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Abstract

Norms and conventions enable coordination in populations of agents
by establishing patterns of behaviour, which can emerge as agents
interact with their environment and each other. Previous research on
norm emergence typically considers pairwise interactions, where agents’
rewards are endogenously determined. In many real-life domains, how-
ever, individuals do not interact with one other directly, but with
their environment, and the resources associated with actions are often
congested. Thus, agents’ rewards are exogenously determined as a
function of others’ actions and the environment. In this paper, we
propose a framework to represent this setting by: (i) introducing
congested actions; and (ii) adding a central authority, that is able
to manipulate agents’ rewards. Agents are heterogeneous in terms
of their reward functions, and learn over time, enabling norms to
emerge. We illustrate the framework using transport modality choice
as a simple scenario, and investigate the effect of representative
initial, late and temporary manipulations on the emergent norms.

Keywords: Norm emergence, Conventions, Congestion games

1 Introduction

Norms and conventions enable populations of agents to interact in complex
environments, by establishing patterns of behaviour that are beneficial, and
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enabling coordination. Norms are viewed as equilibria, in which the interact-
ing agents act in some expected way [1], either choosing the same action (in
coordination games) or different actions (in anti-coordination games).1 Exist-
ing norm emergence research often focuses on the population level phenomena
that result from pairwise interactions between individual agents [2, 3].

In many real-life scenarios, however, individuals do not interact with one
another through pairwise interactions, but instead select actions (which have
a cost) according to some individual strategy, and receive rewards which are,
at least in part, determined by the action choices of others. Thus, individuals
interact with their environment, rather than directly with others. Further-
more, resources are often congested, meaning that an individual’s valuation of
a resource (and consequently their reward) is not endogenously determined,
but rather depends on the number of others using the resource (i.e., it is a
function of others’ actions, not only in terms of agents’ joint actions deter-
mining the outcome, but also the level of reward) [4]. This congestion effect
manifests in many economic and social environments, where individuals ‘com-
pete’ for some resource, with such congestion games being widely studied from
a game theoretic perspective. However, in such environments, while it is often
desirable to establish norms to facilitate coordination, the number of individ-
uals who can simultaneously benefit from choosing a particular action may be
limited. Examples of such environments include transport modality or route
choices, bandwidth or compute allocation, and public service consumption, in
which rewards are reduced if the capacity of the resource associated with an
action is exceeded.

One important aspect of many economic and social environments, in addi-
tion to congested resources and which is not accounted for by traditional
congestion games, is that of an authority figure with preferences about the
distribution of individuals’ action choices, and having some (but not com-
plete) control over the payoffs they receive. While norms often emerge in the
absence of an authority, the authority may manipulate the rewards of indi-
viduals or groups of individuals in order to ‘nudge’ the system towards a
particular state [5]. Consider, for example, the scenario of commuters choosing
a transport modality (e.g., car, bus or walk) and route. Such choices are made
individually, but rewards are determined by the current state of the environ-
ment and are affected both by others’ choices and the city authority. Many
individuals choosing the bus may result in overcrowding and low rewards,
but few individuals choosing the bus may cause the city authority to increase
prices. Moreover, the city authority may have preferences in terms of reducing
car use and increasing active travel, and so may impose charges for car use
or offer rewards for walking. In London, for example, the city authority facil-
itates bike loans, encourages employers to offer financial or holiday incentives
for employees who do not drive, and imposes charges for private car use.2

1Note that such equilibria are not necessarily Nash equilibria.
2See, for example, http://content.tfl.gov.uk/tfl-active-recovery-toolkit.pdf
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The way that a norm is evaluated depends on the perspective and asso-
ciated preferences, either that of an individual agent or of the authority.
Behaviours and norms that are beneficial from one perspective may not be
beneficial from another, a factor not typically considered in congestion games.
Individual agents evaluate a norm by considering its impact on their own
rewards, which are influenced by others’ actions. Alternatively, the authority
may evaluate it from a system level, considering whether it is appropriate for
the system as a whole, potentially considering factors such as the long-term or
indirect effects of a norm [2]. While the authority may aim to maximise social
welfare (i.e., the sum of individuals’ rewards), it may instead have its own
preferences regarding resource utilisation, namely, which actions are selected
and by what proportion of agents.

To illustrate this difference in perspectives, consider the example of trans-
port modality choice and the possible norms of driving and walking. From an
individual’s perspective, choosing to drive may broadly result in two possible
scenarios: either a high individual reward (if relatively few others choose to
drive and so traffic is light), or a low individual reward (if many others choose
to drive, resulting in congestion). Similarly, from an individual’s perspective,
walking may have a medium reward, regardless of others’ transport choices.
From the authority’s perspective, assuming a preference of decreasing car use
and encouraging active travel, the situation is independent of the individual
rewards: there is higher value to the authority when fewer individuals choose
to drive, and the highest value would be for all individuals to walk and not
drive. Other norms may be more complex, for example, individuals may pre-
fer to be on buses with a reasonable number of other passengers (for perceived
personal safety), but not so many that they have to sit directly next to a fel-
low traveller, while the authority might prefer the bus to be full to capacity
(i.e., full utilisation of the resource).

In this paper, we propose a framework that: (i) introduces congested actions
into the norm emergence setting; (ii) adds a central authority to such conges-
tion games, such that the authority is able to manipulate (but not fully control)
the rewards of agents and groups of agents; and (iii) accounts for the differ-
ent perspectives of the agents and authority in terms of their preferences.3 We
illustrate the framework using a simplified transport modality choice example,
and show the impact of manipulations on the emergent norms in the popula-
tion. We also investigate whether established norms can be destabilised and
replaced with other norms. This situation may arise whenever the population
converges to a sub-optimal (or non-optimal) but consistent norm from the
authority’s perspective, or when the established norm was previously optimal
but no longer is due to some external conditions. In such cases, the authority
may desire to encourage the population away from the established norm to
a more beneficial one. We consider three types of interventions for achieving

3This paper is an extended version of [6], and adds consideration of late interventions and
temporary interventions, in addition to adding depth to the discussion.



Springer Nature 2021 LATEX template

4 Convention Emergence with Congested Resources

destabilisation, based on those explored previously in coordination game set-
tings (see Section 2 for more details), namely: (i) initial interventions; (ii) late
interventions; and (iii) temporary late interventions. Initial interventions take
place at the start of the life of the system, late interventions are those which
take place after a norm has emerged, and temporary late interventions occur
for a limited period of time after a norm has emerged, enabling the cost of an
intervention to be managed.

The reminder of this paper is structured as follows. In Section 2 we intro-
duce the related work on norm emergence and problems similar to our unique
setting. Section 3 presents our model of norm emergence with congested
actions. We describe our experimental setting in Section 4, and present our
results on initial, late and temporary late interventions in Section 5. Finally,
in Section 6 we present our conclusions.

2 Related Work

Norm emergence has been widely studied in the context of agents who learn
(or reproduce) based on the rewards received from their interactions with oth-
ers. Such interactions typically take the form of an n-player m-action game, in
which each agent’s reward is a discrete function of others’ actions and is deter-
mined according to a payoff matrix, which is typically common knowledge.
Most literature on norm emergence either models cooperation using the Pris-
oner’s Dilemma [7–9] or learning to choose common actions in a coordination
game [2, 3, 10–14]. Such work typically focuses on pairwise interactions where
agents select from two possible actions, i.e., n = 2 and m = 2. In this paper, we
consider norm emergence from a more general perspective, in which individual
agents select from a wider set of actions (m > 2) and receive rewards which
are only partially determined by other agents’ choices (i.e., interactions are
not pairwise). While some studies have considered the more general setting of
n ≥ 2 and m ≥ 2, they have typically focused on cases with small numbers of
agents and actions per interaction [15, 16] and have not considered congested
resources or the inclusion of an authority figure. Other work has considered
the impact of large action spaces [17], but only from the perspective of agents
learning common actions, rather than the more general setting.

Our setting is similar to the El-Farol Bar Problem (EFBP), a well-known
congestion game which shares some characteristics with norm emergence [18–
20]. In the EFBP, a group of n agents, representing people, independently
decide whether to visit a bar on a certain evening, with the most enjoyable
visits being when the bar is not too crowded, i.e., when the number of visitors is
less than some (unknown) threshold. Choices are unaffected by previous visits
and there is no communication or information on others’ choices. Each agent
only knows its own choice and the subsequent reward. The EFBP illustrates
the key features of our setting, namely that agents compete for a resource
(space in the bar), agents are rational (their rewards provide information on
attendance, and they use this strategically), and there is limited information
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(agents do not know others’ strategies, but their rewards provide information
on other agents’ actions). In this paper, we introduce an authority figure that
can influence agents’ rewards, which can be viewed as adding a bar owner
to the EFBP, who is able to change the available space in the bar (e.g., by
opening or closing rooms), and considering rewards from both the owner and
customer perspectives.

Our setting is also similar to the Multi-Armed Bandit (MAB) problem,
where each individual sequentially pulls one of several arms (representing
choosing actions), with each pull resulting in a reward from some distribution
(which is unknown to the agent and may differ over time) [21–24]. While we
could represent rewards in a MAB setting as being influenced by other agents’
action choices through the use of a non-stationary distribution, such a repre-
sentation is not intuitive. Moreover, it is less clear how an authority that can
reward or penalise certain action choices might be introduced into the MAB
setting.

Various forms of intervention have been considered to encourage norm
emergence. One of the earliest studies was Axelrod’s Norms Game [25], in
which a population of agents repeatedly make decisions about whether to com-
ply with a desired norm or defect, and whether to punish those who are seen
to defect. More informed punishment methods, such as experience based pun-
ishment, have been developed for the Norms Game [26, 27], but these are
peer-based and do not consider an authority figure. Other approaches have
considered incentives and sanctions [28, 29], or the use of non-learning fixed
strategy agents (i.e., that always choose the same action regardless of others’
choices) [12, 16, 30, 31] to influence the emergence of norms, but typically in
settings where rewards are a direct function of the choices of those involved
in an interaction, and so can be represented as a simple payoff matrix. In this
paper, we introduce an authority that is able to influence agents’ rewards,
by changing the costs of performing actions and the sensitivities of agents
to the results. Similar manipulations have been considered in non-stationary
MABs, for example adding constant noise [32], using adversarial (arbitrary)
rewards [33–36], varying the expected values of the reward distributions [37], or
assuming arms are contextual (i.e., no prior knowledge about the arms exists
except for some historical data or some action features) [38–40]. To the best
of our knowledge, we are the first to consider such a perspective in the con-
text of norm emergence with congested actions, where rewards are partially
determined by the actions of others.

Much of the existing literature investigating the impact of interventions
on norm emergence considers the case where such interventions are applied
at the beginning of interactions (i.e., before a norm emerges), and there has
been relatively little investigation of interventions to change or destabilise
already established norms or conventions. There has been some investigation
of how fixed strategy agents, known as Intervention Agents (IAs), can be used
to destabilise an already established convention and encourage emergence to
an alternative desired strategy, by placing the IAs at topologically influential
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locations, in a range of networks, both static [5, 41] and dynamic [42, 43].
Interventions using IAs have been shown to be able to influence norm and
convention emergence, both when applied initially in a system and after a
norm or convention has emerged. An important concept with respect to desta-
bilisation in convention emergence is meta-stable subconventions, introduced
by [44]. Meta-stable subconventions are conventions that exist within sub-
sets of the population, that are persistent due to their stability. Several works
describe methods for destabilising meta-stable subconventions by identifying
and targeting particular topological structures [13, 44–46], showing that these
meta-stable subconventions can hinder the emergence of a global convention. In
this paper, we consider destabilisation in the context of a population selecting
congested actions.

Interventions as a means to manipulate conventions have typically per-
sisted indefinitely in a system once applied. There has been relatively little
consideration of temporary interventions, i.e., inserting interventions within
the population for a finite time rather than permanently. However, it has been
shown in the context of coordination games that temporary interventions can
be used to elicit the same level of change in a population as persistent inter-
ventions [5]. We explore, in this paper, whether such temporary interventions
are also effective in the congested action case.

3 Modelling Norm Emergence with Congested
Actions

We consider a population of n agents, or players, P = {p1, ..., pn} and
a single centralized authority, ψ. Agents are heterogeneous and may be of
different types, or belong to different groups, which determine their preferences
over actions and influence the rewards they receive. Agents interact with their
environment by playing a repeated game in which they select an action, or
option, o from a set of m ≥ 2 alternatives, O = {o1, ..., om}. At a given time
t each agent p simultaneously interacts with the environment by choosing an
action op,t for which it receives a reward (which could be positive or negative).
For simplicity, unless it is ambiguous, we assume that t refers to the current
time and write op for the action selected by p.

Each action is viewed as requiring some resource, and we assume that
resources are congested, meaning that there is a limit to how many agents can
simultaneously use the resource and receive maximal individual reward. Let
ω∗o ∈ (0, 1] denote the maximum proportion of agents in the population who
can simultaneously select o and receive maximal reward, i.e., ω∗o represents
the capacity of the resource associated with action o. Thus, if ω∗o = 1/n then
only a single agent can receive maximal reward for selecting the action at any
time, while if ω∗o = 1 then all agents would receive the maximal reward if they
simultaneously selected the action. We assume that agents are fully rational,
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self-interested and act independently and simultaneously at any given time,
without any knowledge of others’ choices or strategies.

3.1 Actions and Congested Resources

The reward an agent receives for selecting an action is determined both by its
individual preferences, represented by its type, and the value associated with
the action, which is a function of the environment and others’ action choices.
We use the terms value and reward respectively to distinguish between the
benefit resulting from an action in the current setting, independent of the
agent’s preferences, and the benefit an agent receives taking into account its
preferences. Let vo,t denote the value that is associated with selecting action o
in time step t. Again, unless it is ambiguous in the current context, we assume
that t refers to the current time, and so we simply write vo. For generality, we
assume that the value of an action o is determined by some valuation function
Vo(ωo) which maps the proportion of agents, ωo, selecting action o to the value
of the action,

vo = Vo(ωo). (1)

The proportion of agents, ωo ∈ [0, 1], who select action o in the current time
step, is defined as

ωo =
| {p : p ∈ P ∧ op = o} |

| P |
(2)

where op is the action selected by p.
Some actions might not be congested, or have sufficient capacity that ω∗o =

1, and therefore the value vo associated with such actions is independent of
the proportion of agents selecting that action, so

Vo(ωo) = y (3)

meaning that the value associated with o has a constant value of y.
For actions associated with congested resources, the capacity of the resource

plays an important role in determining the value of such actions. There are
two cases: the resource associated with action o is in-capacity if ωo ≤ ω∗o ,
and it is over-capacity if ωo > ω∗o . For such actions, we assume that Vo(ωo)
appropriately reflects the valuation function in both situations.

In the simplest case, the valuation function can be modelled in the same
manner for the in- and over-capacity cases. For example, we might use a uni-
modal Normal function with mean µo = ω∗o and variance σ2

o (with σo being
the standard deviation), such that agents receive the maximal value when the
resource is at capacity, i.e., ωo = ω∗o ,

Vo(ωo) =
1√

2πω∗o
e
−(ωo−ω∗o )2

2σ2o . (4)
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In the more general case, the distributions defining the value for the in-
capacity and over-capacity cases may be different. For example, if we use a uni-
modal Normal distribution for both cases this could be represented using σ2

o

and σ′2o to represent the variance for the in- and over-capacity cases respectively
(noting that the mean is fixed at the capacity, ω∗o),

Vo(ωo) =


1√

2πω∗o
e
−(ωo−ω∗o )2

2σ2o , if ωo ≤ ω∗o
1√

2πω∗o
e
−(ωo−ω∗o )2

2σ′2o , otherwise, i.e., ωo > ω∗o .

(5)

We might also model the in- or over-capacity cases using constant values if
they do not depend on ωo.

3.2 Agent Types: Mapping Values to Rewards

Each individual agent’s reward from choosing action o is a function of the
value, vo, of the action and the agent’s type. We assume that the agents are
partitioned into a set G of disjoint types, or groups, G = {g1, g2, . . . , gl} such
that ∀gi ∈ G, gi ⊆ P , g1 ∪ g2 ∪ . . . ∪ gl = P and ∀gi, gj ∈ G, gi ∩ gj = ∅.
We use agent types to represent that the cost and relative reward associated
with a given action may vary for different agents. For example, in the context
of selecting transport modalities in a city, the relative cost of a congestion
charge for car use may be low for wealthy individuals compared to those on low
incomes, while the relative reward of using a low polluting mode of transport
may be higher for individuals who are concerned about environmental issues.

We model such differences by associating each agent type g with a cost,
co,g, and sensitivity, so,g, for each action o. For simplicity, we assume that the
cost and sensitivity of each action for each agent type is predetermined and
fixed over time, unless subject to manipulation by the authority. Rewards are
defined at the group level, such that any agent in group g will receive reward
ro,g for selecting action o, determined by multiplying the value vo of the action
by the corresponding sensitivity and subtracting the corresponding cost,

ro,g = so,g · vo − co,g (6)

where so,g represents the sensitivity for action o, and co,g the cost of action
o for group g. Thus, the reward ro,p that an individual agent p receives for
selecting action o is determined by p’s group g, namely,

ro,p = ro,g 3 p ∈ g. (7)

3.3 Authority Preferences and Influence on Rewards

We assume that the system contains an authority that has preferences over the
state of the system in terms of the proportions of agents selecting each of the
actions, and is able to influence the rewards agents receive by manipulating
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the sensitivities and costs of agent types. The authority’s preferences with
respect to a given action o are determined by the overall proportion of agents it
desires to choose the action, ω̂o, along with a utility function Uo(ωo) mapping
the proportion of agents who choose the action, ωo, to the utility from the
authority’s perspective. We assume that the utility function accounts for the
potentially different distributions in the cases where ωo ≤ ω̂o and ωo > ω̂o. For
clarity, we use the term utility for the authority’s perspective to distinguish
from individual agent’s rewards and action values. The utility uo of action o
from the authority’s perspective is therefore,

uo = Uo(ωo). (8)

The authority’s utility function for a given action can be modelled in a similar
manner to the valuation functions in Equations 3, 4 and 5, using a constant
value (ŷ), a variance (σ̂2

o), or a pair of variance values (σ̂2
o and σ̂′2o ) for the in-

and over-capacity cases.
The overall utility u to the authority of the current action choices of

the population is simply the aggregation of the utility (from the authority’s
perspective) of each individual agent’s choice,

u =
∑
p∈P

uo,p (9)

where uo,p represents the utility to the authority of agent p selecting action o.
While the authority is not able to directly control the action choices of

agents, or the values associated with those actions, we assume that it is able to
exert influence over the rewards agents receive, which in turn may cause agents
to adopt different strategies. There are two methods we consider through which
the authority can affect rewards, namely, modifying the cost or modifying the
sensitivity associated with an action for a group of agents. Thus, the authority
is able to replace the default sensitivity so,g or cost co,g, with respect to group
g for action o, with modified values s̃o,g and c̃o,g respectively. The reward is
then calculated using these updated values in Equation 6, i.e.,

ro,g = s̃o,g · vo − c̃o,g. (10)

3.4 Agent Learning

Norms can emerge through social learning [47], such that an individual’s
estimate of the desirability of each possible action is affected by others’
actions in the environment. To illustrate our framework, we assume that
agents use Q-learning [48], since this has been shown as effective for norm
emergence [12, 15, 49–52], although other methods such as HCR [1] or WoLF-
PHC [53] can also be used. For each action o ∈ O, each agent maintains a
Q-value that estimates the benefit of choosing that action. The Q-values are
initially set to zero and are updated based on the rewards received. Whenever
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Fig. 1: Value functions of (a) agents and (b) authority.

agent p selects action o and receives reward ro,p, it will update its Q-value for
o using,

Q(o)← (1− α)Q(o) + α
(
ro,p + γmax

o′
Q(o′)

)
(11)

where 0 < α ≤ 1 is the learning rate and γ is the discount factor. We assume
that agents use ε-greedy action selection (0 < ε < 1), such that an agent
selects a random action with probability ε, and with probability 1 − ε selects
the action with the highest Q-value.

4 Experimental Methodology

In this section, we describe our simulation and experimental methodology using
transport modality choice as an illustrative example. The environment contains
n = 3000 agents who select from actions O = {Car,Bus,Walk}, i.e., m = 3,
representing the available transport modalities. In each iteration (i.e., time
step) every agent selects an action, receives a reward, and updates its Q-
values.4 We ran the simulation for 10, 000 iterations and averaged our results
over 10 runs. We used ε = 0.05, α = 0.1 and γ = 0.75 as representative values
for the exploration rate, learning rate and discount factor respectively.

We assume that the Walk action is not associated with a congested resource,
and so for simplicity we define its value as VWalk(ωWalk) = 1, while both
the Car and Bus actions are assumed to be congested. We define VCar(ωCar)
using a uni-modal Normal function with ω∗Car = 1/n and σ′2Car = 0.4 (see
Equation 4), which represents that an agent obtains the highest value when
no other agents choose Car. We represent VBus(ωBus) as

4We have also run experiments with SARSA to determine whether on-policy learning has an
impact. The results have the same form as those discussed in Section 5, and so for reasons of space
and to avoid repetition we focus on Q-learning in this paper.
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Table 1: Action costs and sensitivities for each group and each action.

g1 g2 g3

co,g1 so,g1 co,g2 so,g2 co,g3 so,g3
o =Car 0 1.3 0.1 1 −0.2 1.4
o =Bus 0 1 0.11 1.35 0 0.7
o =Walk 0 1 0 1.4 0 0.8

VBus(ωBus) =

yBus, if ωBus ≤ ω∗Bus
1√

2πω∗Bus
e
−(ωBus−ω

∗
Bus)

2

2σ′2
Bus , otherwise, i.e., ωBus > ω∗Bus.

(12)
where ω∗Bus = 0.4, yBus = 1.14, and σ′2Bus = 0.35, meaning that for the in-
capacity case the value is constant, while the over-capacity case is modelled
as a uni-model Normal function. The parameters of these value functions are
for illustration, and the resulting value functions are shown in Figure 1(a),
which shows that: (i) the value of choosing Walk is independent of others’
choices; (ii) the value of choosing Car reduces as more agents select the Car
action, representing an increase in traffic and journey time; and (iii) an agent
obtains the highest reward when choosing Bus, provided that only a moderate
proportion of others make the same choice, with the value reducing when
higher proportions cause the resource to be over-capacity. From the agents’
perspective, the highest (social) utility possible is for 60% of the agents to
choose Bus and 40% to choose Walk.

We assume that the authority prefers fewer agents to select Car, more
agents to select Walk, and that there is some ideal preferred proportion of
agents who select Bus. This represents a desire to reduce car use, increase active
travel, and ensure that investment in providing a bus service is fully utilised
(e.g., such a service may be required to cater for groups of individuals with
restricted mobility, who might have very high costs associated with walking,
meaning that cWalk,g has a high value). From the authority’s perspective we
represent the utility for the actions as: UWalk(ωWalk) = 1.2, with UCar(ωCar)
and UBus(ωBus) being uni-modal Normal functions with ω̂Car = 0, σ̂′2Car =
0.45, ω̂Bus = 0.3, and σ̂2

Bus = 0.32, which are illustrated in Figure 1(b). For
the authority, the highest utility occurs when 17% of the agents choose Bus
and the remainder choose Walk.

We divide the agents into three equal size groups, G = {g1, g2, g3}, where
g1 corresponds to a baseline agent type, g2 has strong environmental concerns,
and g3 represents affluent agents. For simplicity, since groups are disjoint, we
do not consider affluent agents who also have strong environmental concerns,
as this would require an additional group to be defined. An agent’s group
defines the cost and sensitivity associated with each action which, along with
the proportion of other agents choosing the action (in the case of congested
actions), determines the reward received for selecting an action.
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Fig. 2: Reward functions for each group.

The costs and sensitivities associated with each action for each group in
our simulation are given in Table 1 where co,g and so,g denote the cost and
sensitivity associated with action o for group g, respectively. These costs and
sensitivities determine the shape of the reward function (see Equations 6 and 7)
for each group, as illustrated in Figure 2. These reward functions are not
intended to be realistic models of the costs and sensitivities associated with
the actions for each group, but rather are intended to illustrate how our frame-
work models congested resources. The baseline group g1 (Figure 2(a)) receives
the highest reward when choosing Car if few other agents make the same
choice. When more agents choose Car the reward decreases. If a high propor-
tion of agents choose Car, then agents of type g1 can obtain a high reward by
choosing Bus, again provided that not too many others make the same choice.
The reward associated with the Walk action does not depend on other agents’
choices, and if a high proportion of agents choose Car or Bus, then Walk pro-
vides the highest reward. Group g2 (Figure 2(b)) receives significantly higher
rewards from the Walk and Bus actions, and lower rewards from Car, reflecting
their environmental concerns. Again, for group g2 the reward of Bus decreases
if a high proportion of agents choose Bus. Finally, the affluent agents in g3

(Figure 2(c)) receive the highest reward from selecting Car, as they have both
higher sensitivity and lower (relative) costs associated with this action, pro-
vided that only a moderate number of others choose Car, otherwise, if many
agents choose Car then Walk gives the highest reward.

To illustrate our framework, we performed several experiments, the results
of which are presented in the following section. As a baseline, we start by con-
sidering the effect of the different costs and sensitivities associated with each
group, with no interventions from the authority. We then consider three kinds
of initial interventions. First, we introduce fixed strategy agents into the popu-
lation at the beginning of the simulation, and show that this is not an effective
intervention in our setting. Second, we investigate the impact of manipulating
the sensitivity to different actions, allowing us to model, for example, the effect
of a targeted behavioural change intervention. Third, we investigate the effect
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Fig. 3: Average number of agents choosing each of the actions against time,
in the baseline setting.

of modifying the cost associated with different actions, i.e., we consider differ-
ent values of c̃o,g. This allows us to model interventions such as means-tested
charging for private car use, or exemption from congestion charges for certain
groups. We then consider these interventions (namely, fixed strategy agents
along with manipulating sensitivity and cost) in the cases of late interventions
and temporary late interventions.

5 Results

All results are averaged over 10 runs for each configuration, with n = 3, 000
agents. In this section, we consider agents’ behaviour under different interven-
tions assuming, for illustration, that the authority’s aim is to encourage the
population to choose Walk. To illustrate our framework, we discuss representa-
tive manipulations, however other alternative manipulations are possible. We
begin by considering the baseline setting with no interventions (Section 5.1).
We then consider three types of interventions, namely: (i) fixed strategy
agents; (ii) manipulating agents’ sensitivities; and (iii) manipulating agents’
costs. These interventions are applied either at the start of the simulation
(Section 5.2), after a norm has emerged (Section 5.3), or for a temporary period
after a norm has emerged (Section 5.4).

5.1 Baseline Setting

As a baseline, we begin by considering agents’ behaviour without any inter-
vention. Figure 3 shows that agents’ choices in each group are in accordance
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(a) Baseline setting
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(b) Fixed-strategy agents

Fig. 4: Average number of agents choosing each of the actions against time
in (a) our baseline setting and (b) with 10% fixed-strategy agents.

with their corresponding reward functions given in Figure 2. A common mea-
sure of norm emergence is the Kittock criteria [54], where a norm is considered
to emerge if some proportion of the population (often 90%) adopts a partic-
ular action. While this is an effective measure in populations of homogeneous
agents playing coordination or Prisoner’s Dilemma games, in our setting of
heterogeneous agents groups and congested actions, we do not typically expect
to see such large, population wide, adoption. Therefore, for simplicity, rather
than specifying a convergence threshold we consider any dominant action in
a group (or the population) as being a norm. Thus, we see the norms emerge
of choosing Bus in group g1, Walk in g2, and Car in g3, with Bus being the
overall population norm.

5.2 Initial Interventions

5.2.1 Fixed-Strategy Agents

Fixed-strategy agents perform the same action regardless of others’ choices,
and small numbers of such agents can cause particular norms to emerge [15].
Fixed strategy agents have been shown to be effective in coordination and
Prisoner’s Dilemma games, and so it is natural to explore whether they are
effective in our setting. Figure 4 shows that introducing 300 fixed-strategy
agents (10% of each group selected at random, i.e., 10% of the population) who
always select Walk, is not sufficient to cause a norm of Walk to emerge. Intro-
ducing such a set of fixed-strategy agents (Figure 4(b)) gives similar results to
the baseline setting (Figure 4(a)). In the context of coordination games, Airiau
et al. [15] have shown that it is sufficient for only 1% of the population to be
fixed strategy agents in order to influence the whole population [15]. However
in the congested action setting, our results show that even a large number of
such agents (10% of the population) is not sufficient to achieve a population-
level change. We therefore conclude that in our setting there is a need for new
interventions, such as manipulating agents’ sensitivities or costs (for one or
more groups).



Springer Nature 2021 LATEX template

Convention Emergence with Congested Resources 15

0 2000 4000 6000 8000 10000
Number of Rounds

0

200

400

600

800

1000

A
ve

ra
ge

 N
um

be
r 

of
 A

ge
nt

s

Group #1

car
bus
walk

0 2000 4000 6000 8000 10000

Number of Rounds

0

200

400

600

800

1000

A
ve

ra
ge

 N
um

be
r 

of
 A

ge
nt

s

Group #2

car
bus
walk

0 2000 4000 6000 8000 10000

Number of Rounds

0

200

400

600

800

1000

A
ve

ra
ge

 N
um

be
r 

of
 A

ge
nt

s

Group #3

car
bus
walk

0 2000 4000 6000 8000 10000
Number of Rounds

500

1000

1500

2000

A
ve

ra
ge

 N
um

be
r 

of
 A

ge
nt

s

All Population

car
bus
walk

Fig. 5: Average number of agents choosing each of the actions against time,
with an intervention of: s̃Walk,3 = 1.8 · sWalk,3.

5.2.2 Manipulating Agents’ Sensitivities

We now consider the effect of manipulating agents’ sensitivities, which for
example, can model the impact of an advertising campaign on the health
benefits of walking. Suppose that the aim of the manipulation is to increase
the proportion of agents from g3 that choose Walk, and receive high reward
from doing so, by reducing the proportion of agents who can choose Car and
receive maximal reward from 53% in the baseline setting to 19%. We do this by
modifying the sensitivity of g3 to Walk by setting s̃Walk,3 = 1.8 ·sWalk,3.5 The
resulting behaviour, depicted in Figure 5, shows that agents from g3 converge
to the norm of Walk (i.e., fewer agents choose Car), but that this leads to an
increase in the number of agents from g1 choosing Car and a decrease in those
choosing Bus. This consequently leads to more agents in g2 choosing Bus and
fewer choosing Walk. However at the population level, Walk increases overall
but does not become the overall norm.

Although this basic manipulation causes a shift in behaviour towards Walk,
it is not enough to cause the whole population to adopt a norm of Walk. For
this reason we look at two alternative manipulations, each one is a combination
of the basic intervention (depicted in Figure 5) with an additional measure.

First, suppose that the authority manipulates the rewards such that agents
from g1 are able to choose Walk and receive a higher reward than Bus. This
can be modelled by decreasing the sensitivity of g1 towards Bus, i.e., s̃Bus,1 =
0.86 · sBus,1. As can be seen in Figure 6, applying this intervention, together
with reducing the proportion of agents from g3 who can choose Car and receive

5A similar manipulation (with similar effect) is decreasing the sensitivity of g3 towards Car.
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maximal reward (i.e., the existing manipulation of s̃Walk,3 = 1.8 · sWalk,3),
shifts g1 towards Car (instead of Bus), leading agents from g2 to shift towards
Bus instead of Walk. Overall, the whole population changes its preferences,
with many choosing Walk.
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Fig. 6: Average number of agents choosing each of the actions against time,
with the interventions of: s̃Walk,3 = 1.8 · sWalk,3 and s̃Bus,1 = 0.86 · sBus,1.

The second manipulation is to decrease the proportion of agents from g1

that receive a small reward when choosing Walk, by increasing their sensitivity
such that s̃Walk,1 = 1.14 ·sWalk,1. This second manipulation, applied alongside
reducing the proportion of agents from g3 who can choose Car and receive
maximal reward, causes agents from g1 and g3 to change their behaviour, while
g2 continues to choose Bus. Overall, the population shifts towards Walk, as
can be seen in Figure 7.

5.2.3 Manipulating Agents’ Costs

We now consider manipulating agents’ costs, which models interventions such
as charging individuals who have polluting vehicles or subsidising the costs of
electric vehicles. Suppose that the authority increases the cost of Car for g3

such that other actions have a lower cost (by setting c̃Car,3 = 0.8 + cCar,3). As
can be seen in Figure 8, this results in g3 adopting a norm of Walk, while the
population overall still adopts Bus as most common action choice.

In order to achieve population wide shift, we consider an additional manip-
ulation, namely, increasing the cost of g2 when choosing Bus such that a
higher reward is associated with Walk (by setting c̃Bus,2 = 0.03 + cBus,2).
This manipulation, applied alongside increasing the cost of g3 from Car, gives
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Fig. 7: Average number of agents choosing each of the actions against time,
with the interventions of: s̃Walk,3 = 1.8 · sWalk,3 and s̃Walk,1 = 1.14 · sWalk,1.
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Fig. 8: Average number of agents choosing each of the actions against time,
with the intervention of: c̃Car,3 = 0.8 + cCar,3.

a significant change in individuals’ preferences with Walk emerging as a norm
in the population overall, as depicted in Figure 9.
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Fig. 9: Average number of agents choosing each of the actions against time
with the interventions of: c̃Car,3 = 0.8 + cCar,3 and c̃Bus,2 = 0.03 + cBus,2.

5.3 Late Interventions

We previously studied the case where the interventions were placed at time
t = 0 and left within the system for its duration. We now change our focus
to considering destabilising an existing norm by manipulating agents’ sensi-
tivities and costs after convergence has occurred. In this section, we consider
agents’ behaviour under the interventions illustrated in Section 5.2, but with
the interventions only being applied after the population has converged, and
using the same setting as detailed in Section 4.

5.3.1 Fixed-Strategy Agents

The use of non-learning fixed strategy agents (known as influencer agents,
or IAs) has been investigated in literature as a means to destabilise an
already established convention, as discussed in Section 2. As demonstrated in
Section 5.2.1 (Figure 4), initially setting 10% of the population to be fixed-
strategy agents who always select Walk results in a similar behaviour as in
the baseline setting. Figure 10(c) shows the effect of introducing 300 agents
from the population (i.e., 10%) that always select Walk, from time t = 3,100
after the population has converged. We see that there is a small immediate
effect, but very quickly the population returns to the same norm as in the
baseline setting. Interestingly, an intervention of changing 300 agents to choose
always Walk does not result in 300 more agents choosing that action overall.
Instead, compared to the baseline setting, as a result of the reward functions
the late introduction of 300 fixed-strategy agents leads to 100 more agents
choosing Walk and 100 less agents choosing Car (the same average numbers
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(a) Baseline setting
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(b) Initial intervention
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(c) Late intervention

Fig. 10: Average number of agents choosing each of the actions against time in
(a) our baseline setting, (b) initial intervention with 10% fixed-strategy agents,
and (c) late intervention with 10% fixed-strategy agents.

of agents as with the initial intervention). Therefore, placing fixed-strategy
after convergence is not sufficient to cause a new norm to emerge in our con-
gested action setting. This is in contrast to previous research on coordination
games [55, 56] which showed the effectiveness of such interventions for desta-
bilisation. Note that to confirm that the magnitude of the intervention is not
the primary factor, we also considered a similar late intervention but with 30%
of the population being fixed-strategy agents, and obtained a similar result
to that discussed above. This indicates that in our setting it is much harder
to cause a change in adopted behaviour (using fixed strategy agents) than in
coordination games.

5.3.2 Manipulating Agents’ Sensitivities and Costs

In this section, we show the effect of late interventions in which we manipulate
agents’ sensitivities and costs. Figure 11 shows the results of a late interven-
tion at time t = 5,800 in which we set s̃Walk,3 = 1.8 · sWalk,3 (equivalent
of Figure 5). As can be seen, the manipulation is effective almost immedi-
ately with the average number of agents from g3 choosing Car falling, and the
number choosing Walk increasing. When destabilisation is sufficient to allow
changes in other groups, this consequently leads to an increase in the number
of agents from g1 choosing Car and a decrease in those choosing Bus, while in
g2 more agents choose Bus and fewer choose Walk.

Figure 12 shows the result of two late manipulations applied at time
t = 7800, namely: (i) increasing the proportion of agents from g3 that choose
Walk and receive high reward; and (ii) decreasing the proportion of agents
from g1 that choose Walk and receive a small reward (equivalent of the initial
intervention shown in Figure 7). We observe that the time taken for the sys-
tem to converge after the late intervention is much longer than that with no
intervention. This demonstrates that it is much slower to take a system that is
already converged and influence it to take a different state, than it is to allow
the system to converge initially without any intervention.
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Fig. 11: Average number of agents choosing each of the actions along time.
Intervention applied after convergence: s̃Walk,3 = 1.8 · sWalk,3 (the equivalent
of Figure 5).

Overall, we see that with the introduction of late interventions the initial
norm adopted by each of the groups (i.e., before applying the intervention, as
depicted in our baseline setting) becomes sufficiently destabilised for another
norm to overtake it, resulting in the same outcome as with an initial interven-
tion. This is in line with other research (e.g., [43]) using fixed strategy agents
to encourage convention emergence and destabilisation in coordination games.
Of particular interest is the speed of the change, since while there is an imme-
diate change in the manipulated group(s), other groups are stable until the
destabilisation is sufficient to allow the emergence of another norm (namely,
that which would be adopted by agents if the intervention was applied at
the beginning of simulation). Interestingly, while the population changes its
behaviour due to the manipulation, it takes roughly the same number of iter-
ations to fully stabilise, compared to the time it takes to stabilise when the
manipulation is applied at the start of the simulation.

5.4 Temporary Late Interventions

In the previous section, interventions remained in the system for its duration,
and in this section we explore whether temporary interventions are effective
and sufficient to influence norm emergence. As before, we consider agents’
behaviour under the same interventions as described in Section 5.2, but in
this case with interventions only being applied after population’s behaviour
has stabilized and for a fixed duration, using the same setting as detailed in
Section 4.
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Fig. 12: Average number of agents choosing each of the actions along time.
Interventions applied after convergence: s̃Walk,3 = 1.8 · sWalk,3 and s̃Walk,1 =
1.14 · sWalk,1 (the equivalent of Figure 7).

As discussed in previous sections, we have thus far assumed that no restric-
tions (e.g., costs to the authority) exist when inserting the interventions.
In real-life scenarios however, using interventions for shifting the population
towards some desired norm is likely to have a cost. In this section, we inves-
tigate the effect of such a cost, which can be thought of as resulting in a
fixed time intervention, and its relation to the efficiency of intervention. A
real-life example for a fixed-time intervention is the temporary license-plate
based driving bans Paris imposed on drivers in 2017 in order to reduce car use.
According to this scheme, cars were banned from circulation based on whether
their license plates ended with odd or even numbers.6

5.4.1 Fixed-Strategy Agents

Figure 13 shows the results from a temporary late intervention, in which we add
300 agents that always select Walk between times t = 3,100 and t = 13,100.
Similarly to the initial and (permanent) late interventions, we see 100 more
agents choosing Walk and 100 less agents choosing Car when the intervention
is active. However, we also see that when the intervention is removed the
population immediately goes back to our baseline setting. This shows that
while a late intervention is able to change the behaviour of a population,
and cause a different norm to emerge, the changes do not persist after the
intervention is removed.

6For details see: https://www.reuters.com/article/us-france-pollution-idUSKBN13W2EQ
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(a) Baseline
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(b) Initial
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(c) Late
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(d) Temporary

Fig. 13: Average number of agents choosing each of the actions against time
in (a) the baseline case, and with 10% fixed-strategy agents with (b) initial
intervention, (c) late intervention, and (d) temporary late intervention.
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Fig. 14: Average number of agents choosing each of the actions along time.
Temporary late intervention applied: s̃Walk,3 = 1.8 · sWalk,3 (the equivalent of
Figures 5 and 11).

5.4.2 Manipulating Agents’ Sensitivities and Costs

Figures 14 and 15 show the results of temporary late interventions, corre-
sponding to temporary versions of the interventions shown above in Figures 11
and 12, where we remove each late intervention 10,000 time steps after its appli-
cation. As in the case of fixed-strategy agents, we also observe that once we
remove the intervention the population immediately goes back to the baseline
setting. Thus, temporary late interventions are only effective at destablising
an established norm for the duration of the intervention. This is in contrast
to results seen in coordination games, in which as long as some minimum
number of fixed strategy agents for some minimum duration are used, then
a permanent change in norm is observed [5, 41]. We believe that the reason
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Fig. 15: Average number of agents choosing each of the actions along time.
Temporary late interventions applied: s̃Walk,3 = 1.8 · sWalk,3 and s̃Walk,1 =
1.14 · sWalk,1 (the equivalent of Figures 7 and 12).

such temporary interventions do not have permanent impact here is due to the
characteristics of the congested action setting.

6 Conclusions and Future Work

In this paper, we presented a framework for modelling norm emergence
where actions are associated with congested resources. We considered a general
setting in which agents are heterogeneous, and comprised of groups differing
in their preferences regarding actions. Unlike previous research on norm emer-
gence, which typically assumes pairwise interactions, we introduced congested
actions with rewards determined exogenously. We also introduced an authority
figure which is able to manipulate agents’ rewards. Using a simplified transport
modality choice illustration, we demonstrated the impact of manipulations on
the emergent norms in the population, showing that in the presence of het-
erogeneous agents, different interventions may be required, targeted to the
different groups. We showed that unlike interventions in coordination games,
temporary late interventions are not sufficient to achieve a permanent change
in norms, and so in the context of congested actions, alternative interventions
and targeting strategies are required. There are several directions for future
work, including relaxing assumptions about the knowledge available to agents
and further exploring agent heterogeneity. We also plan to investigate dynamic
populations, and situating agents on an underlying network.
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