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Abstract
Influenza poses a significant threat to public health, particularly among the elderly, young children, and people with under-
lying diseases. The manifestation of severe conditions, such as pneumonia, highlights the importance of preventing the 
spread of influenza. An accurate and cost-effective prediction of the host and antigenic subtypes of influenza A viruses is 
essential to addressing this issue, particularly in resource-constrained regions. In this study, we propose a multi-channel 
neural network model to predict the host and antigenic subtypes of influenza A viruses from hemagglutinin and neurami-
nidase protein sequences. Our model was trained on a comprehensive data set of complete protein sequences and evaluated 
on various test data sets of complete and incomplete sequences. The results demonstrate the potential and practicality of 
using multi-channel neural networks in predicting the host and antigenic subtypes of influenza A viruses from both full and 
partial protein sequences.
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Introduction

The impact of influenza viruses on respiratory diseases 
worldwide is substantial, leading to severe infections in the 
lower respiratory tract, hospitalisations, and mortality. There 
are estimated to be>5 million hospitalisations annually due 
to influenza-related respiratory illnesses [1]. The incidence 
of severe influenza-associated diseases and hospitalisation is 
highest among individuals at the extremes of age and those 
with pre-existing medical conditions. The virus spreads pri-
marily through droplets, aerosols or direct contact, and up 
to 50% of infections are asymptomatic [2, 3]. The influenza 
virus can cause various complications associated with high 
fatality rates, including secondary bacterial pneumonia, 

primary viral pneumonia, chronic kidney disease, acute renal 
failure, and heart failure [4–6].

The influenza virus’s genome is comprised of single-
stranded ribonucleic acid (RNA) segments. It is classified 
into four genera differentiated primarily by the antigenic 
properties of the nucleocapsid (NP) and matrix (M) proteins 
[7]. Currently, the influenza virus has four types: A (IAV), 
B (IBV), C (IVC), and D (IVD). Among them, IAV is the 
most widespread and virulent, capable of triggering major 
public health disruptions and pandemics, as demonstrated 
by the Spanish Flu of 1918–1919 that resulted in an esti-
mated 20–100 million deaths [8]. IAV is further subtyped 
by the antigenic properties of its hemagglutinin (HA) and 
neuraminidase (NA) surface glycoproteins, with 18 HA and 
11 NA subtypes currently known [9]. The avian influenza 
viruses, including H5N1, H5N2, H5N8, H7N7, and H9N2, 
can also spread from birds to humans with potentially deadly 
consequences, although this rarely occurs.

The HA and NA proteins of the influenza virus play a 
crucial role in its ability to infect host cells by allowing it to 
recognise and attach to specific receptors on host epithelial 
cells, followed by replication and release into neighbouring 
cells through the action of NA [10]. The immune system can 
respond to the virus by attacking and destroying infected tis-
sue, although death can sometimes result from organ failure 

This article is part of the topical collection “Advances on 
Knowledge Discovery, Knowledge Engineering and Knowledge 
Management” guest edited by Joaquim Filipe, Ana Fred, Frans 
Coenen, Jorge Bernardino and Elio Masciari.

 *	 Yanhua Xu 
	 Y.Xu137@liverpool.ac.uk

	 Dominik Wojtczak 
	 D.Wojtczak@liverpool.ac.uk

1	 Department of Computer Science, University of Liverpool, 
Liverpool, Merseyside L69 3BX, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01839-5&domain=pdf
http://orcid.org/0000-0003-1028-9023


	 SN Computer Science (2023) 4:435435  Page 2 of 9

SN Computer Science

or secondary infections. The continuous evolution of the 
virus through point mutations in the genes encoding HA 
and NA can result in antigenic drift, leading to seasonal 
influenza, or the rarer antigenic shift, resulting in the emer-
gence of new viruses with a significant change in HA and 
NA production that can trigger pandemics [11].

In this study, we aim to predict IAV subtypes and hosts 
using a multi-channel neural network (MC-NN) approach 
comprising a combination of convolutional neural networks 
(CNNs), bidirectional gated recurrent units (BiGRUs), and 
transformer models. The models are trained on a large-scale 
integrated protein sequence data set collected before 2020 
and evaluated on both a post-2020 data set and a data set 
containing incomplete sequences. The study includes a 
broad range of hosts. Its results demonstrate the superiority 
of our multi-channel approach, with the transformer model 
achieving 83.39%, 99.91% and 99.87% F1 scores for the 
host, HA subtype and NA subtype prediction, respectively, 
in the post-2020 data set. Furthermore, its performance on 
incomplete sequences reached 76.13%, 95.37% and 96.37% 
F1 scores for the host, HA subtype and NA subtype predic-
tion, respectively.

Related Work

The detection of IAV hosts and subtypes can enhance the 
surveillance of influenza and mitigate its spread. However, 
traditional methods for virus subtyping, such as nucleic 
acid–based tests (NATs), are labour-intensive and time-
consuming [12]. To address this issue, researchers have 
explored various supervised machine learning-based meth-
ods for predicting IAV hosts or subtypes. These include 
using CNNs [11, 13, 14], support vector machines (SVM) 
[15–17], decision trees (DT) [15, 18], and random forests 
(RF) [17, 19, 20].

In order to train machine learning models, the protein 
sequences need to be transformed into numerical vectors. 
This transformation has been achieved through various 
methods, including one-hot encoding [11, 19, 21], pre-
defined binary encoding schemes [22], ASCII codes [13], 
Word2Vec [16], and the use of physicochemical features [20, 
23–25]. However, using handcrafted feature sets or physico-
chemical features requires a feature selection process, which 
can be time-consuming. This study used word embedding 
to allow the models to learn features from the training data 
since this approach is more convenient and efficient. Previ-
ous studies have focused on either higher classification (i.e. 
avian, swine, or human) or a single class of hosts from a 
single database. In contrast, this study collects data from 
multiple databases and focuses on a broad range of hosts.

MC-NNs have been used in various applications, such as 
face detection [26], relation extraction [27], entity alignment 

[28], emotion recognition [29], and haptic material clas-
sification [30]. To our knowledge, few studies have used 
MC-NNs for infectious disease predictions. In this study, we 
propose using three MC-NN architectures to simultaneously 
predict IAV hosts and subtypes rather than training separate 
models for each task.

Materials and Methods

Data Preparation

Hemagglutinin and Neuraminidase Protein Sequences

Complete hemagglutinin (HA) and neuraminidase (NA) 
sequences were acquired from two sources: the Influenza 
Research Database (IRD) [31] and the Global Initiative on 
Sharing Avian Influenza Data (GISAID) [32]. The initial 
data collection process yielded 381,369 HA sequences and 
338,631 NA sequences (completed on 13 December 2022). 
To maintain the uniqueness of each strain, redundant and 
multi-label sequences were filtered, resulting in a unique 
HA and NA sequence pair for each strain in the final data 
set. To prevent duplicates, the integration process involved 
removing sequences from GISAID if they were already pre-
sent in IRD. Additionally, strains belonging to the H0N0 
subtype, which have an uncleaved HA0 protein that is not 
infectious, were also removed from the data set. The process 
of data curation also involved eliminating sequences with 
erroneous or ambiguous metadata labels. For example, A/
American Pelican/Kansas/W22-200/2022 (isolated ID: EPI_
ISL_14937098) was inaccurately labelled as ‘host’. Subse-
quently, the final outcome comprised 46,172 unique pairs of 
complete and partial HA and NA sequences

The criterion for defining the completeness of A sequence 
was considered complete if its length was equivalent to 
that of the actual genomic sequence [32] or the complete 
coding region defined by The National Center for Biotech-
nology Information (NCBI) [31]. The completeness anno-
tation cannot be explicitly obtained from the metadata of 
the strain. Therefore, incomplete sequences were obtained 
by filtering the complete sequences from the full influenza 
database, which comprises both complete and incomplete 
sequences (all sequences = complete sequences ∪ incom-
plete sequences).

The pre-trained model was trained using a training data 
set comprising sequences of strains isolated before 2020. 
Conversely, the sequences of strains isolated from 2020 to 
2022 were used solely to evaluate the performance of the 
models during testing; the testing data set also included 
incomplete sequences. The characteristics of the data sets 
used in this study are presented in Table 1.
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Label Reassignment

While the GISAID and IRD databases recorded > 300 
hosts, only 30% were consistent across both databases. 
This issue could be attributed to the blended use of ani-
mals’ common and scientific names. We regrouped the 
viral hosts into 25 categories based primarily on the bio-
logical family classification of the animals; the distribution 
of reassigned hosts is presented in Fig. 1. We also moved a 
few subtypes in the data set into other subtypes (i.e. H15, 
H17, H18, N10, and N11), as shown in Fig. 2.

Protein Sequence Representation

Neural networks are mathematical operators that operate on 
inputs and generate numerical outputs. However, the raw 
input sequences must be represented as numerical vectors 
before the neural network can process them. One popular 
method of vectorising sequences is one-hot encoding. In 
natural language processing (NLP), the length of the one-hot 
vector for each word is determined by the size of the vocabu-
lary, which comprises all unique words or tokens in the data. 
When representing amino acids, the length of the one-hot 
vector for each amino acid depends on the number of unique 
amino acids. This results in a sparse matrix for large vocabu-
laries, which is computationally inefficient. An alternative 
and more powerful approach are to represent each word as 
a dense vector through word embedding. Word embedding 
learns the representation of a word by considering its con-
text, allowing similar words to have similar representations. 
It has been used successfully in the extraction of features 
from biological sequences [33].

The word embedding process can be incorporated into a 
deep learning model without relying on manually-crafted 
feature extraction techniques. A protein’s amino acid 

Table 1   Summary statistics of data sets

Data set (alias) # Total pairs # Seqs from IRD # Seqs 
from 
GISAID

< 2020 (pre-20) 33,159 41,940 24,378
2020–2022 (post-20) 4488 3,232 5,744
Incomplete (incomplete) 8525 11,111 5939

Fig. 1   Data distribution (hosts)

Fig. 2   Data distribution (subtypes)
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sequence is usually written as a string of letters but can also 
be represented as a set of tripeptides, also known as 3-grams. 
In NLP, N-grams refer to N consecutive words in a text, and 
similarly, N-grams of a protein sequence refer to N consecu-
tive amino acids. For example, the 3-grams of the sequence 
“AAADADTICIG” would be ‘AAA’, ‘AAD’, ‘ADA’, ‘DAD’, 
‘ADT’, ‘DTI’, ‘TIC’, ‘ICI’, and ‘CIG’. N was set to 3 based 
on previous research findings [34, 35].

Neural Network Architectures

In this study, we propose a multi-channel neural network 
(MC-NN) architecture that incorporates two inputs, namely 
HA trigrams and NA trigrams, and produces three outputs, 
specifically host, HA subtypes, and NA subtypes. The neural 
network models utilized in this research encompass bidirec-
tional gated recurrent unit (BiGRU), convolutional neural 
network (CNN), and transformer.

Bidirectional Gated Recurrent Unit

The Bidirectional Gated Recurrent Unit (BiGRU) is a model 
designed to handle sequential data by considering both past 
and future information at each time step. This model is com-
posed of two separate Gated Recurrent Unit (GRU) layers, 
one for processing the input sequence in the forward direc-
tion and the other for processing the input sequence in the 
backward direction. The outputs of these two layers are then 
concatenated and utilised for prediction purposes.

GRUs, similar to Long Short-Term Memory (LSTM) 
units, possess a reset gate and an update gate [36]. The reset 
gate determines the amount of previous information that 
needs to be forgotten, while the update gate decides the pro-
portion of information to discard and the proportion of new 
information to incorporate. Due to fewer tensor operations, 
GRUs are faster in terms of training speed when compared 
to LSTMs.

The utilisation of a BiGRU provides the advantage of 
considering both the past and future context at each time 
step, thereby leading to more informed predictions. This is 
particularly useful in sequential data processing where con-
text plays a crucial role in prediction accuracy.

Transformer

The Transformer neural network architecture has had a 
significant impact in the field of NLP [37]. It was initially 
designed to facilitate machine translation, however, the 
scope of its application can be broadened to encompass other 
areas such as addressing protein folding dilemmas [38]. The 
Transformer architecture serves as the cornerstone for the 
advancement of contemporary natural language processing 

models, including BERT [39], T5 [40], and GPT-3 [41]. One 
of the most significant benefits that a Transformer possesses 
over conventional Recurrent Neural Networks (RNNs) is its 
capability to process data in a parallel manner. This attrib-
ute allows for the utilisation of Graphics Processing Units 
(GPUs) to optimise the speed of processing and effectively 
handle extensive text sequences.

The Transformer neural network presents a breakthrough 
in the field of deep learning through its incorporation of 
positional encoding and self-attention mechanism. The posi-
tional encoding feature serves as a means of preserving the 
word order information in the data, thereby enabling the neu-
ral network to learn and understand the significance of the 
order. The attention mechanism, on the other hand, allows 
the model to effectively translate words from the source text 
to the target text by determining their relative importance. 
The self-attention mechanism, as implied by its name, allows 
the neural network to focus on its own internal operations 
and processes. Through this mechanism, the neural network 
can comprehend the contextual meaning of words by ana-
lysing their relationships and interactions with surrounding 
words. Furthermore, the self-attention mechanism enables 
the neural network to not only differentiate between words 
but also reduce computational requirements, thus improving 
its efficiency.

Convolutional Neural Network

A Convolutional Neural Network (CNN) was designed to 
work with image and video data. It is an artificial neural 
network that uses convolutional layers to extract features 
from raw data. These convolutional layers analyse the spatial 
relationship between pixels and learn to recognise patterns 
in the data. The concept behind Convolutional Neural Net-
works (CNNs) is based on the visual processing mechanism 
of the human brain, where neurons are selectively activated 
in response to various features present in an image, such as 
edges. In CNNs, two primary types of layers are utilised, 
namely convolution layers and pooling layers. Convolution 
layers are the core of the CNN architecture, performing con-
volution operations on the input image and filters. On the 
other hand, pooling layers perform down-sampling on the 
image in order to minimise the number of learnable param-
eters. This study implements one-dimensional convolution 
layers to process sequence data.

Implementation and Evaluation Methods

All of the models in this study were built using Keras and 
trained on pre-20 data sets. They were then tested on both 
post-20 and incomplete data sets. The architecture of the 
multi-channel neural network used in this study is illustrated 
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in Fig. 3. The Transformer architecture used here is the 
encoder presented in [37].

In some cases, there is confusion regarding the role 
of validation and test sets, leading to the tuning of model 
hyperparameters using the testing set instead of a separate 
validation set. This increases the risk of data leakage and 
reduces the credibility of the results. To avoid this issue, 
nested cross-validation (CV) is used instead of classic K-fold 
CV. In nested CV, an outer CV is used to estimate the gen-
eralisation error of the model and an inner CV is used for 
model selection and hyperparameter tuning. The outer CV 
splits the data into a trainingouter set and a testing set, while 
the inner CV splits the training outer set into a traininginner 
set and a validation set. The model is trained only on the 
traininginner set, its hyperparameters are tuned based on its 
performance on the validation set, and its overall perfor-
mance is evaluated on the testing set. In this study, the outer 
fold k

outer
 was set to 5 and the inner fold k

inner
 was set to 4. 

The hyperparameters settings for the neural network archi-
tectures used in this study are presented in Table 2.,

The present study utilises data sets that exhibit a high degree 
of imbalance, and as such, the application of conventional 

evaluation metrics such as accuracy and receiver operating 
characteristic (ROC) curves can lead to misleading results, as 
demonstrated in prior research [42, 43]. Precision-recall curve 
(PRC), on the other hand, has been demonstrated to be more 
informative when addressing highly imbalanced data sets and 
has been widely adopted in the research [44–47].

The utilisation of linear interpolation to calculate the area 
under the precision-recall curve (AUPRC) has been shown to 
be inappropriate [43]. An alternative approach that has been 
demonstrated to be effective in such cases is the calculation of 
the average precision (AP) score [48]. Furthermore, this study 
also employs conventional evaluation metrics F1 score, with 
the formulas for these metrics provided below:

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

Fig. 3   The multi-channel neural network architecture: positional encoding is only employed along with Transformer

Table 2   Hyperparameter settings

 Models Hyperparameters

CNN Kernel size = 3, 4, 5; embedding size = 50, 100, 150, 200; learning rate = 0.01, 0.005, 0.001, 
0.0001

BiGRU​ Embedding size = 50, 100, 150, 200; learning rate = 0.01, 0.005, 0.001, 0.0001
Transformer Embedding size = 32, 64, 128; learning rate = 0.01, 0.005, 0.001, 0.0001; num heads = 1, 2, 3, 4, 5
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where TP, FP, TN, FN stand for true positive, false positive, 
true negative and false negative. If positive data is predicted 
as negative, then it counts as FN, and so on for TN, TP and 
FP.

The evaluation of the overall performance of the models 
was conducted using the results obtained from the Basic 
Local Alignment Search Tool (BLAST) as a baseline 
because BLAST is a commonly employed benchmark in 
computational biology and bioinformatics.

Results

Overall Performance

The model’s performance on various data sets is shown in 
Figs. 4, 5 and 6. The metrics used, such as average precision 
(AP), have been developed for binary classification but can 
be adapted to multi-class classification using a one-vs-all 
approach. This approach involves designating one class as 
positive and all others as negative. AP, F1 score, precision, 

(3)F
1
= 2 ×

Precision × Recall

Precision + Recall

(4)AP =
∑

n

(Recall
n
− Recall

n−1Precisionn)

and recall values were used to compare the models to a 
baseline model, the Basic Local Alignment Search Tool 
(BLAST), with its default parameters. The BLAST results 
were obtained through five-fold cross-validation and are 
indicated by the solid black line in the figures. All models 
outperformed the baseline model, with the MC-BiGRU and 
MC-CNN models achieving particularly notable results. 
The results also showed that the host classification task was 
more challenging than the subtype classification task with 
all models.

The models were trained solely on the pre-20 data set and 
tested on the post-20 and incomplete data sets. The pre-20 
and post-20 data sets only contained complete sequences, 
while the incomplete data set contained both complete and 
incomplete sequences. There was no significant difference 
in the performance of all models on the pre-20 data set. 
The best-performing model was the MC-CNN, achieving an 
AP of 94.61% (94.22%, 94.99%), and a F1 score of 93.20% 
(92.86%, 93.54%) on the post-20 data set. The MC-Trans-
former performed best on the incomplete data set, achiev-
ing an AP of 91.63% (91.41%, 91.85%), and a F1 score of 
89.29% (88.80%, 89.78%).

Performance on Single Sequence Input

The proposed MC-NN uses two inputs. However, it can-
not be guaranteed that the required HA and NA pairs will 

Fig. 4   Comparison of Overall Performance Between Models (Hosts): the baseline results with BLAST are framed by the black solid line

Fig. 5   Comparison of Overall Performance Between Models (HA subtypes): the baseline results with BLAST are framed by the black solid line
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always be obtainable for every strain. We conducted addi-
tional experiments on two data sets, one comprising 23,802 
HA protein sequences and the other 5,142 NA protein 
sequences. The results of these experiments are presented 
in Table 3. The results indicated reduced performance for all 
models when corresponding H/N sequence pairs were miss-
ing. However, the MC-Transformer model outperformed the 
MC-CNN and MC-BiGRU models on both data sets.

Conclusion and Discussion

The rapid mutation of influenza viruses leads to frequent 
seasonal outbreaks, although they infrequently result in pan-
demics. However, these viruses can exacerbate underlying 
medical conditions, elevating the risk of mortality. In this 
study, we present a novel approach to predict the viral host at 
a lower taxonomic level and subtype of the Influenza A virus 
(IAV) by utilising multi-channel neural networks.

Our approach differs from traditional methods, as it 
employs a neural network architecture that can learn the 
embedding of protein trigrams instead of manually encoding 

protein sequences into numerical vectors. The multi-channel 
nature of our network eliminates the need for separate mod-
els for similar tasks, as it can take multiple inputs and pro-
duce multiple outputs. We evaluated the performance of our 
approach using various algorithms, including CNN, BiGRU, 
and Transformer, and found that Transformer performed bet-
ter than the other algorithms. In addition to our previous 
experiments, we carried out further evaluations to assess the 
performance of the models in the absence of matching H/N 
sequence pairs. The results showed that the MC-Transformer 
model consistently displayed superior performance.

This method could greatly benefit resource-poor regions 
where laboratory experiments are cost-prohibitive. How-
ever, our approach is limited by its reliance on supervised 
learning algorithms and the need for correctly labelled data, 
which may result in the poor predictive ability for labels 
with insufficient data. Further research is needed to address 
these limitations, including the prediction of cross-species 
transmissibility and leveraging insufficient data.

Fig. 6   Comparison of Overall Performance Between Models (NA Subtypes): the baseline results with BLAST are framed by the black solid line

Table 3   The overall 
performance of MC-NN on 
data sets with single HA or NA 
sequences

Algorithms Single HA Single NA

AP % (95% CI) F1 % (95% CI) AP % (95% CI) F1 % (95% CI)

CNN 76.38 (56.90, 95.86) 65.04 (55.21, 74.87) 79.60 (74.84, 84.36) 62.10 (54.66, 69.55)
BiGRU​ 80.52 (77.26, 83.79) 56.26 (46.20, 66.31) 76.79 (74.96, 78.62) 59.47 (53.37, 65.57)
Transformer 89.75 (87.96, 91.54) 76.61(69.79, 83.42) 83.56 (81.22, 85.91) 70.96 (66.14, 75.78)
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