluated using two datasets of 2100 
and 13,150 cases, respectively. In the first dataset (1050 with 
COVID-19 and 1050 no-findings), CAPSNET provided bet-
ter results by achieving an accuracy, precision, sensitivity, 
specificity, F1-score of 97.23%, 97.08%, 97.42%, 97.04%, 
and 97.24% respectively. In the second dataset (1050 with 
COVID-19, 1050 no-findings, and 1050 pneumonia), CAP-
SNET provided better performance by achieving an accu-
racy, precision, sensitivity, specificity, and F1-score of 
84.22%, 84.61%, 84.22%, 91.79%, and 84.21% respectively.

Hammoudi et al. [69] investigated six deep CNN mod-
els (ResNet34, ResNet50, DenseNet169, VGG19, Incep-
tionResNetV2, and RNN-LSTM) for COVID-19 screen-
ing and detection. A dataset of 5,863 children’s X-Ray 
images (Normal and Pneumonia) was exploited to evalu-
ate the techniques proposed. Simulation results showed 
that DenseNet169 outperforms other deep CNN models by 
obtaining an average accuracy of 95.72%.

Ardakani et  al. [70] proposed ten deep CNN mod-
els (AlexNet, VGG16, VGG19, SqueezeNet, GoogleNet, 
MobileNetV2, ResNet18, ResNet50, ResNet101, and Xcep-
tion) for COVID-19 diagnosis. A dataset of 1020 CT images 
(108 with COVID-19, and 86 with bacteria pneumonia) was 
used to benchmark the efficiency. Simulation results showed 
the high performance of ResNet101 compared to other deep 
CNN models by achieving an accuracy of 99.51%, sensitiv-
ity of 100%, AUC of 99.4%, and specificity of 99.02%. Xu Ta
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et al. [71] proposed a hybrid deep learning model, called 
ResNet+, based on combining the traditional ResNet with 
location-attention mechanism for COVID-19 diagnosis. The 
effectiveness of ResNet+ was evaluated using 618 Computer 
Tomography (CT) images (175 normal, 219 with COVID-
19, 224 with Influenza-A viral pneumonia) and results 
demonstrated that ResNet+ provides an overall accuracy 
of 86.70%, sensitivity of 81.50%, precision of 80.80%, and 
F1-score of 81.10%. It is also revealed that the proposed 
ResNet+ is a promising supplementary diagnostic technique 
for clinical doctors.

Cifci [72] proposed two deep CNN model (AlexNet 
and InceptionV4) for Diagnosis and prognosis analysis of 
COVID-19 cases. The effectiveness of the proposed mod-
els was evaluated using 5800 CT images divided into 80% 
training and 20% test. It was demonstrated that AlexNet out-
performs InceptionV4 by achieving an overall accuracy of 
94.74%, a sensitivity of 87.37%, and a specificity of 87.45%. 
Bai et al. [73] did a similar work by proposin an EfficientNet 
B4 CNN model with a fully connected neural network for 
the detection and classification of COVID-19 cases. CT scan 
images of 521 patients were used in the simulation.

Loey et al. [74] proposed three deep CNN approaches 
(Alexnet, Googlenet, and Restnet18) with GAN model for 
COVID-19 detection. The proposed approaches were eval-
uated using three scenarios: i) four classes (normal, viral 
pneumonia, bacteria pneumonia, and COVID-19 images); 
ii) three classes (COVID-19, Normal, and Pneumonia); and 
iii) two classes (COVID-19, Normal). Experimental results 
demonstrated that Googlenet gives better performance in the 
first and third scenario by achieving an accuracy of 80.60%, 
and 100%, respectively. Alexnet provides better results in 
the second scenario by achieving an accuracy of 85.20%.

Singh et al. [75] proposed a novel deep learning approach 
based on convolutional neural networks with multi-objec-
tive differential evolution (MODE) for the classification 
of COVID-19 patients. In addition, Mukherjee et al. [76] 
proposed a shallow light-weight CNN model for automatic 
detection of COVID-19 cases from Chest X-rays in a similar 
manner.

Ozkaya et al. [77] proposed an effective approach based 
on the combination of CNN model with the ranking method 
and SVM technique for COVID-19 detection. The case stud-
ies included two datasets generated from 150 CT images, 
each dataset contains 3000 normal images and 3000 with 
COVID-19. Simulation results showed the high perfor-
mance and robustness of the proposed approach compared 
to VGG16, GoogleNet, and ResNet50 models in terms of 
accuracy, sensitivity, specificity, sensitivity, F1-score, and 
Matthews Correlation Coefficient (MCC) metrics.

Toğaçar et al. [78] proposed two CNN models (Mobile-
NetV2, SqueezeNet) combined with SVM for COVID-
19 detection. The efficiency of the proposed models was 

validated using a dataset of X-ray images divided into three 
classes: normal, with COVID-19, and with pneumonia. The 
accuracy obtained in their work is of 99.27%.

Pathak et al. [79] proposed a ResNet50 deep transfer 
learning technique for the detection and classification of 
COVID-19 infected patients. The effectiveness of ResNet50 
was evaluated using 852 CT images collected from various 
datasets (413 COVID-19 (+) and 439 normal or pneumo-
nia). Simulation results showed that ResNet50 model gives 
efficient performance by achieving a specificity, preci-
sion, sensitivity, accuracy of 94.78%, 95.19%, 91.48%, and 
93.02%, respectively.

Elasnaoui et al. [80] proposed seven Deep CNN models 
including baseline CNN, VGG16, VGG19, DenseNet201, 
InceptionResNetV2, InceptionV3, Xception, Resnet50, and 
MobileNetV2 for automatic classification of pneumonia 
images. Chest X-Ray & CT datasets containing 5856 images 
(4273 pneumonia and 1583 normal) were used to validate 
the proposed models and results demonstrated that Resnet50, 
MobileNetV2, and InceptionResnetV2 provide high perfor-
mance with an overall accuracy more than 96% against other 
CNN models with an accuracy around 84%. Another similar 
work was done by Zhang et al. [81], in which a diagno-
sis COVID-19 system based on 3D ResNet18 deep learn-
ing technique with five deep learning-based segmentation 
models (Unet, DRUNET, FCN, SegNet & DeepLabv3) for 
Diagnosis and prognosis prediction of COVID-19 cases.

Rajaraman and Antali [82] used five deep CNN models 
(VGG16, InceptionV3, Xception, DenseNet201, NasNetmo-
bile) for COVID-19 screening. Six datasets of x-ray images 
including Pediatric CXR, RSNA CXR, CheXpert CXR, NIH 
CXR-14, Twitter COVID-19 CXR, and Montreal COVID-19 
CXR were used to validate the effectiveness of the proposed 
models. The accuracy obtained was 99.26%.

Tsiknakis et al. [83] proposed a modified deep CNN 
model (Modified InceptionV3) for COVID-19 screening on 
chest X-rays. The Modified InceptionV3 was evaluated using 
two chest X-ray datasets, the first dataset was collected from 
[84], the second one was collected from the QUIBIM imag-
ingcovid19 platform database and various public reposito-
ries. Experimental results showed that the modified Incep-
tionV3 model gives an average accuracy, AUC, sensitivity, 
and specificity of 76%, 93%, 93%, and 91.80%, respectively.

Ahuja et al. [85] presented pre-trained transfer learning 
models (ResNet18, ResNet50, ResNet101, and SqueezeNet) 
for automatic detection of COVID-19 cases. Another similar 
work was done by Oh et al. [86], in which a patch-based con-
volutional neural network was proposed based on ResNet18.

Elasnaoui and Chawki [87] used seven pre-trained deep 
learning models (VGG16, VGG19, DenseNet201, Inception-
ResNetV2, InceptionV3, Resnet50, and MobileNetV2) for 
automated detection and diagnosis of COVID-19 disease. 
The effectiveness of the proposed models was assessed using 
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chest X-ray & CT dataset of 6087 images. Simulation results 
showed the superiority of InceptionResNetV2 compared to 
other deep CNN models by achieving an accuracy, precision, 
sensitivity, specificity, and F1-score of 92.60%, 93.85%, 
82.80%, 97.37%, and 87.98%, respectively.

Chowdhury et  al. [88] introduced eight deep CNN 
(DenseNet201, RestNet18, MobileNetv2, InceptionV3, 
VGG19, ResNet101, CheXNet, and SqueezNet) for COVID-
19 detection. A dataset of 3487 x-ray images (423 with 
COVID-19, 1485 with viral pneumonia, and 1579 normal) 
with and without image augmentation was used in the vali-
dation of the proposed models. Simulation results showed 
that CheXNet gives better results when image augmenta-
tion was not applied with an accuracy, precision, sensitivity, 
specificity, F1-score of 97.74%, 96.61 %, 96.61%, 98.31%, 
and 96.61% respectively. However, when image augmen-
tation was used, DenseNet201 outperforms other deep 
CNN models by achieving an accuracy, precision, sensitiv-
ity, specificity, and F1-score of 97.94%, 97.95%, 97.94%, 
98.80%, and 97.94%, respectively.

Apostolopoulos et al. [89] proposed a deep CNN model 
(MobileNetv2) for COVID-19 detection and classification. 
The efficiency of MobileNetv2 was assessed using a large-
scale dataset of 3905 X-ray images and results showed its 
excellent performance by achieving an accuracy, sensitivity, 
specificity of 99.18%, 97.36%, and 99.42%, respectively in 
the detection of COVID-19.

Rahimzadeh and Attar [90] proposed a modified deep 
CNN model based on the combination of Xception and 
ReNet50V2 for detecting COVID-19 from chest X-ray 
images. The proposed model was tested using 11,302 chest 
X-ray images (31 with COVID-19, 4420 with pneumonia, 
and 6851 normal cases). Experimental results showed that 
the combined model gives an average accuracy, precision, 
sensitivity, and specificity of 91.4%, 72.8%, 87.3%, and 
94.2%, respectively. In a similar work, Abbas et al. [91] 
adapted a Convolutional Neural Network model, called 
Decompose Transfer Compose (DeTraC). The effectiveness 
of the DeTraC model was validated using a dataset of X-ray 
images collected from several hospitals and institutions 
around the world. As the results 95.12% accuracy, 97.91% 
sensitivity, and 1.87% specificity were obtained.

Afshar et al. [92] developed a deep CNN model (COVID-
CAPS) using on Capsule Networks for COVID-19 identifi-
cation and diagnosis. The effectiveness of COVID-CAPS 
was tested using two publicly available chest X-ray datasets. 
[84, 93] As the results 98.30% accuracy, 80% sensitivity, and 
8.60% specificity were obtained.

Brunese et al. [94] adopted a deep CNN approach (VGG-
16) for automatic and faster COVID-19 detection from chest 
X-ray images. The robustness of VGG-16 was evaluated 
using 6523 chest X-ray images (2753 with pneumonia dis-
ease, 250 with COVID-19, while 3520 healthy) and results 

showed that VGG-16 achieves an accuracy of 97% for the 
COVID-19 detection and diagnosis.

Jin et al. [95] proposed a deep learning-based AI sys-
tem for diagnosis of COVID-19 in CT images. 10,250 CT 
scan images (COVID-19, viral pneumonia, influenza-A/B, 
normal) taken from three centers in China and three pub-
licly available databases were used in the simulation and 
results showed that the proposed model achieves an AUC of 
97.17%, a sensitivity of 90.19%, and a specificity of 95.76%.

Truncated Inception Net was proposed by Das et al. [96] 
as a Deep CNN model for COVID-19 cases detection. Six 
different datasets were used in the simulation considering 
healthy, with COVID-19, with Pneumonia, and with Tuber-
culosis cases. It was demonstrated that Truncated Inception 
Net provides accuracy, precision, sensitivity, specificity, and 
F1-score of 98.77%, 99%, 95%, 99%, and 97%, respectively.

Asif et al. [97] proposed a Deep CNN model (Incep-
tion V3) with transfer learning for automatic detection of 
COVID-19 patients cases. A dataset consists of 3550 chest 
x-ray images (864 with COVID-19, 1345 with viral pneu-
monia, and 1341 normal) was used to test Inception V3. 
Simulation results proved the efficiency of the Inception V3 
by achieving an accuracy of 98%.

Punn and Agrawal [98] introduced five fine-tuned deep 
learning approaches (baseline ResNet, Inceptionv3, Incep-
tionResNetv2, DenseNet169, and NASNetLarge) for auto-
mated diagnosis and classification of COVID-19. The 
performance of the proposed approaches was validated 
using three datasets of X-ray and CT images collected from 
Radiological Society of North America (RSNA), [99] U.S. 
national library of medicine (USNLM), [100] and COVID-
19 image data collection. [84] Simulation results showed 
that NASNetLarge outperforms other CNN models by 
achieving 98% of accuracy, 88% of precision, 90% of sensi-
tivity, 95% of specificity, and 89% of F1-score.

Shelke et al. [101] proposed three CNN models (VGG16, 
DenseNet161, and ResNet18) for COVID-19 diagnosis and 
analysis. The proposed models were tested using two data-
sets of 1191 and 1000 X-ray images, respectively. In the 
first dataset (303 with COVID-19, 500 with bacterial pneu-
monia, and 388 normal), VGG16 approach provided better 
results with an accuracy of 95.9%. In the second dataset (500 
with COVID-19 and 500 normal), DenseNet161 approach 
provided better performance by achieving an accuracy of 
98.9%.

Rajaraman et al. [102] proposed eight deep CNN mod-
els (VGG16, VGG19, InceptionV3, Xception, Inception-
ResNetV2, MobileNetV2, DenseNet201, NasNetmobile) 
for COVID-19 screening. Four datasets of x-ray images 
including Pediatric CXR, RSNA CXR, Twitter COVID-
19 CXR, and Montreal COVID-19 CXR were used to 
validate the effectiveness of the proposed models. Experi-
mental results demonstrated that the weighted average of 
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the best-performing pruned models enhances performance 
by providing an accuracy, precision, sensitivity, AUC, 
F1-score of 99.01%, 99.01%, 99.01%, 99.72%, and 99.01%, 
respectively.

Another similar work was done by Luz et  al. [103], 
which can be considered as an extension of EfficientNet for 
COVID-19 detection and diagnosis in X-Ray Chest images. 
It was compared with MobileNet, MobileNetV2, ResNet50, 
VGG16, and VGG19. Simulation results demonstrated the 
effectiveness of EfficientNet compared to other deep CNN 
models by achieving an overall accuracy of 93.9%, sensitiv-
ity of 96.8%, and a positive prediction rate of 100%.

Jaiswal et al. [104] employed DenseNet201 based transfer 
learning for COVID-19 detection and diagnosis. The per-
formance of DenseNet201 was validated using 2492 chest 
CT-scan images (1262 with COVID-19 and 1230 healthy) 
taken into account precision, F1-measure, specificity, sen-
sitivity, and accuracy metrics. Quantitative results showed 
the effectiveness of compared to VGG16, Resnet152V2, 
and InceptionResNet by providing a precision, F1-measure, 
specificity, sensitivity, and accuracy of 96.29%, 96.29%, 
96.29% and 96.21%, and 96.25%, respectively.

Sharma [105] employed a ResNet50 CNN-based 
approach for COVID-19 detection. 2200 CT images (800 
with COVID-19, 600 viral pneumonia, and 800 normal 
healthy) collected from various hospitals in Italy, China, 
Moscow, and India were used in the simulation and results 
showed that ResNet50 outperforms ResNet+ by giving a 
specificity, sensitivity, accuracy of 90.29%, 92.1%, and 
91.0%, respectively. Pu et al. [106] conducted a similar work.

Alotaibi [107] used four pre-trained CNN models 
(RESNET50, VGG19, DENSENET121, and INCEP-
TIONV3) for the detection of COVID-19 cases. A dataset 
of X-ray images (219 with COVID-19, 1341 Normal, and 
1345 with Viral Pneumonia) was used in the experimen-
tation and results demonstrated the better performance of 
DENSENET121 compared to RESNET50, VGG19, and 
INCEPTIONV3 by achieving an accuracy, precision, sen-
sitivity, and F1-score of 98.71%, 98%, 98%, and 97.66%, 
respectively.

Goyal and Arora [108] proposed three CNN models 
(VGG16, VGG19, and ResNet50) for COVID-19 detection. 
This technique was evaluated using 748 chest X-ray images 
(250 with COVID-19, 300 normal, and 198 with pneumo-
nia bacteria) and results showed that VGG19 outperforms 
VGG16 and ResNet50 by achieving an accuracy of 98.79% 
and 98.12% in training and testing cases, respectively. A 
similar work was done by Das et al. [109], in which an 
extreme version of the Inception (Xception) model for the 
automatic detection of COVID-19 infection cases in X-ray 
images.

Rahaman et al. [110] used 15 different pre-trained CNN 
models for COVID-19 cases identification. 860 chest X-Ray 

images (260 with COVID-19, 300 healthy, and 300 pneu-
monia) were employed to investigate the effectiveness of the 
proposed models. Simulation results showed that the VGG19 
model outperforms other deep CNN models by obtaining an 
accuracy of 89.3%, precision of 90%, sensitivity of 89%, and 
F1-score of 90%.

Altan and Karasu [111] proposed a hybrid approach 
based on CNN model (EfficientNet-B0), two-dimensional 
(2D) curvelet transformation, and chaotic salp swarm algo-
rithm (CSSA) for COVID-19 detection. 2905 real raw chest 
X-ray images (219 with COVID-19, 1345 viral pneumonia, 
and 1341 normal) were used. Another similar work was done 
where a Confidence-aware anomaly detection (CAAD) was 
proposed based on EfficientNetB0

Ni et al. [112] proposed a CNN model, called MVPNet, 
for automatic detection of COVID-19 cases. 19,291 pulmo-
nary CT scans images (3854 with COVID-19, 6871 with 
bacterial pneumonia, and 8566 healthy) were employed to 
validate the performance of the MVPNet model. Experimen-
tal results demonstrated that MVPNet achieves a sensitivity 
of 100%, specificity of 65%, accuracy of 98%, and F1-score 
of 97%.

Nguyen et al. [113] employed two deep CNN models 
(EfficientNet and MixNet) for the detection of COVID-
19 infected patients from chest X-ray (CXR) images. The 
effectiveness of the proposed approach was validated using 
two real datasets consisting of: i) 13,511 training images 
and 1,489 testing images; ii) 14,324 training images and 
3,581 testing images. Simulation results demonstrated that 
the proposed approach outperforms some well-established 
baselines by yielding an accuracy larger than 95%.

Islam et al. [114] proposed four CNN models( VGG19, 
DenseNet121, InceptionV3, and InceptionResNetV2) and 
recurrent neural network (RNN) for COVID-19 diagnosis. 
A similar work was done by Mei et al. [115] with proposing 
a combination of SVM, random forest, MLP, and CNN.

Khan and Aslam [116] presented four CNN mod-
els (DenseNet121, ResNet50, VGG16, and VGG19) for 
COVID-19 diagnosis. The superiority of the proposed 
models was evaluated using a dataset of 1057 X-ray images 
including 862 normal and 195 with COVID-19. Experimen-
tal results demonstrated that VGG-19 model achieves better 
performance than DenseNet121, ResNet50, and VGG16 by 
achieving an accuracy, sensitivity, specificity, F1-score of 
99.33%, 100%, 98.77%, and 99.27%, respectively.

Perumal et al. [117] used deep CNN models (VGG16, 
Resnet50, and InceptionV3) and Haralick features for the 
detection of COVID-19 cases. A dataset of X-ray and CT 
images collected from various resources available in Github 
open repository, RSNA, and Google images was used in 
the simulation and results showed that the proposed models 
outperform other existing models with an average accuracy 
of 93%, precision of 91%, and sensitivity of 90%.
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Kumar et al. [118] used various deep learning models 
(VGG, DenseNet, AlexNet, MobileNet, ResNet, and Capsule 
Network) with blockchain and federated-learning technology 
for COVID-19 detection from CT images. These techniques 
were evaluated using a dataset of 34,006 CT scan images 
taken from the GitHub repository (https://​github.​com/​abdkh​
anstd/​COVID-​19). Simulation results revealed that the Cap-
sule Network model outperforms other deep learning models 
by achieving an accuracy of 0.83 and sensitivity of 0.967 
and precision of 0.83.

Zebin et al. [119] proposed three Deep CNN models 
(modified VGG16, ResNet50, and EfficientNetB0) for 
COVID-19 detection. A dataset of X-ray images (normal, 
non-COVID-19 pneumonia, and COVID-19) taken from 
COVID-19 image Data Collection was used to evaluate 
them. The overall accuracy of 90%, 94.30%, and 96.80% for 
the VGG16, ResNet50, and EfficientNetB0 were obtained.

Abraham and Nair [120] proposed a combined approach 
based on the combination of five multi-CNN models 
(Squeezenet, Darknet-53, MobilenetV2, Xception, and Shuf-
flenet) for the automated detection of COVID-19 cases from 
X-ray images.

Ismael and Şengür [121] proposed three deep learn-
ing techniques for COVID-19 detection from chest X-ray 
images. The first technique was proposed based on five 
pre-trained deep CNN models (ResNet18, ResNet50, 
ResNet101, VGG16, and VGG19), the second deep learn-
ing model was proposed using CNN model with end-to-end 
training, the third and the last technique was proposed using 
pre-trained CNN models and SVM classifiers with various 
kernel functions. A dataset of 380 chest X-ray images (180 
with COVID-19 and 200 normal (healthy)) was used for 
validation experimentation and results showed the effi-
ciency of CNN techniques compared to various local texture 
descriptors.

Goel et al. [122] proposed an optimized convolutional 
neural network model, called OptCoNet, for COVID-
19 diagnosis. A dataset of 2700 X-ray images (900 with 
COVID-19, 900 normal, and 900 with pneumonia) was 
employed to assess the performance of OptCoNet and results 
showed is effectiveness by providing accuracy, precision, 
sensitivity, specificity, and F1-score values of 97.78%, 
92.88%, 97.75%, 96.25%, and 95.25%, respectively.

Bahel and Pillali [123] proposed five deep CNN mod-
els (InceptionV4, VGG 19, ResNetV2-152, and DenseNet) 
for detecting COVID-19 from chest X-Ray images. These 
techniques were evaluated based on a dataset of 300 chest 
x-ray images of infected and uninfected patients. Heat map 
filter was used on the images for helping the CNN models 
to perform better. Simulation results showed that DenseNet 
outperforms other deep CNN models such as InceptionV4, 
VGG19, and ResNetV2-152.

Sitaula and Hossain [124] proposed a novel deep learn-
ing model based on VGG-16 with the attention module 
for COVID-19 detection and classification. Authors con-
ducted extensive experiments based on three X-ray image 
datasets D1 (Covid-19, No findings, and Pneumonia), D2 
(Covid, Normal, Pneumonia Bacteria, Pneumonia Viral), 
and D3 (Covid, Normal, No findings, Pneumonia Bacteria, 
and Pneumonia Viral) to test this technique. Experimental 
results revealed the stable and promising performance com-
pared to the state-of-the-art models by obtaining an accu-
racy of 79.58%, 85.43%, and 87.49% in D1, D2, and D3, 
respectively.

Jain et al. [125] proposed three CNN models (Inception 
V3, Xception, and ResNeXt) for COVID-19 detection and 
analysis. 6432 chest x-ray images divided into two classes 
including training set (5467) and validation set (965) were 
used to analyze the approaches performance. Simulation 
results showed that Xception model gives the highest accu-
racy with 97.97% as compared to other existing models.

Yasar and Ceylan [126] proposed a novel model based on 
CNN model with local binary pattern and dual-tree complex 
wavelet transform for COVID-19 detection on chest X-ray 
images. This approach was validated using two datasets of 
X-ray images: i) dataset of 230 images (150 with Covid-
19 and 80 normal) and ii) dataset of 476 images (150 with 
Covid-19 and 326 normal). Experimental results showed 
that the proposed model gives good performance by achiev-
ing an accuracy, sensitivity, specificity, F1-score, and AUC 
of 98.43%, 99.47%, 98%, 98.81%, and 99.90%, respectively 
for the first dataset. For the second dataset, the proposed 
model achieves an accuracy, sensitivity, specificity, F1-score 
and, AUC of 98.91%, 99.20%, 99.39%, 98.28%, and 99.91%, 
respectively.

Khalifa et al. [127] proposed a new approach based on 
three deep learning models (Resnet50, Shufflenet, and 
Mobilenet) and GAN for detecting COVID-19 in CT chest 
Medical Images. In a similar work, Mukherjee et al. [128] 
proposed a lightweight (9 layered) CNN-tailored deep neural 
network model. It was demonstrated that the proposed model 
outperforms InceptionV3.

Hira et al. [142] used nine CNN models (AlexNet, Goog-
leNet, ResNet50, SeResNet50, DenseNet121, InceptionV4, 
InceptionResNetV2, ResNeXt50, and SeResNeXt50) for 
the detection of COVID–19 disease. The efficiency of the 
proposed models was validated using four scenarios: (i) two 
classes (224 with COVID–19 and 504 Normal); (ii) three 
classes (224 with COVID–19, 504 Normal, and 700 with 
bacterial Pneumonia); (iii) three classes (224 with COVID-
19, 504 Normal, and 714 with bacterial and viral Pneumo-
nia) and (iv) four classes (1346 normal, 1345 viral pneumo-
nia, 2358 bacteria pneumonia, and with 183 COVID-19). 
Experimental results demonstrated that SeResNeXt50 

https://github.com/abdkhanstd/COVID-19
https://github.com/abdkhanstd/COVID-19
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outperforms other methods in terms of accuracy, precision, 
sensitivity, specificity, and F1-score.

Recurrent Neural Network (RNN)

Jelodar et al. [147] proposed a novel model based on LSTM 
with natural language process (NLP) for COVID-19 cases 
classification. The effectiveness of the proposed model was 
validated using a dataset of 563,079 COVID-19-related 
comments collected from the Kaggle website (between 
January 20, 2020 and March 19, 2020) and results showed 
its efficiency and robustness on this problem area to guide 
related decision-making.

Chimmula et al. [148] used LSTM model for forecast-
ing of COVID-19 cases in Canada. The performance of 
LSTM was validated using data collected from Johns Hop-
kins University and Canadian Health Authority with several 
confirmed cases and results showed that the LSTM model 
achieves better performance when compared with other fore-
casting models.

Jiang et  al. [149] developed a novel model, called 
BiGRU-AT, based on bidirectional GRU with an attention 
mechanism for COVID-19 detection and diagnosis. The per-
formance of BiGRU-AT was assessed using breathing and 
thermal data extracted from people wearing masks. Simula-
tion results showed that BiGRU-AT achieves an accuracy, 
sensitivity, specificity, and F1-score of 83.69%, 90.23%, 
76.31%, and 84.61%, respectively.

Mohammed et al. [150] proposed LSTM with ResNext+ 
and slice attention module for COVID-19 detection. A total 
of of 302 CT volumes (20 with confirmed COVID19 and 
282 normal) was used for testing and training the proposed 
model. According to the results, the proposed model pro-
vides an accuracy of 77.60%, precision of 81.90%, sensi-
tivity of 85.50%, specificity of 79.30%, and F1-score of f 
81.40%.

Islam et al. [151] introduced a novel model based on the 
hybridization of LSTM with CNN for automatic diagnosis 
of COVID-19 cases. The effectiveness of the hybrid model 
was validated using a dataset of 4575 X-ray images (1525 
images with COVID-19, 1525 with viral pneumonia, and 
1525 normal). Simulation results showed that the hybrid 
model outperforms other existing models by achieving an 
accuracy, sensitivity, specificity, and F1-score of 99.20%, 
99.30%, 99.20%, and 98.90%, respectively.

Aslan et al. [152] proposed a hybrid approach based on 
the hybridization of Bidirectional LSTM (BiLSTM) with 
CNN Transfer Learning (mAlexNet) for COVID-19 detec-
tion. A dataset of 2905 X-ray images (219 with COVID-19, 
1345 with viral pneumonia, and 1341 normal) was used in 
the simulation and results showed that the hybrid approach 
outperforms mAlexNet model by giving an accuracy, preci-
sion, sensitivity, specificity, F1-score, and AUC of 98.70%, 

98.77%, 98.76%, 99.33%, 98.76%, and 99%, respectively 
(Tables 2, 3, 4, 5, 6).

Specialized CNN Approaches for COVID–19

Song et al. [155] developed a deep-learning model, called 
Details Relation Extraction neural Network (DRE-Net), for 
accurate identification of COVID-19-infected patients. 275 
chest scan images (86 normal, 88 with COVID-19, and 101 
with bacteria pneumonia) were used to validate the perfor-
mance of DRE-Net. Simulation results showed that DRE-
Net can identify COVID-19 infected patients with an average 
accuracy of 94%, AUC of 99%, and sensitivity of 93%.

Li et al. [156] proposed a deep learning method, called 
COVNet, for COVID-19 diagnosis from CT scan images. 
A dataset of 4356 chest CT images from 3222 patients col-
lected from six hospitals between August 2016 and February 
2020 was used in the simulation and results showed that 
the proposed COVNet achieves an AUC, sensitivity, and 
specificity of 96%, 90%, and 96%, respectively. Zheng et al. 
conducted a similar study [157] by proposing a 3D deep 
CNN model, called DeCoVNet, for detecting COVID-19 
from 3D CT images.

Ucar and Korkmaz [158] proposed a novel and efficient 
Deep Bayes-SqueezeNet-based system (COVIDiagnosis-
Net) for COVID-19 Diagnosis. A dataset of 5949 chest X-ray 
images including 1583 normal, 4290 pneumonia, and 76 
COVID-19 infection cases was employed in the simulation 
and results showed that COVIDiagnosis-Net outperforms 
existing network models by achieving 98.26% of accuracy, 
99.13% of specificity, and 98.25% of F1-score.

DarkCovidNet was proposed by Ozturk et al. [159] for 
automated detection of COVID-19. The efficiency of Dark-
CovidNet was evaluated using two datasets: i) A COVID-19 
X-ray image database developed by Cohen JP [84] and ii) 
ChestX-ray8 database provided by Wang et al. [160]. Simu-
lation results showed that DarkCovidNet gives accurate 
diagnostics of 98.08% and 87.02% for binary classification 
(COVID vs. No-Findings) and multi-class classification 
(COVID vs. No-Findings vs. Pneumonia), respectively.

Wang and Wong [161] proposed a deep learning model, 
called Covid-Net, for detecting COVID-19 Cases from Chest 
X-Ray Images. Quantitative and qualitative results showed 
the efficiency and superiority of the proposed Covid-Net 
model compared to VGG-19 and ResNet-50 techniques.

In [162], Born et al. proposed POCOVID-Net for the 
automatic detection of COVID-19 cases. A lung ultrasound 
(POCUS) dataset consisting of 1103 images (654 COVID-
19, 277 bacterial pneumonia, and 172 normal) sampled 
from 64 videos was used for evaluating the effectiveness of 
POCOVID-Net model. According to the results, POCOVID-
Net model provides good performance with 0.89 accuracy, 
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0.88 precision, 0.96 sensitivity, 0.79 specificity, and 0.92 
F1-score.

COVID-19Net was proposed by Wang et al. [163] for the 
diagnostic and prognostic analysis of COVID-19 cases in 
CT images. A dataset of chest CT images collected from six 
cities or provinces including Wuhan city in China was used 
for the simulation and results showed the good performance 
of COVID-19Net by achieving an AUC of 87%, an accuracy 
of 78.32%, a sensitivity of 80.39%, F1-score of 77%, and a 
specificity of 76.61%.

Khan et al. [164] proposed a new model (CoroNet) for 
COVID-19 detection and diagnosis. CoroNet was validated 
using three scenarios: i) 4-class CoroNet (normal, viral 
pneumonia, bacteria pneumonia, and COVID-19 images); 
ii) 3-class CoroNet (COVID-19, Normal and Pneumonia); 
and iii) binary 2-class CoroNet (COVID-19, Normal and 
Pneumonia). Experimental results demonstrated the superi-
ority of CoroNet compared to some studies in the literature 
by achieving an accuracy of 89.5%, 94.59%, and 99% for 
4-class, 3-class, and binary 2-class scenarios, respectively.

Mahmud et al. [165] proposed a novel multi-dilation deep 
CNN model (CovXNeT) based on depthwise dilated convo-
lutions for automatic COVID-19 detection. Three datasets 
of 5856, 610, and 610 x-ray images were used for evaluating 
the effectiveness of CovXNeT. Experimental results revealed 
the performance of CovXNeT compared to other approaches 
in the literature by providing an accuracy of 98.1%, 95.1%, 
and 91.70% for the dataset of 5856 images, dataset of 610 
images, and dataset of 610 images, respectively.

siddhartha and Santra [166] proposed a novel model, 
called COVIDLite, based on a depth-wise separable deep 
neural network (DSCNN) with white balance and CLAHE 
for the detection of COVID-19 cases. Two datasets of X-ray 
images: i)1458 images (429 COVID-19, 495 viral pneumo-
nia, and 534 normal) and ii) 365 images (107 COVID-19, 
124 viral pneumonia, and 134 normal) were used for testing 
the effectiveness of COVIDLite. Simulation results revealed 
that COVIDLite performs for both 2-class and 3-class sce-
nario by achieving an accuracy of 99.58% and 96.43%, 
respectively.

Ahmed et al. [167] proposed a novel CNN model, called 
ReCoNet, for COVID-19 detection. The effectiveness of 
ReCoNet was evaluated based on COVIDx [161] and CheX-
pert [168] datasets containing 15.134 and 224.316 CXR 
images, respectively. Experimental results demonstrated that 
ReCoNet outperforms COVID-Net and other state-of-the-art 
techniques by yielding an accuracy, sensitivity, and specific-
ity of 97.48%, 96.39%, and 97.53%, respectively.

Haghanifar et al. [169] developed a novel approach, called 
COVID-CXNET, based on the well-known CheXNet model 
for automatic detection of COVID-19 cases. The effective-
ness of COVID-CXNET was tested using a dataset of 3,628 
chest X-ray images (3,200 normal and 428 with COVID-19) 

divided into two classes including training set (80%)and val-
idation set (20%). Experimental results showed that COVID-
CXNET gives an accuracy of 99.04% and F1-score of 96%.

Turkoglu [170] proposed a COVIDetectioNet model with 
AlexNet and SVM for COVID-19 diagnosis and classifica-
tion. A dataset of 6092 X-ray images (1583 Normal, 219 
with COVID19, and 4290 with Pneumonia) collected from 
the Github and Kaggle databases was used in the experimen-
tation. Simulation results demonstrated the better perfor-
mance of COVIDetectioNet compared to other deep learning 
approaches by achieving an accuracy of 99.18%.

Tammina [171] proposed a novel deep learning approach, 
called CovidSORT for COVID-19 detection. 5910 Chest 
X-ray images collected from retrospective cohorts of pedi-
atric Women patients and Children’s Medical Center of 
Guangzhou, China were used to validate the CovidSORT 
performance. Simulation results demonstrated that the Cov-
idSORT model provides an accuracy of 96.83%, precision 
of 98.75%, sensitivity of 96.57%, and F1-score of 97.65%.

Al-Bawi et al. [172] developed an efficient model based 
on VGG with the convolutional COVID block (CCBlock) 
for the automatic diagnosis of COVID-19. To evaluate It, 
1,828 x-ray images were used including 310 with COVID-
19 cases, 864 with pneumonia, and 654 normal images. 
According to the results, the proposed model gives the 
highest diagnosis performance by achieving an accuracy of 
98.52% and 95.34% for two and three classes, respectively.

Generative Adversarial Network (GAN)

Jamshidi et al. [181] used Generative Adversarial Network 
(GAN), Extreme Learning Machine (ELM), RNN, and 
LSTM for COVID–19 diagnosis and treatment. Sedik et al. 
[182] proposed a combined model based on GAN with CNN 
and ConvLSTM for COVID–19 infection detection. Two 
datasets of X-ray and CT images were used in the simula-
tion and results showed the effectiveness and performance of 
the combined model by achieving 99% of accuracy, 97.70% 
of precision, 100% of sensitivity, 97.80% of specificity, and 
99% of F1-score.

Other Deep Learning Approaches

Farid et al. [184] proposed a Stack Hybrid Model, called 
Composite Hybrid Feature Selection Model (CHFS), 
based on the hybridization of CNN and machine learning 
approaches for early diagnosis of covid19. The performance 
of CHFS was evaluated based on a dataset containing 51 
CT images divided into training and testing sets. Simula-
tion results showed that CHFS achieves an F1-score, preci-
sion, sensitivity, accuracy of 96.10%, 96.10%, 96.10%, and 
96.07%, respectively.
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Hwang et al. [185] implemented a Deep Learning-Based 
Computer-Aided Detection (CAD) System for the identi-
fication of COVID-19 infected patients. CAD system was 
trained based on chest X-ray and CT images and results 
showed that CAD system achieves 68.80% of sensitivity, 
66.70% of specificity with chest X-ray images and 81.5% of 
sensitivity, 72.3% of specificity with CT images.

Amyar et al. [186] proposed a multi-task deep learning 
approach for COVID-19 detection and classification from 
CT images. A dataset of images collected from 1369 patients 
(449 with COVID-19, 425 normal, 98 with lung cancer, and 
397 of different kinds of pathology) was used to evaluate the 
performance of the proposed approach. Results showed that 
the proposed approach achieves an AUC of 0.97, an accu-
racy of 94.67, a sensitivity of 0.96, and a specificity of 0.92.

For COVID-19 pneumonia diagnosis, Ko et al. [187] 
proposed fast-track COVID-19 classification network 
(FCONet), which uses as backbone one of the pre-trained 
deep learning models (VGG16, ResNet50, Inceptionv3, or 
Xception). A set of 3993 chest CT images divided into train-
ing and test classes were used to evaluate the performance 
of the proposed FCONet. Experimental results demonstrated 
that FCONet with ResNet50 gives excellent diagnostic per-
formance by achieving a sensitivity of 99.58%, specificity 
100%, accuracy 99.87%, and AUC of 100%.

Basu and Mitra [188] proposed a domain extension trans-
fer learning (DETL) with three pre-trained deep CNN mod-
els (AlexNet, VGGNet, and ResNet) for COVID-19 screen-
ing. 1207 X-ray images (350 normal, 322 with pneumonia, 
305 with COVID-19, and 300 other diseases) were employed 
to validate the proposed model. Experimental results showed 
that DETL with VGGNet gives a better accuracy of 90.13%.

Elghamrawy [189] developed a new approach (DLBD-
COV) based on H2O’s Deep-Learning-inspired model with 
Big Data analytic for COVID-19 detection. The efficiency 
of DLBD-COV was validated based on CT images collected 
from [84] and X-ray images collected from [190] taking into 
account five metrics such as accuracy, precision, Sensitiv-
ity, and computational time. Simulation results showed that 
DLBD-COV provides a superior accuracy compared to other 
CNN models such as DeConNet and ResNet+.

Sharma et al. [191] proposed an deep learning model 
for rapid identifying and screening of COVID-19 patients. 
The efficiency of the proposed model was validated using 
chest X-ray images of adult COVID-19 patients (COVID-19, 
non-COVID-19, pneumonia, and tuberculosis images) and 
results showed its efficiency compared to previously pub-
lished methods.

Hammam et al. [192] proposed a stacked ensemble deep 
learning model for COVID-19 vision diagnosis. The effi-
ciency of the proposed model was validated using a dataset 
of 500 X-ray images divided into three classes including 
the training set (80%), validation set (10%), and testing set 

(10%). Simulation results showed the superior performance 
of the proposed model compared to any other single model 
by achieving 98.60% test accuracy. A similar work was done 
by Mohammed et al. [193], in which a Corner-based Weber 
Local Descriptor (CWLD) was prpoposed for diagnosis of 
COVID-19 from chest X-Ray images.

Li et al. [194] proposed a stacked auto-encoder detector 
model for the diagnosis of COVID-19 Cases on CT scan 
images. Authors used in their experimentation a dataset of 
470 CT images (275 with COVID-19 and 195 normal) col-
lected from UC San Diego. According to the results, the pro-
posed model performs well and achieves an average accu-
racy of 94.70%, precision of 96.54%, sensitivity of 94.10%, 
and F1-score of 94.80%. Al-antari et al. [195] introduced a 
novel model (CAD-based YOLO Predictor) based on fast 
deep learning computer-aided diagnosis system with YOLO 
predictor for automatic diagnosis of COVID-19 cases from 
digital X-ray images. The proposed system was trained using 
two different digital X-ray datasets: COVID-19 images [84, 
88] and ChestX-ray8 images [196]. According to the experi-
mentation, CAD-based YOLO Predictor achieves an accu-
racy of 97.40%, sensitivity of 85.15%, specificity of 99.06%, 
and F1-score of 84.81%.

Gianchandani et al. [197] proposed two ensemble deep 
transfer learning models for Rapid COVID-19 diagnosis. 
The proposed models were validated using two datasets of 
X-ray images obtained from Kaggle datasets resource [198] 
and the University of Dhaka and Qatar University. [88]

Other Machine Learning Approaches

Chakraborty and Ghosh [204] developed a hybrid method 
(ARIMA–WBF) based on the hybridization of ARIMA 
model and Wavelet-based forecasting (WBF) model for 
predicting the number of daily confirmed COVID-19 cases. 
The effectiveness of ARIMA-WBF was validated using data-
sets of 346 cases taken from five countries (70: Canada, 71: 
France, 64: India, 76: South Korea, and 65: UK). Simulation 
results showed the performance and robustness of ARIMA-
WBF in the prediction of COVID-19 cases.

Tuncer et al. [205] proposed a feature generation tech-
nique, called Residual Exemplar Local Binary Pattern 
(ResExLBP) with iterative ReliefF (IRF) and five machine 
learning methods (Decision tree, linear discriminant, SVM, 
kNN, and subspace discriminant) for automatic COVID-19 
detection. The efficiency of the proposed model was vali-
dated using datasets of X-ray images collected from the 
GitHub website and Kaggle site. Simulation results showed 
that ResExLBP with IRF and SVM gives better performance 
compared to other models by providing 99.69% accuracy, 
98.85% sensitivity, and 100% specificity.

Tuli et  al. [206] developed a novel model based on 
machine learning and Cloud Computing for real-time 
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prediction of COVID-19. The effectiveness of the proposed 
model was validated using 2Our World In Data (COVID-19 
Dataset) taken from the Github repository (https://​github.​
com/​owid/​covid-​19-​data/​tree/​master/​public/​data/). Simu-
lation results showed that the proposed model gives good 
performance on this problem area.

Pereira et al. [207]used MLP with KNN, SVM, Decision 
Trees, and Random Forest for COVID-19 identification in 
chest X-ray images. The efficiency of the proposed models 
was evaluated based on RYDLS-20 database of 1144 chest 
X-ray images divided into training and test sets with 70% 
and 30% rates. Experimental results showed the superiority 
of MLP compared to other machine learning approaches by 
providing an F1-Score of 89%.

Albahri et al. [208] used a machine learning model com-
bined with a novel Multi-criteria-decision-method (MCDM) 
for the identification of COVID-19 infected patients. The 
effectiveness of the proposed model was evaluated based 
on Blood sample images. Simulation results revealed that 
the proposed model is a good tool for identifying infected 
COVID-19 cases.

Wang et al. [209] developed a hybrid model based on 
FbProphet technique and Logistic Model for COVID-19 
epidemic trend prediction. The hybrid model was vali-
dated using COVID-19 epidemiological time-series data 
and results revealed the effectiveness of the hybrid model 
for the prediction of the turning point and epidemic size of 
COVID-19.

Ardakani et al. [210] proposed a machine learning-based 
Computer-Aided Detection (CAD) System (COVIDiag) 
for COVID-19 diagnosis. The performance of COVIDiag 
was evaluated using CT images of 612 patients (306 with 
COVID-19 and 306 normal). Experimental results demon-
strated the effectiveness of COVIDiag compared to SVM, 
KNN, NB, and DT by achieving the sensitivity, specificity, 
and accuracy of 93.54%, 90.32%, and 91.94%, respectively.

The summary of other Machine Learning approaches is 
given in Table 7.

Discussion

Machine Learning is the field of AI that has been applied 
to deal with COVID-19. The finding from this study reveals 
that:

•	 Techniques of Machine Learning used in this context are 
several. As shown in Fig. 10, 79% of them are based on 
Deep Learning, 16% used Supervised Learning, whereas 
other types of learning are used in only 5% of cases;

•	 Techniques basically known in the field of Unsupervised 
Learning did not appear in the reviewed papers. How-
ever, in case of unlabeled data, deep Learning makes an Ta
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automatic learning which is a form of an unsupervised 
learning;

•	 Similarly, techniques of Reinforcement Learning are not 
explored in the summarized approaches;

•	 The most used technique from Deep Learning is CNN. 
65% of DL-based approaches took advantage of this 
architecture to handle the collected data. As shown in 
Fig. 11, 17% of them developed new CNN architectures 
dedicated to COVID-19 data types. The reason is this 
ability that CNN offers to train multiple layers with non-
linear mappings to classify high-dimensional input data 
into a set of classes at the output layer. So, given the 
intensive amount of medical data, CNN emerged as the 
most suitable solution. Nevertheless, RNN were also pre-
sent in 6% of approaches and GAN in 2% of them.

•	 70% of the Supervised Learning-based approaches opted 
for the Regression. As we can see in Fig. 12, Regression 
is made by employing either Random Forest Algorithms 
or Linear Regression. For its part, classification through 
SVM technique is applied in 30% of the Supervised 
Learning based papers.

•	 We have noticed the use of many measures in the evalua-
tion of the proposed approaches. The most recurrent ones 
are those represented in Fig. 13. In fact, even if we see 
a balanced result between several metrics, the accuracy 
seems to take a little more advantage. This is trivial since 
it is one of the most important metrics in ML which can 
be used in classification as well as in prediction.

Despite all these contributions, there are still some remain-
ing challenges in applying ML to deal with COVID-19. 
Actually, handling new datasets generated in real time is 
facing several issues limiting the efficiency of results. In 
fact, many of the proposed approaches are based on small 
datasets. They are, in most cases, incomplete, noisy, ambigu-
ous and with a significant ratio of missing patterns. Con-
sequently, the training is not efficient and the risk of over-
fitting is high because of the high variance and errors on the 
test set. Therefore, the need to build large datasets becomes 
unavoidable. However, it is not sufficient. In fact, without 
a complete and standard dataset, it is difficult to conclude 
which method provides the best results. To overcome that, 
a deep work of merging existing datasets and cleaning them 
up, by removing / imputing missing data and removing 
redundancy, is required.

Conclusion

The COVID-19 pandemic has deeply marked the year 2020 
and has made the researchers community in different fields 
react. This paper demonstrated the interest attached by data 
scientists to this particular situation. It provided a survey of 
Machine Learning based research classified into two catego-
ries (Supervised Learning approaches and Deep Learning 
approaches) to make detection, diagnosis, or prediction of 

Fig. 10   Approaches of machine learning used to deal with COVID-19

Fig. 11   Deep learning approaches used to deal with COVID-19

Fig. 12   Supervised learning techniques used to deal with COVID-19

Fig. 13   Metrics used in the evaluation of COVID-19 related 
approaches
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the COVID-19. Moreover, it gave an analysis and statistics 
on published works. The review included more than 160 
publications coming from more than 6 famous scientific 
publishers. The learning is based on various data supports 
such as X-Ray images, CT images, Text data, Time series, 
Sounds, Coughing/Breathing videos, and Blood Samples. 
Our study presented a synthesis with accurate ratios of use 
of each of the ML techniques. Also, it summarized the met-
rics employed to validate the different models. The statistical 
study showed that 6 metrics are frequently used with favor 
to accuracy, sensitivity, and specificity which are evaluated 
in almost equal proportions. Among the ML techniques, it 
is shown that 79% of them are based on Deep Learning. In 
65% of cases, CNN architecture was used. However, 17% 
of the reviewed papers proposed a Specialize CNN archi-
tecture adapted to COVID-19. Supervised Learning is also 
present in 16% of cases either to make classification by using 
mainly SVM or to make regression where Random Forest 
Algorithms and Linear regression are the most dominant 
techniques. In addition of them, hybrid approaches are also 
explored to address the topic of COVID-19. They represent 
5% of the reviewed methods in this paper. Most of them 
mix CNN with other techniques and/or meta-heuristics in 
order to outperform the classical ones. They demonstrated 
good performance in terms of accuracy and F1-Score, thus, 
it would be worth investigating them further. Given this state 
of the art and the number of techniques proposed, research 
must now focus on the quality of the data used and their 
harmonization. Indeed, until now, the studies carried out 
have been based on different types of datasets and different 
volumes of datasets. The data considered are overall those 
present in each country where the disease of COVID-19 has 
not necessarily evolved in the same way. Thus, it is essential 
to create benchmarks with real-world datasets to train future 
models on them.
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