
Vol.:(0123456789)

SN Computer Science (2022) 3:431
https://doi.org/10.1007/s42979-022-01296-6

SN Computer Science

ORIGINAL RESEARCH

Optimizations of a Multi‑Agent System for a Real‑World Warehouse
Problem

Botond Ács1 · László Dóra1 · Olivér Jakab1 · Alpár Jüttner2 · Péter Madarasi3 · László Z. Varga1 

Received: 31 January 2022 / Accepted: 30 June 2022 / Published online: 8 August 2022
© The Author(s) 2022

Abstract
In recent years, many warehouses applied mobile robots to move products from one location to another. We focus on a tradi-
tional warehouse where agents are humans, and they are engaged with tasks to navigate to the next destination one after the
other. The possible destinations are determined at the beginning of the daily shift. Our real-world warehouse client asked us
to minimize the total wage cost, and to minimize the irritation of the workers because of conflicts in their tasks. We define
a heuristic for the optimizations for splitting the orders into warehouse carts, defining the sequence of the products within
the carts, and the assignment of the carts to workers. We extend Multi-Agent Path Finding (MAPF) solution techniques.
Furthermore, we have implemented our proposal in a simulation software, and we have run several experiments. According
to the experiments, the make-span and the wage cost cannot be reduced with the heuristic optimization, however the heuristic
optimization considerably reduces the irritation of the workers. We conclude our work with a guideline for the warehouse.

Keywords  Multi-agent path finding · Task assignment · warehouse · Multi-agent optimization

Introduction

In recent years, many warehouses applied mobile robots to
move products from one location to another. These applica-
tions gave rise to intensive research on problems related to
the optimization of moving a team of agents in discrete time-
steps on a graph while avoiding collisions. Big e-commerce
companies are interested in this research [1]. This research
has become more important nowadays, as the recent pan-
demic has increased the demand for e-commerce.

In traditional warehouses, the agents go to the shelves,
they pick up the products from the shelves and put them into
their warehouse cart. Then the agents take the cart to the exit
of the warehouse and park the cart for transportation.

The movement of the agents need to be optimized, which
is the main topic of Multi-Agent Path Finding (MAPF) [2].
The classical MAPF is a “one shot” problem. Each agent has
a starting position and a destination position, anywhere in
the warehouse. In the lifelong MAPF problem [3], the desti-
nation positions appear online, and the agents are constantly
engaged with new tasks to navigate to the next destination.
In our traditional warehouse, agents are also engaged with
tasks to navigate to the next destination one after the other,
but the possible destinations are determined at the beginning
of the daily shift, because our wholesale warehouse client
operates with daily orders. We call this traditional version of
the problem, “semi-lifelong” MAPF problem.

Our client is a traditional warehouse where the agents are
humans. Our real-world warehouse client asked us to tell the
number of workers that is needed to be allocated to complete
the daily shift in an optimal way. The optimization goals are
to minimize the total wage cost, and to minimize the irrita-
tion of the workers when they have to walk around each other
or they have to wait in front of a shelf for the other worker to
finish. Such real-world scenario is not directly addressed by

This article is part of the topical collection “Frontiers in Practical
Applications of Agents, Multi-Agent Systems, and Social Good”
guest edited by Fernando De la Prieta and Frank Dignum.

 *	 László Z. Varga
	 lzvarga@inf.elte.hu

1	 Faculty of Informatics, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117, Hungary

2	 Faculty of Science, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117, Hungary

3	 Faculty of Science, ELTE Eötvös Loránd University,
and the MTA-ELTE Egerváry Research Group
on Combinatorial Optimization, Eötvös Loránd Research
Network (ELKH), Pázmány Péter sétány 1/C, Budapest 1117,
Hungary

http://orcid.org/0000-0001-8088-4528
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01296-6&domain=pdf

	 SN Computer Science (2022) 3:431431  Page 2 of 12

SN Computer Science

classic MAPF methods. We advance the state of the art by
combining and extending classic MAPF methods to solve a
real-world problem with heuristic optimizations.

In “Problem definition”, we define the problem to be
solved. In “Related work”, we review the related work. In
“Optimization of order splitting and routing”, we present
the proposed solution how to assign the orders to warehouse
carts, and its experimental demonstration. In “Optimization
of task assignment”, we present the proposed solution to
assign the warehouse carts to the agents of a multi-agent
system (MAS), and how we have evaluated it in a simula-
tion software. In “Evaluation”, we evaluate the experimental
results, and we give a guideline for our real-world warehouse
client. “Conclusion” concludes the paper.

Problem Definition

We focus on a traditional warehouse where humans collect
the products, but our proposal and results can be applied to
robots as well. We use the word agent for human workers.
Figure 1 shows the typical layout of the warehouse. The
warehouse has a grid layout, and an agent with a warehouse
cart occupies one cell in this grid. The shelves are organised
in aisles. One shelf occupies one cell. The aisles are wide
enough for three agents: one agent can pass, while two other
agents stand in front of the shelves.

There is a given set of orders in each daily shift. There are
O number of orders per day. The orders consist of several
products. The orders have to be split into packages that can
be collected into one or more warehouse carts.

The carts are moved by the agents on a route from the
entrance door of the warehouse to the exit door. One agent

can move maximum one cart. The agent and its cart move
together, and they occupy one cell in each time step. When
an agent finishes with a route, then it goes back to the
entrance outside of the warehouse, and the agent can start
its next route after T time.

The products of the orders have to be collected from the
shelves. The agent and the cart stays for a short S time in
front of a shelf while the products are collected from the
shelf. If an agent is in front of a shelf and another agent
wants to go to the same shelf, then the later arriving agent
has to wait.

The products of an order have to be assigned to carts so
that the products fit into the least number of carts. The set of
products assigned to a cart is a package. The agent with the
cart must visit the shelves containing the products assigned
to the package.

There are N number of agents to move the carts. The
daily shift lasts maximum H hours. The number H is fixed.
The work-time of an agent within a shift starts when the first
agent starts with its first cart, and the work-time ends when
the last agent exits from the warehouse with its last cart.

Defining the sequence of the packages is the task assign-
ment (TA). The make-span ( M ) of the schedule is the time
difference between the start of the work-time of the first
agent and the end of the work-time of the last agent. The
total wage cost is C = M ×N  . Note that the wage cost is
proportional to the make-span, i.e. an agent also incurs cost
when it is assigned to the warehouse work, but it is only
waiting for the other agents to finish. This is because the
agents are assigned to the job for the total make-span.

Our client asked us to solve the following problem: opti-
mize the splitting of the orders into packages, create a sched-
ule of the packages in accordance with the above descrip-
tion, and assign the packages to the agents. The schedule

Fig. 1   A typical warehouse
layout. The entrance is at the
left-hand side and the exit is at
the right-hand side. The shelves
are indicated with grey cells.
The agents pulling the carts are
indicated with yellow cells.

SN Computer Science (2022) 3:431	 Page 3 of 12  431

SN Computer Science

must fit within the shift. Find the schedule that needs the
least amount of wage cost, and in addition, try to minimize
the extra movements and waits of the agents.

Related Work

A direct approach to solve the “one shot” MAPF problem
optimally is to treat the team of agents as a single joint
agent and then to apply a version of the A∗ algorithm [4].
The Conflict Based Search (CBS) [5] algorithm treats the
agents individually and applies a two level search. The
optimal and complete CBS algorithm outperforms the A∗
approach in many cases. Finding an optimal solution for
the MAPF problem is computationally intractable [6].
Computationally tractable MAPF solvers produce sub-
optimal solutions. Sub-optimal MAPF solvers include the
CA∗ [7] (incomplete and suboptimal), the PBS [8] (incom-
plete and suboptimal), and the ECBS [9] (complete and
bounded suboptimal) algorithms.

The “one shot” MAPF addresses the problem when all
the agents start at the same time to their destinations. This
cannot be applied to our problem directly, because in our
problem the agents usually start at different times. How-
ever, at specific moments, these algorithms can be applied
to compute conflict free routes for the agents to their next
destinations.

In a more realistic warehouse scenario, there are prod-
ucts on shelves and the agents have to deliver the products
to delivery points. In this warehouse scenario, the agents
can choose among the products, but then the destination of
the product is fixed. The CBS-TA algorithm [10] is a com-
plete and optimal solution for the task assignment (TA)
and route finding problem, where the agents start at the
same time, but they can choose among the targets to find
an optimal solution for the conflict free routes. The CBS-
TA algorithm is computationally intractable.

The CBS-TA algorithm cannot be applied to our prob-
lem, because in our case, the agents chose not only a single
target, but a set of targets, which are the products that
have to be collected to a warehouse cart. In addition, the
CBS-TA algorithm is also a “one shot” MAPF problem,
because the agents start at the same time. In our problem,
the agents start to their set of destinations in a sequence.
The heuristic optimization of our solution addresses the
problem of this sequential choice of target sets.

In an even more realistic warehouse scenario, the
MAPF problem is a lifelong problem where the optimal
collision-free routes may change when new tasks appear.
There are different methods [11] to approach the re-plan-
ning in the lifelong MAPF. One method is to solve the life-
long MAPF for all tasks as a whole [12]. Another method
is to treat it as a sequence of MAPF problems at every

time-step when a new task is assigned to an agent. At this
time-step, the routes for all agents are re-planned [13, 14].
In the third method, the route is re-planned only for those
agents which get new tasks [15].

These methods can be applied in our problem, because
our agents have to re-plan their routes when they start for a
new product. The computationally most demanding method
is to solve the lifelong MAPF as a whole, and this method
gives the best solution. The computationally less demand-
ing is to re-plan only for those agents which get new tasks,
but in this case the route is optimized only for a part of the
agents. We chose to re-plan the routes for all agents when
new tasks are assigned, because it optimizes the routes for
all agents, but it is computationally not so demanding as the
first method.

Frequent re-planning makes the computational complex-
ity of the MAPF solvers more difficult to handle. The win-
dowed MAPF approach helps to reduce this computational
complexity [11]. In the windowed MAPF solver, the colli-
sions are resolved only for the well-chosen next w time-steps
ahead. The empirical results show [11] that the windowed
approach produces close to optimal solutions.

In fact, there is no need to resolve the conflicts for the
whole routes, if the routes are re-planned before the agents
complete them. Because we chose to re-plan the routes for
all agents when new tasks are assigned, and in our problem
the agents start to new destination frequently, we chose to
apply the windowed approach.

The following optimizations are also needed to solve our
problem: the orders have to be split into smaller packages
fitting the carts used to collect the items, and the sequence of
the products within a package has to be determined so that
the routes of the carts are optimal.

The first optimization problem is essentially a Bin Pack-
ing Problem, which can be easily modeled as an integer pro-
gram [16], or alternatively, one can also use the approxima-
tion scheme given in [17].

The second problem is to find the best route for the col-
lection of the products within a package. This means that
the picking order of the items is to be determined. In many
cases, a plain heuristic based on the map of the warehouse
may be good enough, because the agents go from the
entrance towards the exit, and they visit the aisles in this
order. Once the agents enter an aisle, they collect all the
products that are assigned to them and can be found in the
given aisle. The sequence within an aisle follows a U-shape.
However, in warehouses of more complex layout, obtaining
a good solution is less obvious. In general, the problem to be
solved is the Travelling Salesman Problem [18].

In this paper, we focus on an alternative approach, which
is the simultaneous optimization of the splitting and the rout-
ing sub-problems. This problem can be considered as a Vehi-
cle Routing Problem [19], which is computationally more

	 SN Computer Science (2022) 3:431431  Page 4 of 12

SN Computer Science

difficult, but usually provides significantly better solutions.
In fact, our proposed algorithm quickly obtains an optimal
solution for the vast majority of the real-world problem
instances, as we will see in “Experiments”.

Optimization of Order Splitting and Routing

Each order consists of a set of products that must be col-
lected from the warehouse. This task is done by agents
who move carts around the warehouse and pick the items
from the shelves. However, an order might contain too
many products that together do not fit on a single cart. In
such cases, the order first has to be split into packages,
and then each package is collected separately. Hence, the
underlying multi-objective optimization problem asks for
a feasible split of the order into packages (i.e., for each
package, the corresponding products should fit on a single
cart) while minimizing the total number of carts and the
total length of the routes needed to complete the orders,
and also ensuring the existence of conflict-free paths for
the agents to follow.

Splitting the Orders into Packages

Products in large orders must be partitioned into smaller
packages satisfying given size constraints. Furthermore, as
an additional restriction, items in the same package must
be placed on a cart in compliance with the following prod-
uct placement rules.

Area based picking. Orders might contain products that
can be found outside the warehouse area. Such items are
filtered, forwarded to a dedicated worker, and then removed
from the order. However, as at the end of the picking proce-
dure these products are also placed on carts that correspond
to the given order, their sizes must be taken into considera-
tion when optimizing the total number of carts.

Volume constraints. Naturally, the dimensions of a cart
imply upper bounds on both the dimensions and the total
volume of items that can be placed on it. Each product has
a detailed description in the database containing its dimen-
sions as well, and this data is used when the size-constraints
are added to the IP. Nevertheless, the range of available
products in the warehouse changes dynamically, resulting in
uncertainties and inaccuracies in the database. As a worka-
round, packages are formed with a safety margin that ensures
the feasibility of the package even in problematic cases.

Weight constraints. Weight constraints are added in a
similar way to the volume case. There is an upper bound
on the total weight of items placed on the same shelf of
a cart, while the total weight of a cart together with the
products on it is also limited. It is worth mentioning that

the latter limit might be different for different workers
(depending on the physical strength of the worker).

Product placement rules. Due to hygiene and safety rea-
sons, the placement of products on carts must respect certain
rules. Chemical substances must be placed on the lowest shelf
of the cart, separated from edible foods and feeds. Vegetables
are also not allowed to be placed above other, non-chemical
products. When partitioning the items of an order into pack-
ages, then these rules must be respected by all packages.

The problem of dividing an order into a fixed number of
packages is basically a bin packing problem with additional
constraints. It can be formulated as an integer linear program
(IP) in a straightforward way by introducing a binary vari-
able for all item-package pairs. This in turn can be solved
using any of the open source mixed integer optimization
solvers. This allows us to increase the number of the pack-
ages one by one as long as the model becomes solvable—
when we have the minimum number of necessary packages.
Our computational experiments show that an optimal solu-
tion can be obtained quickly for all instances coming from
real life applications, hence one can easily determine the
minimum number of necessary packages.

Picking Route Optimization

Keeping the number of carts as low as possible is only
one aspect of the objective function. To ensure a maxi-
mum throughput of the whole picking procedure, products
assigned to the same cart should be located ‘close’ to each
other, thus helping the path finding heuristic to determine
conflict free routes of small total length. Therefore, the
objective function of the IP, that is used for partitioning the
orders into packages, also depends on the pairwise distances
of the items added to the same package.

This section describes a Mixed Integer Programming
model for solving the joint problem of splitting the order into
single carts and finding an optimal route for each of them.

The primary objective is to minimize the total length of the
paths of the carts, while the number of carts is as small as possible.

Thus, the first step is to determine the number of neces-
sary carts. One can easily see that this problem is a standard
multiple constrained binpacking problem.

Then, assume that the current order fits to k carts, and
let sj and tj denote the source and the destination for each
cart j = 1,… k . Let S and T denote the set of all sources and
all destinations, respectively. The items in the order will be
denoted by I.

In what follows, we describe an approach to split the
order to carts subject to resource constraints such that the
total length of the paths of the carts is minimized. For the
sake of simplicity, we restrict ourselves to the weight con-
straints, i.e. each item i ∈ I has a given positive weight wi

SN Computer Science (2022) 3:431	 Page 5 of 12  431

SN Computer Science

and the sum of the items to be placed on cart j shall not
exceed its weight capacity Wj.

First, we build up a directed graph G = (V ,A) , where
V = I ∪ S ∪ D , and A is the union of the following four sets

We define a length function l ∶ A ⟶ ℝ on the arcs such
that luv is the length of the shortest path from u to v, except
for the dummy arcs tjsj+1 ∈ ATS , whose length is defined to
be zero.

It is easy to see that a possible splitting of the order with
a well-defined order in which the items must be collected
corresponds to a Hamiltonian path from s1 to tk . The solu-
tions of the following integer programming model will be
such Hamiltonian paths, and it also ensures that the weight
constraints are met.

 where xuv is a binary variable indicating whether arc uv ∈ A
is in the Hamiltonian paths or not. Constraints (2c) and (2d)
ensure that the solution is a directed path from s1 to tk plus

(1a)AII ∶= {uv ∶ u, v ∈ I, u ≠ v}

(1b)ASI ∶= {sv ∶ s ∈ S, v ∈ I}

(1c)AIT ∶= {ut ∶ u ∈ I, t ∈ T}

(1d)ATS ∶= {tjsj+1 ∶ j = 1,… , k − 1}

(2a)

min
∑

uv∈A

l
uv
x
uv

s.t.

x ∈ {0, 1}A

(2b)y ∈ ℝ
V

(2c)
∑

uv∈Δout(u)

xuv = 1 ∀u ∈ V ⧵ {tk}

(2d)
∑

uv∈Δin(u)

xuv = 1 ∀u ∈ V ⧵ {s1}

(2e)yu + wv ≤ yv + (1 − xuv)M ∀uv ∈ AII ∪ ASI

(2f)yu ≤ yv + (1 − xuv)M ∀uv ∈ AIT

(2g)ytj ≤

j
∑

j�=1

Wj� ∀j = 1,… , k

(2h)ysj =

j−1
∑

j�=1

Wj� ∀j = 1,… , k

possibly some disjoint circles all together covering each
node exactly once. The existence of such unconnected cir-
cles are prevented by the introduction of potential variables
y. Due to Equations (2b) and (2e), the value of y increases by
at least wu along each edge uv of the solution - which would
be impossible for a disjoint circle.

Finally, Eqs. (2g) and (2h) ensure that the sum of the
weights along each subpath between sj and tj is at most Wj.

Speed up with Callback Heuristic

The model above may directly be solved by a general pur-
pose MIP solver, however, its efficiency is rather limited on
larger instances. Most MIP solvers provide flexible ways of
problem-specific programmatic fine-tuning. One of them is
implementing a heuristic improving callback. This callback
function is regularly called by the MIP solver when a new
feasible solution is found. In this callback, one can imple-
ment any algorithm that heuristically tries to improve the
feasible solution. A good problem specific heuristic may
significantly speed up the convergence of the MIP solver.

We implemented the following two improving steps.
The first improving step is the 2-OPT change [20] in

one of the subpaths. Assuming that the current sequence
of nodes of a subpath is u1,… , um , it basically looks for
a pair of arcs uiui+1 and ujuj+1 in the solution such that the
path u1 … , ui, uj, uj−1,… , ui+1, uj+1,… , um is shorter than the
current one. Then this process is repeated until no improving
change is found.

Second, for each tour, we remove its nodes one-by-one
and reinsert it to the best position. This step is iterated as
long as a node can be inserted to a better position.

Experiments

We implemented the model given in “ Picking route opti-
mization” using CBC [21], and extended the solver with the
heuristic callback described in “Speed up with callback heu-
ristic”. The effect of this extension was evaluated on realistic
orders consisting of 12–24 items, four instances of each size.
The experiments were carried out on an Intel i7-8650U CPU
using CBC version 2.9.8 and the timeout was set to one hour.
On the instances above, the callback improves the running
time of the solver significantly, as shown in Fig. 2.

In another experiment, we use the same instances, but limit
the running time of the algorithm to one minute, and investigate
the quality of the found solution in comparison to the length of
the shortest tour. Fig. 3 shows that the callback enables us to find
the theoretically optimal tour in just under one minute in the vast
majority of cases—in contrast to the default operation of CBC,
which typically takes longer time to find a best tour.

	 SN Computer Science (2022) 3:431431  Page 6 of 12

SN Computer Science

Optimization of Task Assignment

In our real-world warehouse, the MAPF problem has life-
long like features on two levels: the agents are engaged
with new products one after the other within one package,
and the agents are engaged with new packages one after
the other within one daily shift. Therefore, we have to opti-
mize the route for each package, and we have to optimize
the order of the packages within one shift.

Heuristic Optimization of the Sequence
of the Packages

The task assignment for the optimization of the route for
a single package is given (see the previous “Optimiza-
tion of order splitting and routing”), and we only have to
optimize the conflict free routes of the agents from one
product to the next product. We treat this problem as a
sequence of MAPF problems at every time-step when an

Fig. 2   Running time of CBC
with and without the heuristic
callback

Running time of CBC with the heuristic callback (s)

R
un

ni
ng

 ti
m

e
of

 C
BC

 (s
)

1

10

100

1000

1 10 100 1000

Fig. 3   Average length of the
shortest tour found under one
minute in proportion to the
optimal solution

Number of items in the order

Fo
un

d
le

ng
th

/o
pt

im
um

 le
ng

th

0.975

1.000

1.025

1.050

1.075

12 13 14 15 16 17 18 19 20 21 22 23 24

CBC

CBC with heuristic callback

SN Computer Science (2022) 3:431	 Page 7 of 12  431

SN Computer Science

agent starts for a new product. At this time-step, the routes
for all agents are re-planned to find the best route for each
agent. Although this needs a lot of computing effort, but if
only the route for a single agent is re-planned, then com-
pleteness is not always guaranteed [11]. We use the CBS
algorithm to find the optimal conflict-free routes. The CBS
algorithm performs better in the case of bottlenecks, and
the warehouse aisles are likely to be bottlenecks. Although
the CBS algorithm is computationally hard, we used this
algorithm, because the number of agents in the real-world
warehouse is expected to be below 20. We used the win-
dowed MAPF approach to reduce computational com-
plexity, although it weakens the optimality of the CBS
algorithm.

The classic MAPF solvers do not handle the problem of
the waiting time in front of the shelves. Let us consider the
situation when an agent arrives at a shelf and wants to stay
in front of the shelf for S time-steps to complete its job. If a
second agent also arrives at the same shelf during this time,
then a classic MAPF solver might produce a solution where
the first agent interrupts its job, the second agent stands in
front of the shelf, the second agent completes its job, and
then the first agent returns. A classic MAPF solver may
even consider to interleave the jobs of the two agents. Such
solution would not be acceptable in a real-world warehouse,
therefore we modified the CBS algorithm to make the S
time-steps in front of a shelf indivisible.

To optimize the order of the packages within one shift, we
would like to avoid that agents have to go to the same shelf
at the same time. This should be true all the time during the
workshift. We know all the packages in advance, but avoid-
ing the conflicts of the packages is a combinatorially hard
problem. So we defined a heuristic algorithm (Algorithm 1)
to solve it. Because an agent gets a new package when it
finishes with the previous package, we want to assign the
next package to the agent in a way that there are minimal
number of conflicts with any of the precedingly assigned N
number of packages.

Let us assume that we have a package
p1 = {pr(1,1), pr(1,2), ...pr(1,k)} , where pr(i,j) are the products in
the package in the order of their planned collection, and we
have another package p2 = {pr(2,1), pr(2,2), ...pr(2,l)} with the
ordered list of products the same way. Let us assume that p1
was assigned to agent a1 , p2 was assigned to agent a2 , and the
“delay” between the two assignments is d, which means that
packages were assigned to d − 1 number of agents after the
package assignment to agent a2 and before the package assign-
ment to agent a1.

The distance distance(p1, p2, d) in the case of the above
two packages p1 , p2 and the delay d is defined with the

number of products that are in both {pr(1,1), pr(1,2), ...pr(1,k)}
and {pr(2,d), pr(2,d+1), ...pr(2,l)} , i f d ≤ l  , otherwise
distance(p1, p2, d) = 0 . The assumption in this definition is
that agent a1 cannot have a conflict with agent a2 in collecting
products {pr(2,1), pr(2,2), ...pr(2,d−1)} , because agent a1 starts
with a delay d, and agent a2 probably has already collected
these products of its package. This assumption does not take
into account the physical distances of the products in the ware-
house, but it can be used as a rough estimate.

Note that if distance(p1, p2, d) = 0 , then agent a1 is happy
to work on package p1 with a delay d to agent a2 working
on package p2 . If distance(p1, p2, d) > 0 , then agent a2 would
prefer bigger delay than d.

Given a set of packages P and a package p, then we collect
from P the identifiers of the packages pi ∈ P that have the
minimal distance(pi, p, d) values into the set C with the func-
tion C = closest(P, p, d).

We use the heuristic defined by Algorithm 1. The function
next(R, S) returns a package to be assigned to an agent which is
free to start to collect a package. The packages that have not yet
been assigned to any agent are in set R. The currently assigned
packages are in the ordered list S = {s1, s2,… , sk} . The pack-
age sk was started by an agent the earliest, then the next agent
started to collect package sk−1 , then the next agent started to
collect package sk−3 , etc. When a package si is assigned to an
agent, and the agent starts to collect si , then si is removed from
R, and si is added to the beginning of S. When an agent finishes
with a package sj , and delivers sj to the exit, then sj is removed
from S, and the agent asks for another package with next(R, S)
if R is not empty.

When the first agent in the shift asks for a package with
next(R, S), then S is empty, and Algorithm 1 assigns a random
package from R to the first agent (lines 2–3). If S is not empty,
then we collect the identifiers of those packages from R that
are closest to s1 into a set C (line 7), and here we take into
account that there is a delay 1. If there is only one package in
this set C, then this package will be assigned to the next agent
(lines 8–10). Otherwise, we continue with s2 , and we reduce
the set C to those packages that are closest to s2 in case of a
delay 2 (line 7). If there is only one package in C, then this
package will be assigned to the next agent (lines 8–10). We
continue with the packages in S until we reach the number of
packages in S. Finally, if C still contains more than one pack-
age, then we return a random package from C (line 14–15).

An additional optimization is that when the shift starts, then
we do not start the agents at the same time, to reduce the col-
lision conflicts in the first aisles. The agents start in the begin-
ning of the shift with a delay bigger than the waiting time S in
front of the shelves.

	 SN Computer Science (2022) 3:431431  Page 8 of 12

SN Computer Science

Experimental Setup

The above solutions were implemented in a simulation pro-
gram written in C#. The inputs to the simulation program are
the layout of the warehouse, the position of the products in
the warehouse, the position of the agents in the warehouse,
and the list of packages with the ordered list of products in
them. The waiting time S in front of a shelf and the window
w to resolve the conflicts ahead can be set as parameters. The
simulation can be run with and without the heuristic optimi-
zation of the order of the packages. When the simulation ran
for too long time (one day was the limit), then we stopped it.

The layout of the real-world is similar to the one in Fig. 1.
We used this layout in our simulations. Each product type
can be found on two neighbouring shelves. The products are
evenly distributed among the shelves in the warehouse. The
real-world warehouse typically employs about 15 agents to
deliver the orders. We created scenarios for agents between
1 and 20. The typical size of a package is around 16 prod-
ucts in the real-world warehouse, and usually only one pack-
age has smaller size within an order. In our scenarios, all
the packages have 16 products. We have limited the num-
ber of packages to 40 in our scenarios to be able to run as
many experiments as possible. The package number 40 was
selected, because it means two packages per agent in the
case of 20 agents, which is the maximum in our scenarios.
The scenarios with these settings are similar to the real-
world scenarios.

We have created several scenarios for the experiments.
Products were randomly generated for two package sets p1
and p2. We assume that these package sets are the output
of the optimal splitting of the orders. The products in the
packages are ordered similarly to the heuristic explained in
“Optimization of order splitting and routing”. The scenarios
were run with and without the optimization of Algorithm 1.
When Algorithm 1 was not used, the packages were assigned
to the agents in the order as they were randomly generated
in package sets p1 and p2.

The window size w has to be greater than the job comple-
tion time S , so that the extended CBS algorithm can handle
the conflict of two agents aiming to the same shelf at the same
time. To reduce computation time, we set the job completion
time S to 2 time-steps. We chose three different lookahead
window sizes: 5, 10 and 100. Minimum window size 5 is
needed for an agent to avoid the collision with another one.
The window size 10 is about the same as the lookahead range
of humans. The lookahead range 100 is about enough to find
the optimal solution to the next product anywhere in the ware-
house. Because replanning usually occurs more frequently than
10 steps, the plans above 10 steps are almost always dropped.

The simulation scenarios of all the above mentioned
parameter combinations were run. Each scenario was a sin-
gle run, because there is no uncertainty in execution. Most
of the simulation runs could be completed in time, how-
ever a few of them had to be stopped because they ran for
too long time. Table 1 shows which simulation runs were

SN Computer Science (2022) 3:431	 Page 9 of 12  431

SN Computer Science

completed. In some cases (e.g. p2/5/2/N or p2/100/2/N for
14 agents) the not optimized simulation could not be com-
pleted because of unlucky coincidences causing excessive
amount of conflict resolution.

Evaluation

The following diagrams show the results of the simula-
tions with the multi-agent system using the task assignment
heuristic of “Optimization of task assignment”. The data

Table 1   The completed simulations (marked with tick signs)

Parameters Number of agents

 Package set Window size Wait steps Optimization 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p1 5 2 Y ✓

p1 5 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –
p1 10 2 Y ✓

p1 10 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – – –
p1 100 2 Y ✓

p1 100 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – – – – – –
p2 5 2 Y ✓

p2 5 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ ✓

p2 10 2 Y ✓

p2 10 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – –
p2 100 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓

p2 100 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ – – – – –

Fig. 4   The make-span M of the
experiments

Fig. 5   The total wage cost C in
the experiments

	 SN Computer Science (2022) 3:431431  Page 10 of 12

SN Computer Science

series legends in the diagrams use the same notations for
the parameters as Table 1. If the experiment uses the heu-
ristic optimization of the sequence of the packages, then the
marker of the data series is a filled circle. If the experiment
does not use this heuristic optimization, then the marker of
the data series is a filled triangle. The horizontal axis is the
number of agents on all diagrams.

The statistics of the make-span M (in time-steps) of the
experiments are shown in the diagram of Fig. 4. It seems that
neither the lookahead window nor the heuristic optimization
has effect on the make-span. We will see on the diagram of
Fig. 7 that there are only small differences.

The statistics of the wage cost C in the experiments
are shown in the diagram of Fig. 5. There are significant
decreases in the trend of the wage cost when the number
of agents is a divisor of the number of packages, because
in this case the packages are evenly distributed among the
agents, and there is no need for an extra round with only
a few agents. The wage cost is about 50% higher when we
apply 19 agents instead of 1, i.e. 19 agents do not reduce
the make-span to 1

19
 of the single agent make-span. It

seems that neither the lookahead window nor the heuristic
optimization has effect on the wage cost.

The statistics of the irritation I in the experiments are
shown in the diagram of Fig. 6. The irritation I is the dif-
ference between the sum of the actions of all agents of the
given experiment and the number of actions of the single
agent experiment. The scenario with the single agent is the
reference for the total number of steps of an “irritation free”
solution. If there is only one agent, then it delivers the pack-
ages one after the other, and it can always go on the shortest
possible route to the next product. There is a clear difference
between the irritation in the heuristically optimized scenar-
ios (circle markers) and the heuristically not optimized (i.e.
random sequence of packages) scenarios (triangle markers).
The heuristic optimization considerably reduces the irrita-
tion of the agents. It seems that the lookahead window does
not have effect on the irritation. We will analyse this on the
diagram of Fig. 8.

The effect of the heuristic optimization and the looka-
head window on the wage cost C is shown in the diagram
of Fig. 7. The small sized markers are for the lookahead

Fig. 6   The irritation I in the
experiments

Fig. 7   The ratio between the
wage cost of the heuristically
not optimized and the wage cost
of the heuristically optimized
scenarios

Fig. 8   The ratio between the
irritation in the heuristically
not optimized and irritation
in the heuristically optimized
scenarios

SN Computer Science (2022) 3:431	 Page 11 of 12  431

SN Computer Science

window 5, the middle-sized markers are for the lookahead
window 10, and the large sized markers are for the looka-
head window 100. The diagram for the make-span ratios
would be the same, because C = M ×N  . There are no big
differences between the optimized and the not optimized
wage costs. The not optimized wage cost is at most 10%
higher than the optimized wage cost, but in few cases the not
optimized is at most 3% better. It seems that the lookahead
window does not have effect on the wage cost, because there
is no clear trend.

The effect of the heuristic optimization and the lookahead
window on the irritation I is shown in the diagram of Fig. 8.
There are significant differences between the optimized and
the not optimized irritation. The not optimized irritation
is in a few cases 3 times higher than the optimized irrita-
tion, and in most of the cases, the not optimized irritation is
around 2 times higher. The optimization seems to help the
most when there are fewer agents. If the number of agents
is significantly less than the number of packages, then there
is more room for optimization. It seems that the lookahead
window does not have effect on the wage cost, because there
is no clear trend.

After all, how many agents are needed?
The guideline for our real-world warehouse client is the

following: Use the heuristic optimization of “Optimization
of order splitting and routing” to split the orders into pack-
ages. Use Algorithm 1 for the heuristic optimization of the
order of the packages to reduce the irritation of the agents,
and apply as few agents as possible, because it reduces both
wage cost and irritation. In our experiments, if H = 2500 ,
then (from the diagram of Fig. 4) N = 5 . This way the work
can be completed within the daily shift (Fig. 4), the wage
cost is reduced (Fig. 5), and the irritations of the workers
are reduced (Fig. 6).

Conclusion

In this paper, we have investigated the problem of a real-
world warehouse. The warehouse want to know the number
of workers that is needed to minimize the wage cost, and
to minimize the irritation of the workers when they have
to walk around each other, or they have to wait in front of a
shelf for the other worker.

We have proposed a solution which uses MAPF solution
techniques with the following additions:

(1)	 We have used callback heuristic to optimize the split-
ting of the orders into packages.

(2)	 We have extended the CBS algorithm to handle the
waiting time in front of the shelves as an indivisible
action.

(3)	 We have solved a “semi-lifelong” MAPF. We have used
the method of re-planning for all agents whenever there
is a need for a new destination.

(4)	 We have used the windowed solution to reduce the
computing complexity of the “semi-lifelong” MAPF.

(5)	 We have defined a heuristic optimization for the assign-
ment of the packages.

According to the experiments, the callback heuristic finds the
optimal splitting of the orders into packages in most of the real-
world problem instances. The make-span and the wage cost can-
not be reduced with the heuristic optimization of the sequence
of the packages, however the heuristic optimization consider-
ably reduces the irritation of the agents. The lookahead window
seems to be indifferent, so the short range of human lookahead
may perform as well as a long range computational lookahead.
We have concluded our work with a guideline for the real-world
warehouse client. We plan to investigate if and how to imple-
ment the ideas in the real ERP system of the client.

Acknowledgements  We thank A. Kiss for facilitating the initial pro-
gramming work. The work of B. Ács, O. Jakab and L. Dóra was sup-
ported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002). The work of A. Jüttner
and P. Madarasi was supported by GINOP-2.2.1-15-2017-00085. The
work of L.Z. Varga was supported by the “Application Domain Specific
Highly Reliable IT Solutions” project which has been implemented
with the support provided from the National Research, Development
and Innovation Fund of Hungary, financed under the Thematic Excel-
lence Programme TKP2020-NKA-06 (National Challenges Subpro-
gramme) funding scheme.

Funding  Open access funding provided by Eötvös Loránd University.

Declarations 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Wurman PR, D’Andrea R, Mountz M. Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. AI Mag.
2008;29(1):9.

http://creativecommons.org/licenses/by/4.0/

	 SN Computer Science (2022) 3:431431  Page 12 of 12

SN Computer Science

	 2.	 Stern R, Sturtevant NR, Felner A, Koenig S, Ma H, Walker TT,
Li J, Atzmon D, Cohen L, Kumar T K S, Barták R, Boyarski E.
Multi-agent pathfinding: Definitions, variants, and benchmarks.
In: Proceedings of the Twelfth International Symposium on Com-
binatorial Search, SOCS 2019, Napa, California, 16-17 July 2019,
pp. 151–159. AAAI Press, Palo Alto, California (2019)

	 3.	 Ma H, Li J, Kumar T K S, Koenig S. Lifelong multi-agent path
finding for online pickup and delivery tasks. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pp.
837–845. International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2017)

	 4.	 Hart P, Nilsson N, Raphael B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans Syst Sci Cyber-
net. 1968;4(2):100–7. https://​doi.​org/​10.​1109/​tssc.​1968.​300136.

	 5.	 Sharon G, Stern R, Felner A, Sturtevant NR. Conflict-based
search for optimal multi-agent pathfinding. Artificial Intell.
2015;219:40–66.

	 6.	 Yu J, LaValle S. Structure and intractability of optimal multi-robot
path planning on graphs. Proceedings of the AAAI Conference on
Artificial Intelligence 27(1) (2013)

	 7.	 Silver D. Cooperative pathfinding. In: Proceedings of the First
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. AIIDE’05, pp. 117–122. AAAI Press, Palo Alto,
California (2005)

	 8.	 Ma H, Harabor D, Stuckey PJ, Li J, Koenig S. Searching with
consistent prioritization for multi-agent path finding. Proc AAAI
Conf Artificial Intell. 2019;33(01):7643–50.

	 9.	 Max B, Guni S, Roni S, Ariel F. Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding
problem. Front Artificial Intell Appl. 2014;263:961–2.

	10.	 Hönig W, Kiesel S, Tinka A, Durham JW, Ayanian N. Conflict-
based search with optimal task assignment. In: Proceedings of
the 17th International Conference on Autonomous Agents and
MultiAgent Systems. AAMAS ’18, pp. 757–765, Richland, SC
(2018)

	11.	 Li J, Tinka A, Kiesel S, Durham JW, Kumar TKS, Koenig S.
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses,
pp. 1898–1900. International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2020)

	12.	 Nguyen V, Obermeier P, Son TC, Schaub T, Yeoh W. Generalized
target assignment and path finding using answer set programming.

In: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, pp. 1216–1223 (2017)

	13.	 Grenouilleau F, van Hoeve W, Hooker JN. A multi-label A*
algorithm for multi-agent pathfinding. In: Proceedings of the
Twenty-Ninth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15,
2019, pp. 181–185. AAAI Press, Palo Alto, California (2019)

	14.	 Wan Q, Gu C, Sun S, Chen M, Huang H, Jia X. Lifelong multi-
agent path finding in a dynamic environment. In: 2018 15th Inter-
national Conference on Control, Automation, Robotics and Vision
(ICARCV), pp. 875–882. IEEE, not identified (2018)

	15.	 Liu M, Ma H, Li J, Koenig S. Task and path planning for multi-
agent pickup and delivery. In: Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Sys-
tems. AAMAS ’19, pp. 1152–1160. International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC
(2019)

	16.	 Martello S, Toth P. Knapsack problems: algorithms and computer
implementations. New York, United States: Wiley; 1990.

	17.	 de la Vega WF, Lueker GS. Bin packing can be solved within 1 +
� in linear time. Combinatorica. 1981;1(4):349–55.

	18.	 Applegate DL, Bixby RE, Chvátal V. Traveling Salesman Prob.
Princeton, New Jersey, United States: Princeton University Press;
2007.

	19.	 Toth P, Vigo D. Vehicle routing: problems, methods, and applica-
tions. Philadelphia, USA: SIAM; 2014.

	20.	 Lin S. Computer solutions of the traveling salesman problem. Bell
SystTech J. 1965;44(10):2245–69.

	21.	 Forrest J, Ralphs T, Santos HG, Vigerske S, Hafer L, Forrest
J, Kristjansson B, jpfasano EdwinStraver Lubin M, rlougee
jpgoncal1 Jan-Willem, h-i-gassmann, Brito S, Cristina Saltz-
man M, tosttost, MATSUSHIMA F, to-st: coin-or/Cbc: Release
releases/2.10.7. Zenodo (2022). https://​doi.​org/​10.​5281/​zenodo.​
59043​74.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.5281/zenodo.5904374
https://doi.org/10.5281/zenodo.5904374

	Optimizations of a Multi-Agent System for a Real-World Warehouse Problem
	Abstract
	Introduction
	Problem Definition
	Related Work
	Optimization of Order Splitting and Routing
	Splitting the Orders into Packages
	Picking Route Optimization
	Speed up with Callback Heuristic
	Experiments

	Optimization of Task Assignment
	Heuristic Optimization of the Sequence of the Packages
	Experimental Setup

	Evaluation
	Conclusion
	Acknowledgements
	References

