
ar
X

iv
:1

90
2.

02
49

9v
4

 [
cs

.D
S]

 2
 M

ar
 2

01
9

A fast algorithm for constructing balanced

binary search trees

Pavel S. Ruzankin∗

Sobolev Institute of Mathematics, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia

Abstract

We suggest a new non-recursive algorithm for constructing a binary
search tree given an array of numbers. The algorithm has O(N) time
andO(1) memory complexity if the given array ofN numbers is sorted.
The resulting tree is of minimal height and can be transformed to a
complete binary search tree (retaining minimal height) with O(logN)
time and O(1) memory. The algorithm allows simple and effective
parallelization.

Keyword: binary search tree.

A binary search tree (BST) is a fundamental data structure which is
widely used in applications. There is a large variety of algorithms for con-
structing BST’s. The first approach is based on sequentially adding nodes
to the tree. The nodes may be added to leaves [5] or to the root of the tree
[7]. The second approach consists in reconstructing a BST from preorder
or postorder traversals (e.g., see [1, 2] and references therein). The third
approach is based on halving the given sorted array and recursively building
the left and the right subtrees [9]. There are also algorithms that account
for the probabilities of hitting specific nodes and try to build optimal BST’s
(e.g., see [4] and references therein).

There also exist algorithms that do not adhere to those approaches [6, 8].
The recursive algorithm in [8] constructs the tree by sequentially constructing
perfect BST’s. After a perfect BST is constructed, it is incorporated into the
new BST as the left subtree of the root. Then the new BST is built up to a
perfect BST, and so on.

∗ruzankin@math.nsc.ru

1

http://arxiv.org/abs/1902.02499v4

0111

01011

01101

0111001100

01001

0101001000

011

0101

01100100

01

01000

Figure 1: An example of a perfect binary search tree

We present a new non-recursive algorithm for constructing a binary search
tree. The algorithm has O(N) time and O(1) memory complexity if the given
array of N numbers is sorted. We use an array-based representation of the
BST. The O(1) memory complexity means that, except for the resulting
arrays used to store the tree, we need O(1) memory. If the link-based repre-
sentation is needed then the algorithm will additionally need O(N) memory.
The resulting BST has the minimal height, though may not be balanced in
the sense of AVL trees, i.e., the trees where the heights of the two child sub-
trees of each node differ by at most one. The new algorithm, though being
non-recursive, somehow resembles the recursive algorithm in [8]. Moreover,
we can use the rotations algorithm from [8] to make the BST complete, re-
taining the minimal height, which needs O(logN) time and O(1) memory.

We will assume that we have already sorted the given array ofN numbers.
To simplify notations, we will build a BST for the numbers 0, ..., N − 1.

Our algorithm is substantially based on the binary representation of a
number. We will mark the binary numbers with a leading zero to distinguish
them from decimal ones; e.g., 2 = 010.

First, let us consider the case when N = 2K − 1 for some integer K ≥ 1.
In this case the minimal height BST is perfect. For example, for K = 4, the
tree is shown on Fig. 1.

Let the level of a node be the distance from the node to the nearest leaf
in the perfect BST. That is, in a perfect BST, the leaves lie on level 0, the
parents of the leaves lie on level 1, and so on. Note that the level of a node
depends on the number of the node only and does not depend on the height
of the tree.

We see that the binary representations of nodes of level k end with k ones
leaded by zero, since subsequent nodes on level k differ by 2k+1. Thus the
level L(j) of a node j can be calculated as the location of the least significant
zero in the binary representation of j.

2

To calculate L(j), one may use the operation of the least significant one in
a binary number which is implemented in many modern processor architec-
tures [3]. There are also built-in functions for the operation in popular com-
pilers. For instance, in GCC, L(j) can be defined as __builtin_ffs(~j)-1.
We assume that the binary representation of N−1 contains at least one zero,
which is the case when N can be represented as the number of the same un-
signed integer type as is used for indexing the cells of the given sorted array
of numbers.

However Algorithms 1 and 2 below utilize not L(j) itself but 2L(j), and
Algorithm 3 below can be obviously modified to use 2L(j) instead of L(j) if
needed. It is well known [3] that

2L(j) = (j + 1)&(−(j + 1))

or
2L(j) = (∼ j)&(−(∼ j)),

where & is the bitwise AND operator, ∼ is the bitwise NOT operator, −j is
the negative of j treating j as a signed integer in two’s complement arithmetic
which is common in modern processors. For instance, in R, 2L(j) can be
defined as bitwAnd((j+1),-(j+1)).

A node j on level k ≥ 1 has the left child j − 2k−1 and the right child
j+2k−1 . Besides, a node j on level k ≥ 0 has the parent j+2k if the binary
representation of j ends with “001...1” (ending with k ones) and the parent
j − 2k if the binary representation of j ends with “101...1”.

Thus, for the case N = 2K − 1, we can write down the algorithm as the
following pseudocode. Below p, l, r denote the resulting arrays of parents,
left children, and right children, respectively. The algorithm constructs the
BST as these three arrays. M(j) denotes the location of the most significant
one in the binary representation of j, e.g., M(01001) = 3; t is the number of
the root node.

3

Algorithm 1.

for (j in 0, . . . , N − 1)

if ((j & 2L(j)+1) = 0)

p[j]:=j + 2L(j)

else

p[j]:=j − 2L(j)

end if

if (L(j) > 0)

l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

else

l[j]:= NULL
r[j]:= NULL

end if

end for

t:=2M(N) − 1
p[t]:= NULL

Now it remains to modify Algorithm 1 for the case of arbitrary N . If we
try to build a binary tree with Algorithm 1 then some edges may point to
missing nodes that are greater than N − 1.

Lemma. All the edges pointing to missing nodes in the “tree” built by Algo-

rithm 1, except the down-right edge of the last node if any, are located on the

ascending path from the node (N − 1) to the root in the perfect BST of the

same height.

Proof. Let us have the “tree” constructed by Algorithm 1. Let a node j,
j 6= N − 1, of the “tree” have its down-right edge pointing to a missing node
i. We have j < N − 1 < i. Let k be the level of the node j, and let m be the
ancestor of the node (N − 1) on level k in the corresponding perfect BST.
Then m ≥ j since j < N − 1. Besides, we cannot have m > j since it would
imply N − 1 > i. Hence, m = j, and the ancestor of the node (N − 1) at
level k − 1 in the corresponding perfect BST is i since j < N − 1 < i.

Let now a node j of the “tree” constructed by Algorithm 1 have its up
edge pointing to a missing node i, let k be the level of the node j, and let m
be the ancestor of the node (N − 1) on level k in the corresponding perfect
BST. Then again j < N−1 < i and m ≥ j, and again we cannot have m > j
since it would imply N − 1 > i. Hence, m = j.

The lemma is proved.

4

To correct the “tree” built by Algorithm 1, it remains to follow the de-
scending path from the root to the node (N−1) in the corresponding perfect
BST and “glue” edges pointing to missing nodes. Finally, the algorithm is
as follows. Below / denotes integer division, e.g., 1/2 = 0.

Algorithm 2.

function P (j) :=

if ((j & 2L(j)+1) = 0) then j + 2L(j)

else j − 2L(j)

for (j = 0 to N − 1 by 2)
p[j]:=P (j)
l[j]:= NULL
r[j]:= NULL

end for

for (j = 1 to N − 1 by 2)
p[j]:=P (j)

l[j]:=j − 2L(j)−1

r[j]:=j + 2L(j)−1

end for

r[N − 1]:= NULL

t:=2M(N) − 1
p[t]:= NULL

k:=2L(t)

j:=t

while (k > 2L(N−1))

k:=k/2
if (((N − 1− t) & k) = 0)

k:=k/2
while (((N − 1− t) & k) = 0)

k:=k/2
end while

r[j]:=j + k
p[j + k]:=j

end if

j := j + k
end while

The time complexity is still O(N), since “gluing” edges after the for

loops takes O(logN) time and O(1) memory.

5

The while loops for “gluing” edges are explained as follows. Traveling by
the descending path from the root node t to the node (N − 1), we move by
±2L(j)−1 when we go from the node j to its right/left child. Thus, N−1−t =
A − B, where A is the binary number with 1’s on locations m such that
the path contains the edge from j to its right child, where m = L(j) − 1.
Analogously, B has 1’s on locations m such that the path contains the edge
from j to its left child, m = L(j) − 1. The path goes through the nodes
> N − 1 when it contains a subpath with the edges “right–left–left–. . . –left”
with the next edge being down-right or with the last edge of the subpath
being the last edge of the path. Only the first and the last node of the
subpath are ≤ N − 1. So we must “glue” each such subpath into one edge.
Let m and n be the levels of the first and the last node of the subpath.
Then N − 1 − t will contain the following binary digits at the locations
m − 1, . . . , n: 100 · · ·0 − 011 · · ·1 = 00 · · ·01. The while loops just search
for all such subpaths (all such patterns in N − 1− t) and connect their first
and last nodes with an edge.

Remark 1. Algorithm 2 allows simple and effective parallelization. The
only loop that cannot be parallelized is the loop correcting edges pointing to
nodes > N − 1. That loop has complexity O(logN).

Remark 2. Algorithm 2 can be used without really constructing the
tree. In this case the tree is “virtual”, we need no time and no memory
to construct the tree; the search operation needs O(logN) time, and the
number of examined nodes for each search does not exceed the (minimal)
height; the operations of deletion and insertion of nodes are just the deletion
and insertion of a number to the given array keeping it sorted. The search
operation for the “virtual” tree is defined as follows. A search path is the path
in the corresponding perfect BST such that when we meet a node > N − 1
we go down-left until we reach some node ≤ N − 1.

Remark 3. If a user does not need the array of parents p then the array
can be excluded from Algorithm 2 as well as from Algorithm 3 below, since
those algorithms do not read the values from p.

To make the tree complete (retaining the minimal height) we can use the
rotations algorithm from [8] as follows.

6

Algorithm 3.

function R(j):=
if (j = N − 1) then 0
else M(N − 1− j) + 1

x:=t
h:=L(t)
if (R(x) < h and h > 1) then

y:=l[x]
t:=y
p[y]:= NULL
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else

z:=x
x:=r[x]

end if

h:=h− 1

while (h > 1)
if (R(x) < h) then

y:=l[x]
p[y]:=z
r[z]:=y
l[x]:=r[y]
p[l[x]]:=x
r[y]:=x
p[x]:=y
z:=y

else

z:=x
x:=r[x]

end if

h:=h− 1
end while

Here R(j) stands for the height of the right subtree of a node j in the
BST built by Algorithm 2 when the node j is reachable from the root node

7

by descending via down-right edges only, h is the level of the current node,
x is the current node. Algorithm 3 needs O(logN) time since it goes down
by 1 in h each iteration of the while loop.

References

1. N. Aghaieabiane, H. Koppelaar, P. Nasehpour (2017). An improved algo-
rithm to reconstruct a binary tree from its inorder and postorder traver-
sals. Journal of algorithms and computation. vol. 49, no. 1, pp. 93–113.

2. V. V. Das (2010). A New Non-recursive Algorithm for Reconstructing a
Binary Tree from its Traversals. 2010 International Conference on Ad-
vances in Recent Technologies in Communication and Computing, Kot-
tayam, pp. 261–263. doi: 10.1109/ARTCom.2010.88

3. Find first set. Wikipedia article. retrieved January 14, 2019.
https://en.wikipedia.org/wiki/Find first set

4. T. Gagie (2003). NewWays to Construct Binary Search Trees. In: Ibaraki
T., Katoh N., Ono H. (eds) Algorithms and Computation. ISAAC 2003.
Lecture Notes in Computer Science, vol. 2906, Springer, Berlin, Heidel-
berg.

5. D. E. Knuth (1973). The art of computer programming: Sorting and
searching., vol. 3. Reading, Mass.: Addison-Wesley Pub. Co.

6. Sorted List to complete BST. Rhyscitlema.
July 31, 2018. retrieved February 22, 2019.
http://rhyscitlema.com/algorithms/sorted-list-to-complete-bst/

7. C. J. Stephenson (1980). A method for constructing binary search trees
by making insertions at the root. Int. J. Comput. Inf. Sci. 9, pp. 15–29.

8. J. G. Vaucher (2004). Building optimal binary search trees from sorted
values in O(N) time. In: Essays in Memory of Ole-Johan Dahl, pp. 376–
388.

9. N. Wirth (1976). Algorithms + data structures = programs. Englewood
Cliffs, N.J.: Prentice-Hall.

8

http://rhyscitlema.com/algorithms/sorted-list-to-complete-bst/

