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Abstract
In recent years, many warehouses applied mobile robots to move products from one location to another. We focus on a tradi-
tional warehouse where agents are humans, and they are engaged with tasks to navigate to the next destination one after the 
other. The possible destinations are determined at the beginning of the daily shift. Our real-world warehouse client asked us 
to minimize the total wage cost, and to minimize the irritation of the workers because of conflicts in their tasks. We define 
a heuristic for the optimizations for splitting the orders into warehouse carts, defining the sequence of the products within 
the carts, and the assignment of the carts to workers. We extend Multi-Agent Path Finding (MAPF) solution techniques. 
Furthermore, we have implemented our proposal in a simulation software, and we have run several experiments. According 
to the experiments, the make-span and the wage cost cannot be reduced with the heuristic optimization, however the heuristic 
optimization considerably reduces the irritation of the workers. We conclude our work with a guideline for the warehouse.

Keywords  Multi-agent path finding · Task assignment · warehouse · Multi-agent optimization

Introduction

In recent years, many warehouses applied mobile robots to 
move products from one location to another. These applica-
tions gave rise to intensive research on problems related to 
the optimization of moving a team of agents in discrete time-
steps on a graph while avoiding collisions. Big e-commerce 
companies are interested in this research [1]. This research 
has become more important nowadays, as the recent pan-
demic has increased the demand for e-commerce.

In traditional warehouses, the agents go to the shelves, 
they pick up the products from the shelves and put them into 
their warehouse cart. Then the agents take the cart to the exit 
of the warehouse and park the cart for transportation.

The movement of the agents need to be optimized, which 
is the main topic of Multi-Agent Path Finding (MAPF) [2]. 
The classical MAPF is a “one shot” problem. Each agent has 
a starting position and a destination position, anywhere in 
the warehouse. In the lifelong MAPF problem [3], the desti-
nation positions appear online, and the agents are constantly 
engaged with new tasks to navigate to the next destination. 
In our traditional warehouse, agents are also engaged with 
tasks to navigate to the next destination one after the other, 
but the possible destinations are determined at the beginning 
of the daily shift, because our wholesale warehouse client 
operates with daily orders. We call this traditional version of 
the problem, “semi-lifelong” MAPF problem.

Our client is a traditional warehouse where the agents are 
humans. Our real-world warehouse client asked us to tell the 
number of workers that is needed to be allocated to complete 
the daily shift in an optimal way. The optimization goals are 
to minimize the total wage cost, and to minimize the irrita-
tion of the workers when they have to walk around each other 
or they have to wait in front of a shelf for the other worker to 
finish. Such real-world scenario is not directly addressed by 
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classic MAPF methods. We advance the state of the art by 
combining and extending classic MAPF methods to solve a 
real-world problem with heuristic optimizations.

In “Problem definition”, we define the problem to be 
solved. In “Related work”, we review the related work. In 
“Optimization of order splitting and routing”, we present 
the proposed solution how to assign the orders to warehouse 
carts, and its experimental demonstration. In “Optimization 
of task assignment”, we present the proposed solution to 
assign the warehouse carts to the agents of a multi-agent 
system (MAS), and how we have evaluated it in a simula-
tion software. In “Evaluation”, we evaluate the experimental 
results, and we give a guideline for our real-world warehouse 
client. “Conclusion” concludes the paper.

Problem Definition

We focus on a traditional warehouse where humans collect 
the products, but our proposal and results can be applied to 
robots as well. We use the word agent for human workers. 
Figure 1 shows the typical layout of the warehouse. The 
warehouse has a grid layout, and an agent with a warehouse 
cart occupies one cell in this grid. The shelves are organised 
in aisles. One shelf occupies one cell. The aisles are wide 
enough for three agents: one agent can pass, while two other 
agents stand in front of the shelves.

There is a given set of orders in each daily shift. There are 
O number of orders per day. The orders consist of several 
products. The orders have to be split into packages that can 
be collected into one or more warehouse carts.

The carts are moved by the agents on a route from the 
entrance door of the warehouse to the exit door. One agent 

can move maximum one cart. The agent and its cart move 
together, and they occupy one cell in each time step. When 
an agent finishes with a route, then it goes back to the 
entrance outside of the warehouse, and the agent can start 
its next route after T  time.

The products of the orders have to be collected from the 
shelves. The agent and the cart stays for a short S time in 
front of a shelf while the products are collected from the 
shelf. If an agent is in front of a shelf and another agent 
wants to go to the same shelf, then the later arriving agent 
has to wait.

The products of an order have to be assigned to carts so 
that the products fit into the least number of carts. The set of 
products assigned to a cart is a package. The agent with the 
cart must visit the shelves containing the products assigned 
to the package.

There are N  number of agents to move the carts. The 
daily shift lasts maximum H hours. The number H is fixed. 
The work-time of an agent within a shift starts when the first 
agent starts with its first cart, and the work-time ends when 
the last agent exits from the warehouse with its last cart.

Defining the sequence of the packages is the task assign-
ment (TA). The make-span ( M ) of the schedule is the time 
difference between the start of the work-time of the first 
agent and the end of the work-time of the last agent. The 
total wage cost is C = M ×N  . Note that the wage cost is 
proportional to the make-span, i.e. an agent also incurs cost 
when it is assigned to the warehouse work, but it is only 
waiting for the other agents to finish. This is because the 
agents are assigned to the job for the total make-span.

Our client asked us to solve the following problem: opti-
mize the splitting of the orders into packages, create a sched-
ule of the packages in accordance with the above descrip-
tion, and assign the packages to the agents. The schedule 

Fig. 1   A typical warehouse 
layout. The entrance is at the 
left-hand side and the exit is at 
the right-hand side. The shelves 
are indicated with grey cells. 
The agents pulling the carts are 
indicated with yellow cells.
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must fit within the shift. Find the schedule that needs the 
least amount of wage cost, and in addition, try to minimize 
the extra movements and waits of the agents.

Related Work

A direct approach to solve the “one shot” MAPF problem 
optimally is to treat the team of agents as a single joint 
agent and then to apply a version of the A∗ algorithm [4]. 
The Conflict Based Search (CBS) [5] algorithm treats the 
agents individually and applies a two level search. The 
optimal and complete CBS algorithm outperforms the A∗ 
approach in many cases. Finding an optimal solution for 
the MAPF problem is computationally intractable [6]. 
Computationally tractable MAPF solvers produce sub-
optimal solutions. Sub-optimal MAPF solvers include the 
CA∗ [7] (incomplete and suboptimal), the PBS [8] (incom-
plete and suboptimal), and the ECBS [9] (complete and 
bounded suboptimal) algorithms.

The “one shot” MAPF addresses the problem when all 
the agents start at the same time to their destinations. This 
cannot be applied to our problem directly, because in our 
problem the agents usually start at different times. How-
ever, at specific moments, these algorithms can be applied 
to compute conflict free routes for the agents to their next 
destinations.

In a more realistic warehouse scenario, there are prod-
ucts on shelves and the agents have to deliver the products 
to delivery points. In this warehouse scenario, the agents 
can choose among the products, but then the destination of 
the product is fixed. The CBS-TA algorithm [10] is a com-
plete and optimal solution for the task assignment (TA) 
and route finding problem, where the agents start at the 
same time, but they can choose among the targets to find 
an optimal solution for the conflict free routes. The CBS-
TA algorithm is computationally intractable.

The CBS-TA algorithm cannot be applied to our prob-
lem, because in our case, the agents chose not only a single 
target, but a set of targets, which are the products that 
have to be collected to a warehouse cart. In addition, the 
CBS-TA algorithm is also a “one shot” MAPF problem, 
because the agents start at the same time. In our problem, 
the agents start to their set of destinations in a sequence. 
The heuristic optimization of our solution addresses the 
problem of this sequential choice of target sets.

In an even more realistic warehouse scenario, the 
MAPF problem is a lifelong problem where the optimal 
collision-free routes may change when new tasks appear. 
There are different methods [11] to approach the re-plan-
ning in the lifelong MAPF. One method is to solve the life-
long MAPF for all tasks as a whole [12]. Another method 
is to treat it as a sequence of MAPF problems at every 

time-step when a new task is assigned to an agent. At this 
time-step, the routes for all agents are re-planned [13, 14]. 
In the third method, the route is re-planned only for those 
agents which get new tasks [15].

These methods can be applied in our problem, because 
our agents have to re-plan their routes when they start for a 
new product. The computationally most demanding method 
is to solve the lifelong MAPF as a whole, and this method 
gives the best solution. The computationally less demand-
ing is to re-plan only for those agents which get new tasks, 
but in this case the route is optimized only for a part of the 
agents. We chose to re-plan the routes for all agents when 
new tasks are assigned, because it optimizes the routes for 
all agents, but it is computationally not so demanding as the 
first method.

Frequent re-planning makes the computational complex-
ity of the MAPF solvers more difficult to handle. The win-
dowed MAPF approach helps to reduce this computational 
complexity [11]. In the windowed MAPF solver, the colli-
sions are resolved only for the well-chosen next w time-steps 
ahead. The empirical results show [11] that the windowed 
approach produces close to optimal solutions.

In fact, there is no need to resolve the conflicts for the 
whole routes, if the routes are re-planned before the agents 
complete them. Because we chose to re-plan the routes for 
all agents when new tasks are assigned, and in our problem 
the agents start to new destination frequently, we chose to 
apply the windowed approach.

The following optimizations are also needed to solve our 
problem: the orders have to be split into smaller packages 
fitting the carts used to collect the items, and the sequence of 
the products within a package has to be determined so that 
the routes of the carts are optimal.

The first optimization problem is essentially a Bin Pack-
ing Problem, which can be easily modeled as an integer pro-
gram [16], or alternatively, one can also use the approxima-
tion scheme given in [17].

The second problem is to find the best route for the col-
lection of the products within a package. This means that 
the picking order of the items is to be determined. In many 
cases, a plain heuristic based on the map of the warehouse 
may be good enough, because the agents go from the 
entrance towards the exit, and they visit the aisles in this 
order. Once the agents enter an aisle, they collect all the 
products that are assigned to them and can be found in the 
given aisle. The sequence within an aisle follows a U-shape. 
However, in warehouses of more complex layout, obtaining 
a good solution is less obvious. In general, the problem to be 
solved is the Travelling Salesman Problem [18].

In this paper, we focus on an alternative approach, which 
is the simultaneous optimization of the splitting and the rout-
ing sub-problems. This problem can be considered as a Vehi-
cle Routing Problem [19], which is computationally more 
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difficult, but usually provides significantly better solutions. 
In fact, our proposed algorithm quickly obtains an optimal 
solution for the vast majority of the real-world problem 
instances, as we will see in “Experiments”.

Optimization of Order Splitting and Routing

Each order consists of a set of products that must be col-
lected from the warehouse. This task is done by agents 
who move carts around the warehouse and pick the items 
from the shelves. However, an order might contain too 
many products that together do not fit on a single cart. In 
such cases, the order first has to be split into packages, 
and then each package is collected separately. Hence, the 
underlying multi-objective optimization problem asks for 
a feasible split of the order into packages (i.e., for each 
package, the corresponding products should fit on a single 
cart) while minimizing the total number of carts and the 
total length of the routes needed to complete the orders, 
and also ensuring the existence of conflict-free paths for 
the agents to follow.

Splitting the Orders into Packages

Products in large orders must be partitioned into smaller 
packages satisfying given size constraints. Furthermore, as 
an additional restriction, items in the same package must 
be placed on a cart in compliance with the following prod-
uct placement rules.

Area based picking. Orders might contain products that 
can be found outside the warehouse area. Such items are 
filtered, forwarded to a dedicated worker, and then removed 
from the order. However, as at the end of the picking proce-
dure these products are also placed on carts that correspond 
to the given order, their sizes must be taken into considera-
tion when optimizing the total number of carts.

Volume constraints. Naturally, the dimensions of a cart 
imply upper bounds on both the dimensions and the total 
volume of items that can be placed on it. Each product has 
a detailed description in the database containing its dimen-
sions as well, and this data is used when the size-constraints 
are added to the IP. Nevertheless, the range of available 
products in the warehouse changes dynamically, resulting in 
uncertainties and inaccuracies in the database. As a worka-
round, packages are formed with a safety margin that ensures 
the feasibility of the package even in problematic cases.

Weight constraints. Weight constraints are added in a 
similar way to the volume case. There is an upper bound 
on the total weight of items placed on the same shelf of 
a cart, while the total weight of a cart together with the 
products on it is also limited. It is worth mentioning that 

the latter limit might be different for different workers 
(depending on the physical strength of the worker).

Product placement rules. Due to hygiene and safety rea-
sons, the placement of products on carts must respect certain 
rules. Chemical substances must be placed on the lowest shelf 
of the cart, separated from edible foods and feeds. Vegetables 
are also not allowed to be placed above other, non-chemical 
products. When partitioning the items of an order into pack-
ages, then these rules must be respected by all packages.

The problem of dividing an order into a fixed number of 
packages is basically a bin packing problem with additional 
constraints. It can be formulated as an integer linear program 
(IP) in a straightforward way by introducing a binary vari-
able for all item-package pairs. This in turn can be solved 
using any of the open source mixed integer optimization 
solvers. This allows us to increase the number of the pack-
ages one by one as long as the model becomes solvable— 
when we have the minimum number of necessary packages. 
Our computational experiments show that an optimal solu-
tion can be obtained quickly for all instances coming from 
real life applications, hence one can easily determine the 
minimum number of necessary packages.

Picking Route Optimization

Keeping the number of carts as low as possible is only 
one aspect of the objective function. To ensure a maxi-
mum throughput of the whole picking procedure, products 
assigned to the same cart should be located ‘close’ to each 
other, thus helping the path finding heuristic to determine 
conflict free routes of small total length. Therefore, the 
objective function of the IP, that is used for partitioning the 
orders into packages, also depends on the pairwise distances 
of the items added to the same package.

This section describes a Mixed Integer Programming 
model for solving the joint problem of splitting the order into 
single carts and finding an optimal route for each of them.

The primary objective is to minimize the total length of the 
paths of the carts, while the number of carts is as small as possible.

Thus, the first step is to determine the number of neces-
sary carts. One can easily see that this problem is a standard 
multiple constrained binpacking problem.

Then, assume that the current order fits to k carts, and 
let sj and tj denote the source and the destination for each 
cart j = 1,… k . Let S and T denote the set of all sources and 
all destinations, respectively. The items in the order will be 
denoted by I.

In what follows, we describe an approach to split the 
order to carts subject to resource constraints such that the 
total length of the paths of the carts is minimized. For the 
sake of simplicity, we restrict ourselves to the weight con-
straints, i.e. each item i ∈ I has a given positive weight wi 
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and the sum of the items to be placed on cart j shall not 
exceed its weight capacity Wj.

First, we build up a directed graph G = (V ,A) , where 
V = I ∪ S ∪ D , and A is the union of the following four sets 

We define a length function l ∶ A ⟶ ℝ on the arcs such 
that luv is the length of the shortest path from u to v, except 
for the dummy arcs tjsj+1 ∈ ATS , whose length is defined to 
be zero.

It is easy to see that a possible splitting of the order with 
a well-defined order in which the items must be collected 
corresponds to a Hamiltonian path from s1 to tk . The solu-
tions of the following integer programming model will be 
such Hamiltonian paths, and it also ensures that the weight 
constraints are met. 

 where xuv is a binary variable indicating whether arc uv ∈ A 
is in the Hamiltonian paths or not. Constraints (2c) and (2d) 
ensure that the solution is a directed path from s1 to tk plus 

(1a)AII ∶= {uv ∶ u, v ∈ I, u ≠ v}

(1b)ASI ∶= {sv ∶ s ∈ S, v ∈ I}

(1c)AIT ∶= {ut ∶ u ∈ I, t ∈ T}

(1d)ATS ∶= {tjsj+1 ∶ j = 1,… , k − 1}

(2a)

min
∑

uv∈A

l
uv
x
uv

s.t.

x ∈ {0, 1}A

(2b)y ∈ ℝ
V

(2c)
∑

uv∈Δout(u)

xuv = 1 ∀u ∈ V ⧵ {tk}

(2d)
∑

uv∈Δin(u)

xuv = 1 ∀u ∈ V ⧵ {s1}

(2e)yu + wv ≤ yv + (1 − xuv)M ∀uv ∈ AII ∪ ASI

(2f)yu ≤ yv + (1 − xuv)M ∀uv ∈ AIT

(2g)ytj ≤

j
∑

j�=1

Wj� ∀j = 1,… , k

(2h)ysj =

j−1
∑

j�=1

Wj� ∀j = 1,… , k

possibly some disjoint circles all together covering each 
node exactly once. The existence of such unconnected cir-
cles are prevented by the introduction of potential variables 
y. Due to Equations (2b) and (2e), the value of y increases by 
at least wu along each edge uv of the solution - which would 
be impossible for a disjoint circle.

Finally, Eqs. (2g) and (2h) ensure that the sum of the 
weights along each subpath between sj and tj is at most Wj.

Speed up with Callback Heuristic

The model above may directly be solved by a general pur-
pose MIP solver, however, its efficiency is rather limited on 
larger instances. Most MIP solvers provide flexible ways of 
problem-specific programmatic fine-tuning. One of them is 
implementing a heuristic improving callback. This callback 
function is regularly called by the MIP solver when a new 
feasible solution is found. In this callback, one can imple-
ment any algorithm that heuristically tries to improve the 
feasible solution. A good problem specific heuristic may 
significantly speed up the convergence of the MIP solver.

We implemented the following two improving steps.
The first improving step is the 2-OPT change [20] in 

one of the subpaths. Assuming that the current sequence 
of nodes of a subpath is u1,… , um , it basically looks for 
a pair of arcs uiui+1 and ujuj+1 in the solution such that the 
path u1 … , ui, uj, uj−1,… , ui+1, uj+1,… , um is shorter than the 
current one. Then this process is repeated until no improving 
change is found.

Second, for each tour, we remove its nodes one-by-one 
and reinsert it to the best position. This step is iterated as 
long as a node can be inserted to a better position.

Experiments

We implemented the model given in “ Picking route opti-
mization” using CBC [21], and extended the solver with the 
heuristic callback described in “Speed up with callback heu-
ristic”. The effect of this extension was evaluated on realistic 
orders consisting of 12–24 items, four instances of each size. 
The experiments were carried out on an Intel i7-8650U CPU 
using CBC version 2.9.8 and the timeout was set to one hour. 
On the instances above, the callback improves the running 
time of the solver significantly, as shown in Fig. 2.

In another experiment, we use the same instances, but limit 
the running time of the algorithm to one minute, and investigate 
the quality of the found solution in comparison to the length of 
the shortest tour. Fig. 3 shows that the callback enables us to find 
the theoretically optimal tour in just under one minute in the vast 
majority of cases—in contrast to the default operation of CBC, 
which typically takes longer time to find a best tour.
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Optimization of Task Assignment

In our real-world warehouse, the MAPF problem has life-
long like features on two levels: the agents are engaged 
with new products one after the other within one package, 
and the agents are engaged with new packages one after 
the other within one daily shift. Therefore, we have to opti-
mize the route for each package, and we have to optimize 
the order of the packages within one shift.

Heuristic Optimization of the Sequence 
of the Packages

The task assignment for the optimization of the route for 
a single package is given (see the previous “Optimiza-
tion of order splitting and routing”), and we only have to 
optimize the conflict free routes of the agents from one 
product to the next product. We treat this problem as a 
sequence of MAPF problems at every time-step when an 

Fig. 2   Running time of CBC 
with and without the heuristic 
callback
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agent starts for a new product. At this time-step, the routes 
for all agents are re-planned to find the best route for each 
agent. Although this needs a lot of computing effort, but if 
only the route for a single agent is re-planned, then com-
pleteness is not always guaranteed [11]. We use the CBS 
algorithm to find the optimal conflict-free routes. The CBS 
algorithm performs better in the case of bottlenecks, and 
the warehouse aisles are likely to be bottlenecks. Although 
the CBS algorithm is computationally hard, we used this 
algorithm, because the number of agents in the real-world 
warehouse is expected to be below 20. We used the win-
dowed MAPF approach to reduce computational com-
plexity, although it weakens the optimality of the CBS 
algorithm.

The classic MAPF solvers do not handle the problem of 
the waiting time in front of the shelves. Let us consider the 
situation when an agent arrives at a shelf and wants to stay 
in front of the shelf for S time-steps to complete its job. If a 
second agent also arrives at the same shelf during this time, 
then a classic MAPF solver might produce a solution where 
the first agent interrupts its job, the second agent stands in 
front of the shelf, the second agent completes its job, and 
then the first agent returns. A classic MAPF solver may 
even consider to interleave the jobs of the two agents. Such 
solution would not be acceptable in a real-world warehouse, 
therefore we modified the CBS algorithm to make the S 
time-steps in front of a shelf indivisible.

To optimize the order of the packages within one shift, we 
would like to avoid that agents have to go to the same shelf 
at the same time. This should be true all the time during the 
workshift. We know all the packages in advance, but avoid-
ing the conflicts of the packages is a combinatorially hard 
problem. So we defined a heuristic algorithm (Algorithm 1) 
to solve it. Because an agent gets a new package when it 
finishes with the previous package, we want to assign the 
next package to the agent in a way that there are minimal 
number of conflicts with any of the precedingly assigned N  
number of packages.

Let  us  assume that  we have a  package 
p1 = {pr(1,1), pr(1,2), ...pr(1,k)} , where pr(i,j) are the products in 
the package in the order of their planned collection, and we 
have another package p2 = {pr(2,1), pr(2,2), ...pr(2,l)} with the 
ordered list of products the same way. Let us assume that p1 
was assigned to agent a1 , p2 was assigned to agent a2 , and the 
“delay” between the two assignments is d, which means that 
packages were assigned to d − 1 number of agents after the 
package assignment to agent a2 and before the package assign-
ment to agent a1.

The distance distance(p1, p2, d) in the case of the above 
two packages p1 , p2 and the delay d is defined with the 

number of products that are in both {pr(1,1), pr(1,2), ...pr(1,k)} 
and {pr(2,d), pr(2,d+1), ...pr(2,l)} ,  i f  d ≤ l  ,  otherwise 
distance(p1, p2, d) = 0 . The assumption in this definition is 
that agent a1 cannot have a conflict with agent a2 in collecting 
products {pr(2,1), pr(2,2), ...pr(2,d−1)} , because agent a1 starts 
with a delay d, and agent a2 probably has already collected 
these products of its package. This assumption does not take 
into account the physical distances of the products in the ware-
house, but it can be used as a rough estimate.

Note that if distance(p1, p2, d) = 0 , then agent a1 is happy 
to work on package p1 with a delay d to agent a2 working 
on package p2 . If distance(p1, p2, d) > 0 , then agent a2 would 
prefer bigger delay than d.

Given a set of packages P and a package p, then we collect 
from P the identifiers of the packages pi ∈ P that have the 
minimal distance(pi, p, d) values into the set C with the func-
tion C = closest(P, p, d).

We use the heuristic defined by Algorithm 1. The function 
next(R, S) returns a package to be assigned to an agent which is 
free to start to collect a package. The packages that have not yet 
been assigned to any agent are in set R. The currently assigned 
packages are in the ordered list S = {s1, s2,… , sk} . The pack-
age sk was started by an agent the earliest, then the next agent 
started to collect package sk−1 , then the next agent started to 
collect package sk−3 , etc. When a package si is assigned to an 
agent, and the agent starts to collect si , then si is removed from 
R, and si is added to the beginning of S. When an agent finishes 
with a package sj , and delivers sj to the exit, then sj is removed 
from S, and the agent asks for another package with next(R, S) 
if R is not empty.

When the first agent in the shift asks for a package with 
next(R, S), then S is empty, and Algorithm 1 assigns a random 
package from R to the first agent (lines 2–3). If S is not empty, 
then we collect the identifiers of those packages from R that 
are closest to s1 into a set C (line 7), and here we take into 
account that there is a delay 1. If there is only one package in 
this set C, then this package will be assigned to the next agent 
(lines 8–10). Otherwise, we continue with s2 , and we reduce 
the set C to those packages that are closest to s2 in case of a 
delay 2 (line 7). If there is only one package in C, then this 
package will be assigned to the next agent (lines 8–10). We 
continue with the packages in S until we reach the number of 
packages in S. Finally, if C still contains more than one pack-
age, then we return a random package from C (line 14–15).

An additional optimization is that when the shift starts, then 
we do not start the agents at the same time, to reduce the col-
lision conflicts in the first aisles. The agents start in the begin-
ning of the shift with a delay bigger than the waiting time S in 
front of the shelves.
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Experimental Setup

The above solutions were implemented in a simulation pro-
gram written in C#. The inputs to the simulation program are 
the layout of the warehouse, the position of the products in 
the warehouse, the position of the agents in the warehouse, 
and the list of packages with the ordered list of products in 
them. The waiting time S in front of a shelf and the window 
w to resolve the conflicts ahead can be set as parameters. The 
simulation can be run with and without the heuristic optimi-
zation of the order of the packages. When the simulation ran 
for too long time (one day was the limit), then we stopped it.

The layout of the real-world is similar to the one in Fig. 1. 
We used this layout in our simulations. Each product type 
can be found on two neighbouring shelves. The products are 
evenly distributed among the shelves in the warehouse. The 
real-world warehouse typically employs about 15 agents to 
deliver the orders. We created scenarios for agents between 
1 and 20. The typical size of a package is around 16 prod-
ucts in the real-world warehouse, and usually only one pack-
age has smaller size within an order. In our scenarios, all 
the packages have 16 products. We have limited the num-
ber of packages to 40 in our scenarios to be able to run as 
many experiments as possible. The package number 40 was 
selected, because it means two packages per agent in the 
case of 20 agents, which is the maximum in our scenarios. 
The scenarios with these settings are similar to the real-
world scenarios.

We have created several scenarios for the experiments. 
Products were randomly generated for two package sets p1 
and p2. We assume that these package sets are the output 
of the optimal splitting of the orders. The products in the 
packages are ordered similarly to the heuristic explained in 
“Optimization of order splitting and routing”. The scenarios 
were run with and without the optimization of Algorithm 1. 
When Algorithm 1 was not used, the packages were assigned 
to the agents in the order as they were randomly generated 
in package sets p1 and p2.

The window size w has to be greater than the job comple-
tion time S , so that the extended CBS algorithm can handle 
the conflict of two agents aiming to the same shelf at the same 
time. To reduce computation time, we set the job completion 
time S to 2 time-steps. We chose three different lookahead 
window sizes: 5, 10 and 100. Minimum window size 5 is 
needed for an agent to avoid the collision with another one. 
The window size 10 is about the same as the lookahead range 
of humans. The lookahead range 100 is about enough to find 
the optimal solution to the next product anywhere in the ware-
house. Because replanning usually occurs more frequently than 
10 steps, the plans above 10 steps are almost always dropped.

The simulation scenarios of all the above mentioned 
parameter combinations were run. Each scenario was a sin-
gle run, because there is no uncertainty in execution. Most 
of the simulation runs could be completed in time, how-
ever a few of them had to be stopped because they ran for 
too long time. Table 1 shows which simulation runs were 
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completed. In some cases (e.g. p2/5/2/N or p2/100/2/N for 
14 agents) the not optimized simulation could not be com-
pleted because of unlucky coincidences causing excessive 
amount of conflict resolution.

Evaluation

The following diagrams show the results of the simula-
tions with the multi-agent system using the task assignment 
heuristic of “Optimization of task assignment”. The data 

Table 1   The completed simulations (marked with tick signs)

Parameters Number of agents

 Package set  Window size  Wait steps  Optimization 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p1 5 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

p1 5 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –
p1 10 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

p1 10 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – – –
p1 100 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

p1 100 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – – – – – – –
p2 5 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

p2 5 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ ✓

p2 10 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

p2 10 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – –
p2 100 2 Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓

p2 100 2 N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ – – – – –

Fig. 4   The make-span M of the 
experiments

Fig. 5   The total wage cost C in 
the experiments
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series legends in the diagrams use the same notations for 
the parameters as Table 1. If the experiment uses the heu-
ristic optimization of the sequence of the packages, then the 
marker of the data series is a filled circle. If the experiment 
does not use this heuristic optimization, then the marker of 
the data series is a filled triangle. The horizontal axis is the 
number of agents on all diagrams.

The statistics of the make-span M (in time-steps) of the 
experiments are shown in the diagram of Fig. 4. It seems that 
neither the lookahead window nor the heuristic optimization 
has effect on the make-span. We will see on the diagram of 
Fig. 7 that there are only small differences.

The statistics of the wage cost C in the experiments 
are shown in the diagram of Fig. 5. There are significant 
decreases in the trend of the wage cost when the number 
of agents is a divisor of the number of packages, because 
in this case the packages are evenly distributed among the 
agents, and there is no need for an extra round with only 
a few agents. The wage cost is about 50% higher when we 
apply 19 agents instead of 1, i.e. 19 agents do not reduce 
the make-span to 1

19
 of the single agent make-span. It 

seems that neither the lookahead window nor the heuristic 
optimization has effect on the wage cost.

The statistics of the irritation I  in the experiments are 
shown in the diagram of Fig. 6. The irritation I  is the dif-
ference between the sum of the actions of all agents of the 
given experiment and the number of actions of the single 
agent experiment. The scenario with the single agent is the 
reference for the total number of steps of an “irritation free” 
solution. If there is only one agent, then it delivers the pack-
ages one after the other, and it can always go on the shortest 
possible route to the next product. There is a clear difference 
between the irritation in the heuristically optimized scenar-
ios (circle markers) and the heuristically not optimized (i.e. 
random sequence of packages) scenarios (triangle markers). 
The heuristic optimization considerably reduces the irrita-
tion of the agents. It seems that the lookahead window does 
not have effect on the irritation. We will analyse this on the 
diagram of Fig. 8.

The effect of the heuristic optimization and the looka-
head window on the wage cost C is shown in the diagram 
of Fig. 7. The small sized markers are for the lookahead 

Fig. 6   The irritation I  in the 
experiments

Fig. 7   The ratio between the 
wage cost of the heuristically 
not optimized and the wage cost 
of the heuristically optimized 
scenarios

Fig. 8   The ratio between the 
irritation in the heuristically 
not optimized and irritation 
in the heuristically optimized 
scenarios
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window 5, the middle-sized markers are for the lookahead 
window 10, and the large sized markers are for the looka-
head window 100. The diagram for the make-span ratios 
would be the same, because C = M ×N  . There are no big 
differences between the optimized and the not optimized 
wage costs. The not optimized wage cost is at most 10% 
higher than the optimized wage cost, but in few cases the not 
optimized is at most 3% better. It seems that the lookahead 
window does not have effect on the wage cost, because there 
is no clear trend.

The effect of the heuristic optimization and the lookahead 
window on the irritation I  is shown in the diagram of Fig. 8. 
There are significant differences between the optimized and 
the not optimized irritation. The not optimized irritation 
is in a few cases 3 times higher than the optimized irrita-
tion, and in most of the cases, the not optimized irritation is 
around 2 times higher. The optimization seems to help the 
most when there are fewer agents. If the number of agents 
is significantly less than the number of packages, then there 
is more room for optimization. It seems that the lookahead 
window does not have effect on the wage cost, because there 
is no clear trend.

After all, how many agents are needed?
The guideline for our real-world warehouse client is the 

following: Use the heuristic optimization of “Optimization 
of order splitting and routing” to split the orders into pack-
ages. Use Algorithm 1 for the heuristic optimization of the 
order of the packages to reduce the irritation of the agents, 
and apply as few agents as possible, because it reduces both 
wage cost and irritation. In our experiments, if H = 2500 , 
then (from the diagram of Fig. 4) N  = 5 . This way the work 
can be completed within the daily shift (Fig. 4), the wage 
cost is reduced (Fig. 5), and the irritations of the workers 
are reduced (Fig. 6).

Conclusion

In this paper, we have investigated the problem of a real-
world warehouse. The warehouse want to know the number 
of workers that is needed to minimize the wage cost, and 
to minimize the irritation of the workers when they have 
to walk around each other, or they have to wait in front of a 
shelf for the other worker.

We have proposed a solution which uses MAPF solution 
techniques with the following additions: 

(1)	 We have used callback heuristic to optimize the split-
ting of the orders into packages.

(2)	 We have extended the CBS algorithm to handle the 
waiting time in front of the shelves as an indivisible 
action.

(3)	 We have solved a “semi-lifelong” MAPF. We have used 
the method of re-planning for all agents whenever there 
is a need for a new destination.

(4)	 We have used the windowed solution to reduce the 
computing complexity of the “semi-lifelong” MAPF.

(5)	 We have defined a heuristic optimization for the assign-
ment of the packages.

According to the experiments, the callback heuristic finds the 
optimal splitting of the orders into packages in most of the real-
world problem instances. The make-span and the wage cost can-
not be reduced with the heuristic optimization of the sequence 
of the packages, however the heuristic optimization consider-
ably reduces the irritation of the agents. The lookahead window 
seems to be indifferent, so the short range of human lookahead 
may perform as well as a long range computational lookahead. 
We have concluded our work with a guideline for the real-world 
warehouse client. We plan to investigate if and how to imple-
ment the ideas in the real ERP system of the client.
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