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Abstract

The prominence of protein—protein interactions (PPIs) in system biology with diverse biological procedures has become the
topic to discuss because it acts as a fundamental part in predicting the protein function of the target protein and drug ability
of molecules. Numerous researches have been published to predict PPIs computationally because they provide an alternative
solution to laboratory trials and a cost-effective way of predicting the most likely set of interactions at the entire proteome
scale. In recent computational methods, deep learning has become a buzzword with numerous scientific researches. This
paper presents, for the first time, a comprehensive survey of sequence-based PPI prediction by three popular deep learning
architectures i.e. deep neural networks, convolutional neural networks and recurrent neural networks and its variants. The
thorough survey discussed herein carefully mined every possible information, can help the researchers to further explore
the success in this area.
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RF Random forest

RNA Ribonucleic acid

RNN Recurrent neural network

ROC Receiver operating characteristic
SAE Stacked auto-encoder

SGD Stochastic gradient descent
SVM Support vector machine
Introduction

Proteins are essential to organisms and participate in every
process virtually within cells. Despite the wide range of
functions, all proteins are made out of the same twenty-one
building blocks called amino acid (AAs), but combined
in different ways. AAs are made of carbon, oxygen, nitro-
gen, and hydrogen and some contain sulphur atoms. These
atoms form amino groups, a carboxyl group, and a side chain
attached to a central carbon atom as shown in Fig. 1. The
side chain determines the AA’s properties and this is the
only part that varies from one AA to another AA.

Two AA molecules can be covalently joined to a substi-
tuted amide linkage termed as peptide bond and it returns
a Dipeptide [1]. Such a linkage is formed by the removal
of the elements of water i.e. dehydration from the alpha-
carboxyl group of one AA and alpha-amino group of another
AA as depicted by Fig. 2. Similarly, three AAs can be joined
by two peptide bonds to form tripeptide and four to form
tetrapeptide, and so on. When many AAs are joined in this
fashion, the product is called a polypeptide. An AA in a
peptide is often called a residue i.e. the part left over after
losing the water. Protein may have 1000 s of AA residues.
Generally, the terms protein and polypeptide are used inter-
changeably. Molecules referred to as Polypeptide have a
molecular weight (MW) below 10,000 daltons and those
called proteins have higher MW.

Proteins usually do not function alone, they need a partner
to accomplish their functions. The partner may be DNA,

e ] =
o
Alpha Amino Group.

Fig. 1 Structure of amino acid
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Fig.2 Formation of peptide bond

RNA, or proteins. If a single protein is present inside the
cell it is not that functional but together all the proteins are
functioning with themselves. And if a protein interacts with
another protein, or if two or more proteins are cross-talking
with each other by some signaling processes, it is termed as
protein—protein interactions (PPI) [2]. Protein control and
mediate many of the biological activities of the cell by these
interactions. For e.g. Muscle contraction (is possible due to
PPI between active myosine filaments), cell signaling, cel-
lular transport (molecule coming out and going inside the
cell using PPI) [3]. So PPIs play a vital role in many cellular
processes.

However, disruption or formation of abnormal interac-
tions can lead to a disease state. This drives many research-
ers to predict PPI at the early stages of the disease symp-
toms. As some of the diseases show their symptoms in the
later stage of the disease which may be lead to complexity in
medication or may be deadly. Prior information about PPIs
can offer a clear vision to detect drug targets, further bio-
logical processes, and new remedies for diseases [3]. Com-
pared to the investigational methods, such as tandem affin-
ity purifications (TAP) [4], protein chips [5], and efficient
biological methods, computational approaches are revealing
better exposure for PPIs prediction, as they are less time-
consuming and more proficient [6].

Machine learning (ML) methodologies to predict PPIs
govern most of the computational methods [7, 8]. Fram-
ing a suitable feature set and selecting favorable machine
learning algorithms are two major stages for prosperous
predictions. The feature set can be constructed wisely in
such a way that they could cover the maximum information
or key features from the structure of the proteins. Among
the structures, the primary structures i.e. the sequences of
the protein are the most common to work on because of the
huge data availability [9]. Several feature extraction meth-
ods have been developed in the past for representing the
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protein information in numerical form that are widely used
to possibly extract protein interaction information [10-15].
For the PPIs prediction purpose, each feature extraction
algorithm requires a favorable classifier to appropriately
classify the interaction or no interaction according to the
feature sets. Various classification algorithms have been
developed like RF, SVM and their derivatives [16], gradi-
ent boosting decision trees [17], and ensemble classifiers
[18].

Recently, DL technology has come into the limelight
with numerous scientific researches that help in many
applications like image recognition [19], speech recog-
nition [20], machine language translation [21], computer
vision [22], and many more. In DL, specifically, DNNs,
RNNs and CNNs have contributed a lot in real-life appli-
cations and ease human efforts. Numerous noteworthy
DL-based researches are being published in the field of
bioinformatics [23, 24].

This paper focuses on some DL approaches using in the
PPI prediction task, in the successive sections, a short name
is used as deep networks (DNs) to represent DNNs, CNNs
and RNNs and its variants.

The aim of this paper is to provide a comprehensive sur-
vey of DN applications in the field of PPI prediction. In this
review, the recent progress in applying DN techniques to the
problem of PPI prediction is summarized and discussed the
possible pros and cons. The scope of this paper is limited
to the primary structure of the protein i.e. the sequence-
based PPI prediction with DNs. The significance and the
approaches to represent protein sequence based on DN are
discussed for the first time. The central importance of pro-
teins’ primary structure is also emphasized.

Therefore, the paper is organized as follows: “Introduc-
tion” section presents the outline about the protein, impor-
tance of PPI, several methods to detect PPI, and recent
advancement of computational approaches in the field of
Bioinformatics. “Outline of Deep Networks” section famil-
iarizes the concept of DNs and how DNs can be proved ben-
eficial in PPI prediction. “Approaches for sequence-based
Protein—Protein Interaction Prediction using Deep Net-
works” section illustrates the various research publication
of sequence-based PPI prediction using DNs along with their
pros and cons and performance achieved. “Implementation
of Cited Papers” section presents the manual implementa-
tion of cited papers. In the succession to analyze the adept-
ness of DNs in PPI prediction, a fair comparison is made in
“Comparison with State-of-the-art Methods” section with
State-of-the-art methods. At last, the paper is concluded with
future aspects in this area. This review is focused to help
both computational biologists to achieve familiarity with the
DN methods applied in protein modeling, and computer sci-
entists to expand perspective on the biologically significant
problems that may help from DL methods.

Outline of Deep Networks

Deep learning architecture can be understood as the ANNs
with several layers and researchers have contributed sev-
eral types of DL architectures based on the considered input
and purpose of the particular research. This review mainly
considers three DL architectures: DNNs, CNNs and RNNs.
However, several researchers included all DL architectures
in DNNs [25, 26]. This paper considers ‘DNNSs’ to discuss
specifically SAE [27] which use AEs [28] as the elementary
units of NNs [29]. The reason behind these considerations
is the limited scope of this paper which mainly focuses to
deliver the significance of DNs using sequential information
of the input data of PPI for the prediction task.

Generally in DL architectures, there are two principle
elements that lift up the performance: Optimization and
Regularization. The target during training is to optimize the
weight parameters in each layer so that the important and
relevant features can be learned from the input by filter-
ing out the irrelevant information and transfer an abstract
form or reduced number of features to the next layer. The
optimization procedure follows an algorithm to update the
weight parameters based on the SGD [30]. Regularization is
a process to evade over-fitting problem which usually occurs
while training. Some regularization processes have been
developed like weight decay [31], Dropout [32], ranDrop
[33]. Recently, a novel regularization technique has been
proposed [34], which operates in batches by doing the nor-
malization of features.

The following part of this section gives a brief knowledge
about three DL approaches DNNs, RNNs and CNNs that
have greatly contributed to the prediction task of PPIs using
sequential information only.

Deep Neural Networks

A DNN, in simple words, is a network that is deep i.e. which
has many hidden layers along with the input layer and an
output layer as shown in Fig. 3. For the given input data,
the outputs are sequentially calculated with the layers of the
network. The input vector at each layer includes the output
of the previous layers’ unit which are then multiplied by the
weight vector of the considered layer that resulted in the
weighted sum. The output of a particular layer is computed
by applying some non-linear function (ReL.U, sigmoid, etc.)
[35] to the weighted sum which results in more abstract rep-
resentations from the previous layer output as follows [36]:
piOH) = u(WO+Hp0 +Z;(c0+l) )

X

where y represents activation, w is the weight matrix, p°
is the inputted data for the Oth layer and z is the bias term.
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Fig. 3 Basic structure of DNNs with input units /, three hidden units
hl, h2 and h3, in each layer and output units O. At each layer, the
weighted sum and non-linear function of its inputs are computed to
obtain an abstract representation

DNNs work very well for scrutinizing high-dimensional
data. Good researches in bioinformatics cannot be completed
with small data, therefore the data available in this field is
usually high-dimensional and complex and thus DNNs guar-
antee favorable opportunities for the researchers to work in.
DNNSs have the potential to give knowledge to more read-
ily comprehend by extract the highly abstract and related
information from the data. Though the raw data is the only
requirement for DNNs to learn graded features, manually
crafted features have frequently been given as contributions.
This concludes that the abilities of DNNs have not yet com-
pletely been taken advantage of. It is believed that the future
advancement of DNNs in bioinformatics will come from
examinations concerning appropriate approaches to encode
crude information and take in reasonable features from them.

Recurrent Neural Networks

The structure of RNNs has a recurring link in each hidden
layer which is responsible to operate sequential information
by some recurrent computation as shown in Fig. 4. The pre-
vious output (state vector) is kept in the hidden units and for
the current state, the output is calculated using the previous
state vector and the considered input [37]. The following two
equations express the evolvement of RNN over time [38]:

0,=6(h;0) )
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Fig.4 Basic structure of RNNs with an input unit /, a hidden unit &
and an output unit O. The recurrent computation can be expressed
more explicitly if the RNNs are unrolled in time. The index of each
symbol represents the time step. In this way, h, receives input from /,
and £,_; and then propagates the computed results to O, and &,
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Fig.5 Basic structure of BRNNs unrolled in time. For each time step,
there are two hidden layers. The information from both hidden units
is propagated to O,

h,=g(h,_.1,:0) 3)

here, 8 includes weights and biases for the network, the
first equation express the dependency of the output O, at
time ¢ only with the hidden layer £, using some computation
function 6 and the second equation shows the dependency of
the hidden layer A, at time ¢ with that of /,_, at time -/ and
the input /, at time .

RNNs specifically BRNNs are popularly used in applica-
tions where previous information is required for the current
output (as shown in Fig. 5) like speech recognition, Google
translator, etc. The appearance of RNN structure is simpler
than DNNS in terms of the number of layers, but if the struc-
ture of RNN is unrolled with time, it is even deeper.

Though, this leads to two popular hindrances: vanishing
gradient and long-term dependencies, researchers have been
overcome these issues by adding some complex units and
develop some variants of RNNs, like LSTM, GRU. Today,
RNNs have been utilized effectively in numerous domains
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Fig.6 The baseline structure of CNN

including NLP and language interpretation [39-42]. The
nature of identifying the PPI is practically identical to the
modeling tasks undertaking in researches of NLP as the two
of them intended to analyze the shared impact of two arrange-
ments dependent on their underlying features. Proteins are
reported in groupings with a more preserving manner, also
a bigger scope of lengths. Therefore, accurately covering the
PPI not only requires significantly more extensive learning
to strain the important and relatable features from the whole
sequences but also retain the long-term ordering information.
If the PPI prediction task and the working of considered DNs
are carefully observed, then it can be concluded that these DL
architectures can contribute a lot to the considered prediction
tasks and could be the emerging area for researchers.

Convolutional Neural Network

Convolutional neural network is a branch of Deep Learning
algorithm which can take an input in the form of image, allo-
cate learnable weights and biases to various features of the
image and be able to distinguish one from the other with the
minimum pre-processing requirement as compared to other
classification algorithms [43]. The structure of CNN is basi-
cally a feed-forward neural network whose neurons can retort
to the nearby units in a part of the coverage and have outstand-
ing performance for data feature extraction [44]. The output
value is computed using forward propagation and weights and
biases are adjusted using back propagation. Figure 6 shows the
structure of CNN comprises of the input layer, the convolu-
tional layer, subsampling layer, full connection layer and the
output layer.
The feature map M, at Ith layer is computed as [44]:

M, =f(M,_jow, + b)), 4

where w, is the weight matrix of the convolution kernel of /th
layer, bi means the offset vector, f represents the activation

function and operator ° denotes convolution operations. The
subsampling layer usually behind the convolutional layer
and the feature map is sampled according to given rules.
Suppose, M, is a subsampling layer, its sampling formula is:

M, = subsampling(M, — 1). 3)

The fully connected layer is responsible for classifica-
tion of the extracted features via several convolution and sub
sampling operations. The fundamental mathematical notion
of CNN is to map the input matrix Mo to a new feature
representation R through multi-layer data transformation.

R(l) = Map(C = ¢;|M;(w, b)) (6)

where ¢, represents the /th label class, Mo denotes the input
matrix, and R denotes the feature expression. The goal of
CNN training is to minimize the network loss function R
(w, b). At the same time, to ease the over-fitting problem,
the final loss function Z (w, b) is usually controlled by a
norm, and the intensity of the over-fitting is controlled by
the parameter €.

Z(w.b) = Rw. b) + ngw. )

Numerous research papers have been published in the
discussed domain. In the next section, the related papers are
briefly discussed along with their objectives, approaches,
considered dataset, and performance measures.

Approaches for Sequence-Based Protein-
Protein Interaction Prediction Using Deep
Networks

To the best of our knowledge, to date, there are around 30
research papers have been published for PPI prediction
using DN that are using sequence information as input.
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Fig. 7 Publication analysis of PPI prediction approaches using DN's

The same is also depicted by the publication analysis of
sequence-based PPI prediction using DNs in Fig. 7. This
section details all the studies performed on PPI prediction
tasks using DN so far. The summary of the same is also pro-
vided in Table 2. Out of 30, four papers are based on iden-
tifying PPIs using biomedical text dataset which is a part of
the Biomedical Natural Language Processing (BioNLP) [45]
community, and the remaining are using physical protein
pair interaction datasets. Therefore, the studies are classi-
fied on the basis of: year of publication; Research objec-
tives; Approach to predict PPIs; Types of the dataset used;
and Hyperparameters of the network. The term ‘Strategy’
written after each section is used to indicate the category of
approach in the table. All the important abbreviated terms of
the table are provided in expanded form in the corresponding
text, whereas the basic abbreviations are provided after the
abstract. The detailed description of this section is broadly
divided on the basis of the dataset used. For better under-
standing, an abbreviated form mentioned in Table 1 is used
for the dataset considered by the cited paper in subsequent
sections.

Prediction Using Paired Protein Interaction Dataset

Some scholars proved that the DNs are capable enough to
capture the potential features from the input protein raw
data while some researchers include the hand-crafted fea-
tures with DN to enhance the performance of PPIs predic-
tion tasks. Therefore, this sub-section is again categorized
according to the inclusion and exclusion of manual feature
engineering.

Strategy-A: Inclusion of Manually Crafted Features

The most important factor to develop a computational tech-
nique for the prediction of PPIs is to mine extremely prefer-
ential features that can well define proteins. Several publica-
tions proposed novel methods for representing the protein
information in numerical ways as shown in the Table 3
which are popularly used by several publishers to produce
proficient methods that can extract the protein interaction
information more finely.

The use of DL algorithms in sequence-based PPIs predic-
tion task began from 2017 [46] by proposing the use of SAE
to filter the heterogeneous features in the low-dimensional
space. The protein sequences were numerically represented
using AC and CT methods which were then fed to the model
for training with tenfold CV. The author observed that with
a one-hidden layer, both the AC model having 400 neurons
and the CT model with 700 neurons attained the best per-
formances and concluded that the prediction performances
of the model do not depend on the number of neurons and
layers. Then for the final model construction, they took AC
because of its better performance and trained with the entire
benchmark dataset, finally compared the results with the pre-
vious ML approaches that used the same dataset. Follow-
ing the similar pattern, Du et al. [47] employed five widely
used descriptors to represent protein sequence which is then
effectively learned by a DNN model named DeepPPI. The
author later showed the performance of DeepPPI using two

Table 1 Short names given for

X g S. No Dataset Short Name S. No Dataset Short Name

datasets considered by cited

papers 1 AiMed A 11 H. pylori k
2 Arabidopsis thaliana B 12 H. sapiens
3 B. subtilis C 13 HPRDS50 m
4 B. taurus D 14 IEPA n
5 Bacillus anthracis e 15 LLL o
6 Biolnfer f 16 M. musculus P
7 Benchmark Dataset g 17 R. norvegicus q
8 C. elagan h 18 S. cerevisae r
9 Drosophila melanogaster i 19 S. pombe s
10 E. coli j 20 Yersinia pestis t

Benchmark Dataset: 2010 HPRD, the 2010 HPRD NR, the DIP (Human), HIPPIE, inWeb_inbiomap
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Table 3 Intuition behind some popular manually crafted features used by cited papers under Strategy A

S.No Features Perception behind chosen features

1 AC A protein sequence is treated as a set of signals which is then transformed in digitized form using suitable physico-
chemical properties which are promoted to scrutinize protein features

2 CT k-mer based assembly algorithm that divides three successively occurred nearby amino acids into one collective entity
and computes the frequency of every combination in the whole sequence

3 LD Extract fine information of protein interaction from the segments of continuous as well as discontinuous amino acids
simultaneously

4 MCD Employed the interfaces between serially remote but spatially near residues of amino acid to appropriately cover many
overlying continuous and discontinuous segments present in sequence

5 Protein Signature Signature generation approach which considers the amino acid sequence and its length and generate a numerical

representation for each protein sequence

different network architectures: one by connecting the two
inputs in a solo network; another using two networks for
each protein separately. The evaluation of the predictor did
after setting the best hyperparameters for the network and
compared the obtained results with existing approaches. The
training time of DeepPPI is better than SVM, AdaBoost,
and RF. Further, in this trend, Wang et al. [48] predicted
the PPIs by inputting a protein feature vector, which is a
combination of the proposed MOS descriptor with AA clas-
sification, into a DNN. Unlike previous protein represen-
tor like AC, CT, LD, the proposed MOS descriptor has a
characteristic to consider the order relationship of the whole
AA sequence. The author gave suitable reasons for opting
the network parameters for the task like ReLU AF, ADAM
optimizer, and cross-entropy as cost function. The other
parameters like network depth and width and the LR were
computed for the particular method by varying their range
and selected the best ones. And finally, the author trained the
DNN model with AC, CT, and LD separately and compared
their performance with the proposed DNN-MOS model on
the benchmark dataset as well as the non-redundant dataset.
Subsequently, Guo et al. presented a DL framework based
on the properties of AA that contribute to the PPI infor-
mation [49]. First, a feature vector was created according
to the proposed descriptor named conjoint AAindex mod-
ules (CAM) which basically encodes a conjoint AA unit of
protein sequence according to the AAindex database and
repeating the same process for the whole protein sequence to
generate a sequence profile. To scrutinize the CAM patterns
from the sequence profile, multiple dense operators were
employed, and then ReLU function is activated to introduce
non-linearity. Finally, the LSTM layer was stacked to lever-
age the advantage of holding the long-term order dependen-
cies and applied logistic regression to compute the results.
Following the same fashion of introducing the novel fea-
ture generation, Yao et al. [S0] combined the DL with rep-
resentation learning (RL) [51] to predict PPI. The purpose
to include RL was to learn the data pattern automatically
from the raw data, the resultant informative representation

then utilized by the considered DL model. The author pro-
posed a DeepFE-PPI framework that basically utilizes the
benefits of RL to represent the informative representation
using Res2vec (inspired by word2vec) and benefits of DL
by extracting effective features using the hierarchical multi-
layer architecture and classify the PPI task. DeepFE-PPI
used two separate DNN modules to squeeze out latent fea-
tures from two embedding vectors and a joint module for
PPI classification task via softmax function. Like Wang et al.
[48], the author also selected the best-suited hyperparam-
eters of the DL model for PPI prediction by analyzing the
range of protein length, residue dimension, network depth,
and protein length. Along with the standard performance
measures; the author also compared the training time with
different existing algorithms using the most optimized net-
work parameters and concluded that the DeepFE-PPI holds
the fourth position among SVM, DT, RF, NB, KNN, logis-
tic regression and though the fastest algorithm is NB, their
results are comparatively poor.

Inspired by the working and advancements of DNNs as
wells as the characteristics of different feature extraction
methods, Zhang et al. introduced EnsDNN, an ensemble
DNN-based approach for PPI prediction [52]. In EnsDNN,
three different feature set is generated based on AC, LD, and
MCD which are then fed to nine independent DNNs having
different parameter settings. After training on each feature
set, the resultant of 27 DNNs are combined to transform
it to the final two-layer NN for the prediction. This strong
and capable ensemble predictor leveraged the advantages of
key information about interaction generated by three differ-
ent feature extraction approaches and an assortment of 27
DNNSs. To maintain the diversity, the author used different
configurations of DNNs and remarked the ensemble size as
27 according to the favorable performance obtained. The
model attained remarkable performance when evaluated on
training datasets as well as independent datasets. Alakus
et al. in 2019 proposed an LSTM architecture to resolve the
common issue that occurred in PPI prediction tasks such as
Operational time, low prediction accuracy, and cost [53].
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Two different feature representation methods were used:
Protein signature [54] and ProtVec [55]. In the protein sig-
nature method, every protein sequence is decomposed into
three letters groups which are termed monomer units. For
example, an AA sequence of six letters will have 4 monomer
units. These monomer units are called signatures and each
one has a root and two neighbors which will be arranged
alphabetically and then the resultant signature will the addi-
tion of all the obtained signatures. The ProtVec method is
based on the protein-splitting process and physicochemical
properties [55], the author did not fully describe this process.
Once the training data get converted to their numerical form
using the mentioned method, it was then fed to the LSTM
architecture for further processing. The model comprised of
four 1D convolutional layers followed by an average pooling
layer with each, one LSTM, and one FC layer with Soft-
max layer for classification. Though the proposed LSTM
model behaved well with both the methods but still lacks in
accuracy when compared with existing approaches. Also,
the author failed to prove what issues he had committed to
resolving.

In a publication of 2019 [56], CNN used to deeply extract
hidden features from a matrix-based biological information
of protein generated by Position-Specific Scoring Matrix
(PSSM). Then, prediction task was accomplished by propos-
ing a Feature-Selective Rotation Forest algorithm (FSRF)
whose main purpose is to reduce data dimension and noisy
information for improving the prediction accuracy and speed
up the classifier. The proposed approach was experimented
of k and r dataset and then compared the result by switching
the classifier to SVM and achieved the favorable outcomes
from the proposed FSRF.

In the very next year, Gui et al. [57] constructed a DNN
model with the intention to optimize the prediction perfor-
mance using a dropout technique and used AC, CT and LD
in combine. The authors performed several experiments with
different dropout rates to select the appropriate one. The
results proved that the inclusion of dropout to avoid over-
fitting helps in enhancing the performance.

In the very next year, a notable work toward the improve-
ment of the factors that greatly affect the PPI prediction was
published by Yang et al. [58]. The author proposed feature
extraction and fusion method in which each AA sequence is
first converted into the digitized form using physicochemical
properties and then applied DWT and CWT with 25-scale
mexh wavelet function so as to cover the maximum possible
interaction information. Additionally, the author changes the
way of inputting the protein features into the network by
adopting a “Y-type’ NN model, comprising a weight-sharing
Bi-RNN layer, a buffer layer, and a dense layer. The pur-
pose of the weight-sharing scheme is to reduce the count of
parameters to speed up the training using the same values
of the parameters in the respective location on both sides of

SN Computer Science
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the Bi-RNN layer. Additionally, a fair comparison of train-
ing time was also presented and observed the difference of
70 s (from Du’s approach [47]) and 251 s (by DNN without
weight-sharing scheme); thereby proved a superior model.

Another interesting and different work implemented by
Jha and Saha [59] using LSTM-based classifier that inte-
grated the features generated by two different modalities of
protein i.e. sequence-based and structure-based information.
In this approach, firstly, three types of protein representa-
tion based on three different attributes were obtained respec-
tively from the structural representation of the proteins,
and using a ResNet50 model, a corresponding feature sets
were obtained. Secondly, for sequence-based information, a
stacked AE was employed to generate compact feature vec-
tors based on AC and CT. Finally, all obtained feature sets
were concatenated and fed as an input to the LSTM-classi-
fier. The objective was to improve the prediction capability
and robustness of the existing methods and learn more useful
information about the interaction by utilizing two protein
modalities in one go. The author evaluated the prediction
performance and showed the results of every possible com-
bination of the feature sets like structural features with AC,
structural features with CT, structural features with both AC
and CT on the benchmark dataset.

Hanggara stated that PPI can be utilized as proof of the
adequacy of herbal medication; a DNN-based approach
was implemented for PPI prediction [60]. The numerical
representation of protein sequence was done using CT and
then used two different methods for classification: SAE and
multi-layer-ELM-AE. The models are trained and evaluated
with a fivefold CV and compared with each other. However,
a proper explanation of any concept and details about the
work were not provided.

In the very next year, a notable work in sequence-based
PPI prediction was proposed by employing a hybrid classi-
fier approach along with the combination of three feature
extraction methods. The author in [61] extracted the raw
features from the protein sequences using AAC, LD, and
CT, which were then fused and fed to the DNN to filter
out noiseless and non-redundant features, this robust and
more relevant feature set were then inputted to the extreme
gradient boost (XGB) classifier for the identification of PPI
class. The end-to-end tree boosting XGB classifier is popu-
larly known for its accurate and fast performance [62]. This
proposed hybrid model was then evaluated on both interspe-
cies and interspecies datasets with fivefold CV with standard
performance measures and compared the results to prove
the enhanced outcomes having enriched features in terms
of t-statistics [63] also.

Different from usual features (AC, CT, LD) used in the
PPI prediction task, Jha et al. used an amalgamation of dif-
ferent features for the very first time [64] and employed SAE
for the PPI prediction which is ordinarily used for feature
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compression. The feature vector used by SAE included the
43 features generated by three different methods: 22 Evo-
lutionary features based on generation of a PSSM using
PSI-Blast algorithm [65]; 17 structural features generated
via a DL model SPIDER2 [66, 67]; 7 features generated by
popularly used physiochemical properties. Some loopholes
are noticed in this: SAE a generally used for removing the
noise and redundant data; though the author also mentioned
the same, how SAE worked as a classifier in their work
was not explained anywhere; the comparison of proposed
work was not satisfactory as there is enough work have
been done in this area, the proposed work was compared
by only one approach. Following the same trend, an ensem-
ble of two AEs (one for interacting pairs and the second
for non-interacting pairs) was used as a binary supervised
classifier termed AutoPPI to predict the PPI class [68]. The
feature vectors used were AC and CT. For these AEs, three
types of NN architectures were used: Joint-Joint architecture
which takes the features of a proteins pair as input and cor-
respondingly returns the renovated features at the output;
Siamese-Joint architecture having a shared structure at the
encoder side which compresses the two proteins in a pair
in two encodings and decoder works the same as previous
architecture.; Siamese—Siamese architecture in which a com-
mon representation is generated by element-wise multiplica-
tion two encodings for each protein in a pair at the encoder
side and the reconstruction of proteins is obtained using a
shared decoder. In all three architectures, the Selu AF and
Adam optimizer were used. Another notable research in
this domain was proposed by Xu et al. called GRNN-PPI to
predict sequence-based PPIs [69]. GRNN-PPI utilized and
combined two feature extraction methods: AC and second
one is a novel approach to cover evolutionary features using
a proposed Mutation Spectral Radius motivated by Yu’s [70]
approach. Then, PCA was used to eliminate noise and redun-
dant data from the obtained fused feature set. Lastly, for the
classification purpose, a memory-based learning algorithm
named General regression neural network (GRNN) [71] was
used having 4 layers: input, pattern, summation, and output
layer. GRNN-PPI performed well when evaluated on three
benchmarks and six independent datasets and two PPI net-
works as well.

Other than existing numerical mapping approaches like
physicochemical, character, and signal-based, an algorithm-
based protein numerical mapping process was proposed for
the first time by Alakus in 2021 to predict PPIs and applied
on COVID-19 using DNs [72]. The author did efforts in
dataset set up because of the scarcity of suitable data due
to the new disease. Also according to the author, this algo-
rithm-based mapping is the first approach in this field. This
proposed algorithmic approach made use of the AVL tree
because of its fast search processing and balancing prop-
erties. To generate an AVL tree, first, the one-letter code

of each AA was considered and arranged in alphabetical
order and by following the insertion and deletion rules
of a balanced AVL tree, the final structure was obtained.
Then, the depth value of each AA was determined and con-
verted to every AA sequence accordingly in its numerical
form. Because the author compared the proposed mapping
method with the other existing ones, the input sequences
were mapped accordingly using every mapping approach
which then underwent a normalization process. The obtained
result was then fed to a DeepBiRNN for the classification.
The structure of considered DeePBiRNN was: first-three lay-
ers are BIRNN with ReLU AF and the number of units were
64,32,16 respectively; followed by Flatten, Batch normali-
zation and Dropout function; next two FC layer. The result-
ant performance was favorable with this novel algorithmic
mapping process.

A notable experiment done for improving the perfor-
mance of CNN model in PPI tasks by proposing an encoding
technique [73]. The proposed Sequence-Statistics-Content
is basically three-channel format method which is able to
present more refined features and decrease the effect from
local sequence similarity. The output of SSC, the statisti-
cal information and bigram encoding information of protein
sequence, were then fed to the 2D CNN using 2D convolu-
tional kernels that offer ample features instead of the dis-
tinct features of one hot encoding. The author then evaluated
the performance using different datasets and compared the
results with existing approaches. Additionally, the effect of
different SSC channel combination were also shown by the
author. The overall results provide a valuable insights for DN
in PPI prediction task.

Figure 8 presents the best performance in terms of accu-
racy with the most suitable parameter settings of the various
aforementioned DN approaches to predict PPIs. The perfor-
mance measures by some papers [72] are either multiple or
unclear, therefore, those approaches are not considered in
the figure. It can be observed that approaches by [58] and
[69] are performing well using Benchmark dataset and H.
pylori dataset.

Strategy-B: Auto-Feature Engineering based PPI Prediction
Approaches

To our knowledge, the first research on sequence-based
PPI prediction using DN that solely based on auto-feature
engineering i.e. without the inclusion of manually extracted
features was presented by Li et al. in the year 2018 termed
as DNN-PPI [74]. For the NN architecture to learn the data,
the input should be in numeral form. Therefore, the author
assigned each AA a natural number randomly and accord-
ingly converted the protein sequence. Within the proposed
framework, the embedding layer captured the information
regarding semantic association among AA, position-based

SN Computer Science
A SPRINGER NATURE journal



298 Page 16 of 23

SN Computer Science (2022) 3:298

[73] | 78.4 (b) m [46]
e —— 1| =]
[68] | ‘ 97.9 () m[48]
% 83.55 (1 [49]
[61] | . 98.35 (1) u[50]
] erbs) .[52]
[59] 97.2 (1)

99.57 (2) =[53]
[57] | 98.6 (1) u[56]
97.75 (r) u[57]
[53] ¢ (k) u[58]
5.29 (r) u[59]

[50] 98.71 (1)
M.72 (1) = [60]
[48] | 434 (g) mle61]
I 198.14 (1) u[64]
[46] * 97.19 () [68]
0 20 40 60 80 100 120  =[69]
u[73]

Fig.8 Performance analysis of highest accuracy reported by various
approaches of Strategy-A (in %). The dataset name is mentioned in
bracket alongwith the accuracy (best). Approach used by [69] is per-
forming best using ‘k’ dataset

features of protein sequences were bagged by three-layered
CNNss, and short as well as long-term dependencies were
covered by the LSTM layer and then the concatenated fea-
tures were then fed to the FC layer with dropout to identify
potential features. Besides the favorable results of DNN-
PPI, the author also tested the performance by changing the
number of CNN layers to 1 and 2 and concluded with no
significant difference in terms of accuracy but had speedy
convergence in loss with the higher number of layers. Fur-
ther, Gonzalez-Lopez et al. [75] performed PPIs prediction
through embedding systems and RNNs and bypass the need
of feature engineering. The tokenization process was used
to represent the sequence into numerical form by assigning
a token (an integer) to every triplet in the sequence. In the
NN, each protein’s representation of the pair was fed and
processed separately in two branches having similar archi-
tecture. The embedding, recurrent, and FC layers used in the
architecture performed their specific roles. Along with this,
two important parameters Dropout and Branch normaliza-
tion were also used to avoid over-fitting and input stand-
ardization. Moreover, the schemes like early stopping and
Reduce LR when stagnation was also considered to avoid
wasting resources and to achieve better local minima. The
observation from the results obtained by evaluation with dif-
ferent datasets is that the performance of the proposed Deep-
SequencePPI approach is similar to other existing methods
which were using hand-crafted features with DL approach
and thereby concluded that if sufficient data is available, then
DNs could properly model PPI prediction task without the
inclusion of manually created features.

To handle huge training data with effectively capture the
potential features of protein pairs, a remarkable DL approach
(DPPI) was implemented by Hashemifar et al. [76] having
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the generalization characteristics to be easily used for dif-
ferent applications with slightly tuning the parameters. The
successful execution of three main modules is contributed
to the design of the DPPI model. The first and core module
is the Convolutional module consists of a set of filters (con-
volutional layer, ReLU, batch normalization, and pooling
layer) responsible for mapping the protein sequences to the
representation suitable for further processing by detecting
pattern that characterizes the interaction information. The
input in DPPI was taken as the sequence profiles, which was
generated on the basis of probability using the PSI-BLAST
algorithm. The next module is Random Projection (RP) con-
sists of two FC sub-networks and is responsible to project
the convoluted representation of two proteins to two different
spaces. The word ‘random’ is used for taking the random
weights so that model could learn motifs with different pat-
terns. The outcome of the RP module is the refined represen-
tation of the proteins which are then taken as the input by the
last module: The Prediction Module. The Prediction module
computes the probability score by performing the element-
wise multiplication on the representation taken from the pre-
vious module which indicates the interaction probability of
two proteins in a pair. This Siamese-like convolutional NN
behaved very well when evaluated with different benchmark
datasets. The author committed that DPPI can serve as a
principle model for sequence-based PPIs prediction and is
generalizable to diverse applications.

Another effective approach PIPR [77] to capture the
mutual influence of the protein pairs in PPI prediction was
implemented by Chen et al. based on Siamese architecture.
Besides binary prediction, PIPR was designed to address two
more challenging tasks: estimation of binding affinity and
prediction of interaction type. PIPR incorporates a deep Sia-
mese environment of residual RCNN-based protein sequence
encoder to better apprehend the potential features for PPI
representation. This deep encoder was comprised of many
occurrences of convolution layers with pooling and bidirec-
tional residual gated recurrent units so as to ease the train-
ing and greatly diminish the updates of the parameters. For
the numerical representation of the protein sequences, PIPR
transformed the recognized AAs based on their similarity in
terms of their co-occurrences as well as their electrostatic
and hydrophobic properties and pre-trained the obtained
embedding. The resultant AA embedding was then fed to
the encoder to capture the latent information of the proteins
in a pair. The output of the encoder is a refined embedding
to two sequences which are then merged to generate a pair
vector and passed to an MLP with Leaky ReLU [78] for PPI
classification. The whole learning tasks were optimized by
mean-squared loss for the estimation task of binding affinity
and Cross-entropy loss for the remaining two tasks. PIPR
proved promising results with effectively covered the mutual
influence among the protein in a pair and ascertained the
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generalization with the satisfactorily results in all three chal-
lenging tasks without the inclusion of hand-crafted features.

Richoux et al. designed and compared two DL models:
a FC model and a recurrent model intended to show the
downsides which are needed to avoid while predicting PPIs
[79]. For the numerical representation of protein sequence,
a sequence vector of 24 Boolean values was considered and
used one-hot encoding i.e. each AA is characterized by its
true value at a specific position. 24 Boolean values contains:
20 usual AA, 4 other categories of AA including unknown
acid also. In a FC model, the representation of two proteins
were separately inserted and passed through the flatten layer.
Then, the results were fed to the two FC layers with 20 units
followed by batch normalization for speedy training time and
to avoid over-fitting. The outputs of both the branches were
then concatenated and inputted to the final FC layer having 1
unit with sigmoid function for PPI classification. The second
carefully designed architecture inputted two protein vector
representations to a three 1D-layered architecture having
convolution, pooling, and batch normalization ended with
an LSTM layer. This is clear that through all these layers,
a variety of features were extracted such as local, global,
spatial, and temporal features from the sequences. After fea-
ture extraction, the obtained information was then passed to
the two FC layer for the classification. The author faced the
time-consuming issue when tried to replace a sparse one-
hot encoding with an embedding layer and achieved minor
improvement in accuracy. This was also observed that data-
set setup and DL model design require a lot of attention to
evade DL workflow misuse.

Further, a novel algorithm-based approach was pro-
posed based on the residual network termed ResPPI [80]
comprised of residual units which are capable of full uti-
lization of GPU for efficient computing and can extract
deep features of the protein. In the proposed ResPPI algo-
rithm, the embedding method, which is generally used for
word representation in NLP task [81], is used for vector
representation of AA sequences. The obtained two vec-
tors—one for each AA sequence then concatenated and
pass to the residual network (named as ResNet) to capture
deep features. ResNet is designed for PPI prediction from
the inspirational success of ResNet [82] in other applica-
tions. So the ResPPI algorithm is a combinational process
of five residual units and each residual unit comprises of:
three 2D convolution layers each followed by batch nor-
malization and then a mapping function and ReLU; an
additional Convolution layer is also present as a shortcut
that connects the input features directly to the mapping
function in some special case. The output after all residual
units is passed to the FC layer having a softmax function
for binary classification. The model was evaluated on two
different datasets with six standard performance measures
and then compared with other baseline methods such as

RNN, LSTM, GRU, DCNN, and SVM and the obtained
performances were favorable in terms of accuracy and
speed.

Apart from improving the prediction accuracy, a research
work by Sledzieski [83] intended to address the limitation
of training data size as well as improving generalization
across species. D-SCRIPT (Deep Sequence Contact Resi-
due Interaction Prediction Transfer), a DL method was
proposed with a hypothesis that if a model, that is to be
trained using sequential data, have favorable input features
of protein that strongly characterizes the interaction infor-
mation and well-designed model structure; can be able to
generate a representation that depicts the behavior of struc-
tural interaction. D-SCRIPT model design is very similar
to PIPR [76] and DPPI [77] with the inclusion of impres-
sion of protein structure. First, using the concept of Bepler
and Berger’s pre-trained model [84], protein embedding
was constructed that included some structural information
along with sequential information about each protein. The
dimension of the obtained representation were then reduced
in Projection module and outputs an abstract representa-
tion of protein features. For the interaction prediction, the
author presented a different approach by taking a small sub-
sequence and cross-checking its compatibility score in both
protein sequences. This step is followed by a contact module
responsible to evaluate a sparse contact map according to the
obtained compatibility score. And lastly, in the interaction
module, modified max-pooling operation is performed on
the resultant contact map for identifying interaction proba-
bility. The performance of D-SCRIPT showed enhancement
in terms of generalization and aiming to consider structural
characteristics of interaction over the occurrence of protein
as an interaction partner.

Hu et al. in 2022 [85] proposed a DL architecture Deep-
Trio which provide an instinctual visualization for inter-
pretable model which was an improvement over that of
designed by [77]. The architecture was basically comprised
of numerous convolution filters arranged in parallel fash-
ion to extract deeper and refined protein features from the
profiles. Additionally, this method considered the issue of
weight polarization by employing single-protein class and
masking operation and further proved its effectiveness by
performing several experiments. The favorable outcomes
proved the model’s capability to provide an intuitive descrip-
tion of the inner mechanism of pairwise-input NN and dem-
onstrate the influence of each AA residue on PPIL.

The best performance analysis (in terms of accuracy) of
various approaches under this section is presented by Fig. 9
with most favorable network conditions. The performance
measures by some papers [79, 83] are either multiple or
unclear, therefore, those approaches are not considered in
the figure. The DN approach by [74] proved better and advo-
cated the capability of auto-feature engineering.
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Fig.9 Performance analysis of highest accuracy reported by various
approaches of Strategy-B (in %). The dataset name is mentioned in
bracket along with the accuracy (best). The best accuracy is achieved
by the approach used in [74] on ‘g’ advocated the proficiency of auto-
feature engineering

Some authors have removed sequence similarities
between the training pair of proteins and testing pair of pro-
teins for finding accurate results. The most common redun-
dancy removal technique used is CD-HIT program [86]. The
CD-HIT program is fast and greedy incremental clustering
algorithm designed for larger databases. This follows a short
word filtering process, which grouped proteins under cer-
tain similarity threshold (sequence identity). Among the
cited papers, [47, 61, 74, 75, 83, 85] considered the same
technique for the exclusion of redundancy have a sequence
identity of 40%, [73] avoided the protein sequence with
similarity greater than 60% and [77] varied the similarity
threshold with 40, 25, 10 and 1%. The author in [56, 72]
used BLAST algorithm which does pairwise comparison
for finding sequence similarity [87].

Strategy-C: Prediction Using Biomedical Text Dataset

The first implementation in this category is by Hsieh et al.
[88]. The author implemented the PPI identification task
using a bi-directional RNN with an LSTM approach. The
method includes three layers in the scenario: embedding
layer which takes the protein entities in sentence form and
each of its words is converted to the corresponding embed-
ding which forms a low-dimensional vector containing real-
values. Basically, this layer bagged the syntactic and seman-
tic information by taking the effects of neighboring words.
The obtained vector representation is then fed to the recur-
rent layer, more specifically a Bi-RNN. The resultant contex-
tual and more refined information obtained by Bi-RNN are
then taken by a FC layer for PPI classification. The author
adopted two testing methods tenfold CV and cross-corpus
(CC) to evaluate the performance using the two largest PPI
corpora: a and ¢ and concluded with favorable results in the
CV that DNs are more suitable for extracting rich context

SN Computer Science
A SPRINGER NATURE journal

information from larger datasets rather than manual feature
engineering.

In the very next year, a remarkable work in this domain
was published by Yadav et al. [89] by utilizing dependency
relationships among the names of the proteins and exploring
salient features that can prove effective for the characteriza-
tion of protein pairs. The major objective was to bagged-in
all the key entities and relevant information from a sentence
and bypass the not very important attributes so that to cir-
cumvent the limitation of existing methods and to enhance
the performance. For this, a Shortest Dependency Path
(SDP) was created to interpret more relevant information
using a Bi-directional LSTM (Bi-LSTM). For SDP creation,
a graph is developed for every sentence where nodes signify
the words and edges represent the dependency relationship
among the nodes obtained by Enju parser [90] and then the
BFS algorithm is followed to compute the shortest distance
among the protein pairs. In this way, the words that occur
in the final SDP will process further rather than a complete
sentence and thus created SDP embedding. Additionally,
with the intention to design a generalizable and adaptable
model, more salient features were explored such as Part-of-
Speech (POS) and Position features with the help of Genia
Tagger [91] and AE. Then, an embedding layer is used in
which the embeddings of SDP, POS, and position are con-
catenated to generate a vector representation suitable for the
Bi-LSTM as input. Further, Bi-LSTM comprises of three
layers: Sequence, Max-Pooling, and MLP layer which are
responsible for eliminating noise and capture contextual
and maximum possible feature-rich information from the
obtained embedding and make the PPIs prediction accord-
ingly. The model was evaluated on two popular corpora and
concluded with favorable results.

The same group of authors [92] implemented the same
task with slight modifications in the model. They include an
attention layer and used a stacking strategy in the Bi-LSTM
unit. The remaining work and architecture are same as [89].
The LSTM model with multiple hidden layers having numer-
ous memory units is termed as stacked LSTM. The author
employed the vertical stacked LSTM to capture a high-level
abstract demonstration of every word in the sentence. The
output of this layer is the hidden state representation of its
last layer which are then taken as inputs to the attention
layer. The goal of the attention layer is to generate the clues
that can be a deciding factor of interaction information or
in a more simple words, it tells that how much attention
is to be given to a particular word at the present state. It
is computed by multiplying some attention weights to the
obtained hidden representation. The model was evaluated
on five benchmark corpora and concluded with a significant
improvement over [89].

Besides basic LSTM that can only be used for investigat-
ing sequential information, tree LSTM (tLSTM) [93] can
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Fig. 10 Analysis of highest performance reported by cited papers
under Strategy-C (in %). The attention layer approach used in [92]
performed best using corpora ‘a’

be a better option for scrutinizing extra information. Ahmed
et al. [94] established his PPI identification work on tLSTM
and traversed the PPI-related sentences through the network
topology of tree-like structure in such a way that each unit
of tLSTM is accomplished to gain information from its
children. Additionally, to build the final model, the author
fused the output vector obtained from tLSTM to an atten-
tion mechanism to calculate the strength of attention at each
unit. This fusion of tLSTM with structure attention mecha-
nism was evaluated on five PPI corpora including large and
small corpora and outperformed the traditional comparative
approaches. It was also observed that due to different dis-
tribution, fewer syntactic dependencies were captured, and
thereby the model with attention mechanism was performing
poorly than the model without attention scheme.

Figure 10 depicts the analysis of best performance
achieved by various approaches mentioned under this strat-
egy. The details of these measures are mentioned in the
Table 2. It can be clearly observed from the figure that the
inclusion stacking strategy and attention layer in [92] greatly
enhanced the performance using a copora and also proved
superior to the other competitive approaches.

Figure 11 presents the count of papers published using
particular strategy. It can be witnessed that although DNs are
known for their auto-feature engineering capability but still
there are a lot more to discover because numerous research-
ers are taking the help of hand-crafted features with DN’ for
improving the performance.

Implementation of Cited Papers

This section presents the implementation results of two
papers among the cited papers. One paper is taken from
Strategy-A [61] that employed a hybrid classifier (DNN-
XGB) approach along with the combination of three fea-
ture extraction methods namely AAC, CT and LD. The

Fig. 11 Categorization of number of published papers according to
Strategy

implementation was done on two datasets k and r. For this,
all three features were extracted separately for each data-
sets. Then, two files were generated for combined positive
features and combined negative features of AAC, CT and
LD. Lastly, these two feature files were used by the hybrid
classifier for the prediction result. The implementation result
are as shown in the Fig. 12. This work was implemented on
environment of 8§ GB RAM and x64-based processor using
MATLAB R2016a [95] software for feature generation and
keras [96] library of Python 3.8.2 was used for classification.

Second paper is taken from Strategy-B [75] that advo-
cated the auto-feature engineering for PPI prediction. The
implantation was done on r dataset using Google Colabora-
tory [97] environment enforcing keras library of Python 3.8.
The fasta file [98] of AA sequence in taken online for tokeni-
zation and generation of n-gram dictionary. The obtained
results are as shown in the Fig. 12.

The details of performance measures are mentioned in
the cited papers. The observations from the Fig. 12 are that
although DL architectures are known for their auto-feature
engineering capability but still there are a lot more to dis-
cover because numerous researchers are taking the help of
hand-crafted features with DL for improving the perfor-
mance like in [61]. If the nature of DL architectures is deeply
studied, like the authors in [75] did, and applied according
to the problem taken then the need and effort of generating
protein feature can be easily bypassed.

Comparison with State-of-the-art Methods

For better understandability of the enriched improved
performance of PPI prediction using DNs, a compari-
son of some discussed approaches are made in this sec-
tion with the state-of-the-art methods proposed for the
same. Table 4 shows the best-reported results of various
existing approaches suggested for the sequence-based
PPI prediction in which the author used AC [13], ACC
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Table 4 Comparison of the deliberated approaches with state-of-the-
art methods

References Approach Acc (%)
[46] AC+SAE? 97.19
[52] AC+LD+MCD? 95.29
[57] AC+CT+LD? 98.6
[61] AAC+CT+LD* 98.35
[13] AC+SVM 87.36
[13] ACC+SVM 89.33
[11] LD+SVM 88.56
[15] MCD+SVM 91.36
[10] CT+SVM 83.9
[99] AC+CT+LD+MAC+E-ELM 87.5
[14] MLD +RF 88.3
[12] LD+KNN 86.15
[100] Phylogenetic bootstrap 75.8
[101] HKNN 84
[54] Signature products 83.4
[102] Ensemble of HKNN 86.6

#Performance highlighted in bold are the various approaches dis-
cussed in pervious sections that used DNs for PPI prediction

[13], CT [10], LD [11], MCD [15], MLD [14] and their
combinations [99] with different ML-based classifiers.
Some exciting approaches like phylogenetic bootstrap
[100], hyperplane distance nearest neighbor algorithm
(HKNN) [101], ensemble of HKNN [102], K-local signa-
ture products [54] were also proposed. This can be clearly
observed from Table 4 that the DNs are now a well-suited
selection for the problem taken with favorable outcomes.
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Conclusion

Recently, DL technology has come into the limelight with
numerous scientific researches and has also become a hot
topic in business applications. In the area of bioinformat-
ics, where incredible advances have been made with ML,
promising and more significant outcomes are expected by
DL. This paper provides a comprehensive review of three
architectures of DL: DNNs, CNNs and RNNs including its
variants in the domain of PPI prediction using sequence
information and broadly discussed the various approaches
in terms of input data, objectives, and structure of the DL
architecture along with their best-suited parameters.

It is observed that all considered architectures are capa-
ble to provide effective results in the considered area but
to fully utilize of competencies of these approaches; there
still remain several budding challenges like inadequate
data, opting for the suitable architecture with favorable
hyperparameters, and many more. Also, advanced and
deep study is essential to scale up the popularity of DL
approaches. Therefore, the detailed discussion presented
herein with carefully mined every possible information
can help the researchers to further explore the success in
this area. It is believed that this literature survey will bring
a treasured vision to assist the scholars in the applications
of DN in PPI prediction in imminent research.
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