
Vol.:(0123456789)

SN Computer Science (2023) 4:632
https://doi.org/10.1007/s42979-023-01975-y

SN Computer Science

ORIGINAL RESEARCH

DAEMON: A Domain‑Based Monitoring Ontology for IoT Systems

Said Daoudagh1  · Eda Marchetti1 · Antonello Calabrò1 · Filipa Ferrada2,3 · Ana Inês Oliveira2,3 · José Barata2,3 ·
Ricardo Peres2,3 · Francisco Marques2,3

Received: 17 December 2022 / Accepted: 29 May 2023
© The Author(s) 2023

Abstract
Internet of Things (IoT) is an emerging technology used in several contexts and domains. The work aims to define a techno-
logical reference solution specifically conceived for monitoring and assessing the behavior of IoT systems from the cyber-
security perspective when a new device or component joins the system. We leverage semantic web technologies, such as
ontologies, for defining DAEMON, a domain-based ontology that formally models monitoring, IoT, and System of Systems
(SoS) domains’ knowledge. We also propose a supporting architecture and describe the proof-of-concept implementing dif-
ferent components. We have validated and showcased our proposal by instantiating DAEMON into a multi-robot autonomous
navigation scenario applied to the intralogistics domain.

Keywords  Cyber security · Internet of Things (IoT) · Monitoring · Ontology · System of Systems (SoS)

Introduction

Quality, trustworthiness, and cybersecurity are essential
attributes of Internet of Things systems and ecosystems.
However, even if an important part of industrial and aca-
demic research activity is devoted to conceiving and imple-
menting solutions able to guarantee, monitor, and assess
these attributes during the overall development process,
the time-to-market, the productivity, and the competitive-
ness impose quick releasing deadlines that may decrease

the general quality level and increase the number of possi-
ble vulnerabilities and weaknesses. Therefore, in line with
the development lifecycle, practical, integrated methodolo-
gies and mechanisms for leveraging the understanding and
management of the functional and non-functional quality
attributes, evaluating the development risks, and reducing
the vulnerability threats are necessary.

As highlighted in [1], a commonly applied solution for
satisfying these needs is using a monitoring system that ena-
bles the analysis of functional and non-functional properties

This article is part of the topical collection “Multidisciplinary
Research Perspectives for IoT Systems” guest edited by Luis
Camarinha-Matos, Luis Ribeiro, Paul Havinga and Srinivas
Katkoori.

 *	 Said Daoudagh
	 said.daoudagh@isti.cnr.it

	 Eda Marchetti
	 eda.marchetti@isti.cnr.it

	 Antonello Calabrò
	 antonello.calabro@isti.cnr.it

	 Filipa Ferrada
	 faf@uninova.pt

	 Ana Inês Oliveira
	 aio@uninova.pt

	 José Barata
	 jab@uninova.pt

	 Ricardo Peres
	 ricardo.peres@uninova.pt

	 Francisco Marques
	 fam@uninova.pt

1	 Istituto di Scienza e Tecnologie dell’Informazione
“Alessandro Faedo” ‑ ISTI, CNR, Via G. Moruzzi 1,
Pisa 56124, Pisa, Italy

2	 Uninova Institute, Centre of Technology and Systems (CTS)
and Associated Lab of Intelligent Systems (LASI), Campus
de Caparica, 2829‑516 Caparica, Portugal

3	 NOVA School of Science and Technology, NOVA-SST,
Campus de Caparica, 2829‑516 Caparica, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01975-y&domain=pdf
http://orcid.org/0000-0002-3073-6217

	 SN Computer Science (2023) 4:632 632   Page 2 of 16

SN Computer Science

during the Internet of Things execution.1 Indeed, thanks to
the analysis of the events produced by the systems, devices,
or components during their online use, an assessment of
specific properties can be performed. Additionally, the moni-
toring system promptly raises alarms or implements coun-
termeasures in case of abnormal behavior detection. Despite
the exposed efficacy, the main objection against adopting
the monitoring system is the costs (in terms of effort and
time) related to its design, implementation, and manage-
ment. Indeed, monitoring activity needs to be integrated into
the stages of the software development process and involves
several stakeholders, such as Internet of Things domain
experts, developers, or monitoring experts [1, 3]. Based on
the initial proposal of [1, 4] in this paper, we leverage the
methodology and architecture of the Domain bAsEd Moni-
toring ONtology (DAEMON) framework useful for realizing
a manageable and user-friendly integrated monitoring sys-
tem. DAEMON integrates concepts and definitions about the
Internet of Things and monitoring into a unique manageable
ontology-based representation. In particular, we leverage the
recent proposal by:

1.	 revising the initial DAEMON ontology core elements
to represent better the IoT systems and monitoring con-
cepts and their relationships.

2.	 detailing a new reference architecture and its GUI, com-
ponents’ interaction, and roles.

3.	 detailing the validation inside a Multi-Robot Navigation
use case scenario and its specific functional and non-
functional properties.

In particular, we focused on the following research
challenges:

CH1: Whitening the black-box assessment process

DAEMON adopts a specific mechanism for collecting inter-
nal execution data (white-box data) without knowing their
source code structure (black-box data). Indeed, the imple-
mented methodology makes the IoTs (and the execution
environment) more “transparent” for functional and non-
functional properties assessment and prediction without
revealing their internals. Data are collected, preserving the
principles of loose coupling and implementation neutrality.

CH2: Separating properties predictions and assessment

DAEMON has been conceived considering the principle of
independence between the components. The internal and
external DAEMON components have a specific role and
contribute to the overall quality, usability, and effective-
ness. Excluding a few mandatory collaborations (like, for
instance, the engine dedicated to the monitoring activity),
the DAEMON has been conceived to work with few adjust-
ments in heterogeneous environments. By referring “DAE-
MON Ontology Modules” and our previous work [1] for
more details, DAEMON peculiarities are as follows:

•	 Providing functional and non-functional monitoring
properties as external data sets.

•	 Providing independent knowledge management processes
for classifying and collecting the specific peculiarities,
properties, and quality attributes of the different IoTs and
their components and devices useful for the development
and assessment activities.

CH3: Leveraging the existing monitoring solutions

DAEMON leverages the existing monitoring solutions
considering several aspects. In particular, we refer to the
following:

•	 The functional and non-functional properties collected
through the knowledge management process be easily
customized, enriched, or modified. The properties dataset
is exploitable for further application or research activity.

•	 The implemented knowledge management process lets
manual/automatic countermeasures be customized based
on the risk analysis. This possibility allows for mitigating
the vulnerability detection risks during the monitoring
activities.

Outline. “Related Works” briefly puts our research in con-
text by describing the most relevant literature concerning
Cybersecurity Specification and Vulnerability, Ontology-
based System of Systems, and Monitoring systems. “DAE-
MON Ontology Modules” describes the main modules of
DAEMON ontology by highlighting concepts and their rela-
tionship that we identified and revised. “Ontology-Based
Knowledge Management Architecture” introduces the DAE-
MON’s reference architecture, reports its main components,
and briefly shows how they interact. In “An Intralogistics
Domain Use Case Scenario”, we showcase our proposal by
instantiating DAEMON into a multi-robot autonomous navi-
gation scenario applied to the intralogistics domain. Finally,
“Conclusions” concludes the paper and highlights our future
works.

1  In this paper, we rely on the definition provided in [2] that consid-
ers the IoT system as “the latest example of the System of Systems
(SoS).”

SN Computer Science (2023) 4:632 	 Page 3 of 16  632

SN Computer Science

Related Works

Cybersecurity Specification and Vulnerability

Cybersecurity implies a set of methods, technologies,
and processes to protect against digital attacks that
would seriously affect the integrity of data, networks,
and programs. In recent years, much effort has been put
into functional and non-functional (including security,
safety, and privacy) requirements specification, which
are essential for research and technology development.
Some examples can be found in the latest European Pro-
jects documents [5, 6], in standards and specifications [7,
8], and in available backlog list containing structured
security and privacy user stories [9, 10]. In this context,
this article proposes a methodology for collecting and
organizing the knowledge which is available in several
wide-ranging sources into a unique reference ontology—
the DAEMON ontology. In line with challenges CH2
presented in the introduction (“Introduction”), the aim
is to allow the selection of the most suitable functional
and non-functional properties useful for monitoring and
assessing the expected IoT/SoS/Ecosystem/components
behavior purposes.

Ontology-based System of Systems (SoS)

In recent years, several research has been conducted on
modeling System-of-Systems (SoS). Ontology is one SoS
modelling approach that can be used to establish domain
concepts and connect the SoS processes consistently
using common language and semantics, which are essen-
tial in the planning and analysis processes of Systems-
of-Systems Engineering (SoSE) [11–15]. Ontologies
can have a more holistic nature where the representation
of categories and relations are common to all domains
such as BFO or DOLCE [16–19] or might be domain-
specific intended to describe individual systems or spe-
cific domains of interest [15, 20].

Internet of Things (IoT) systems can be engineered
from the perspective of SoS. As known, IoT applications
involve the integrated operation of many subsystems (or
Constituent Systems) that are physically and functionally
heterogeneous, preserving their advanced cyber-physical
functionalities. Therefore, it is important to develop
ontologies to share semantic information between differ-
ent IoT subsystems. Over the last few years, an effort
has been made by the semantics and IoT research com-
munities to develop ontologies that capture the related

concepts and relationships between different entities.
Some examples are the SSN ontology [21], the M3 Ontol-
ogy [22], the oneM2M base ontology [23] and the IoT-
Lite ontology [24].

In its turn, the ontology proposed in this paper aims to
represent the monitoring of SoS knowledge, introducing
new concepts useful for a better representation of knowl-
edge, such as the rule hierarchy and skill. It is specifically
conceived for being the connection between SoS and the
monitoring ontologies that, to the best of the author’s knowl-
edge, is still not yet offered. In addition, existing IoT/SoS
ontologies such as IoT-Lite or oneM2M Base Ontology can
be integrated and reused in the proposal in the DAEMON
“SoS module” (see “DAEMON Ontology Modules”).

Monitoring Systems

Monitoring systems allow information collection, process-
ing, analysis, and dissemination within a project or system,
aiming at supporting decision-making. They can be found
in applications spanning numerous domains, including
traffic [25], automotive [26], avionic [27], healthcare [28],
industry [29]. In almost all the application contexts, the
existing monitoring proposals aim to i) provide powerful,
concise, and unambiguous specification languages for the
validation properties specification [30]; ii) defining mecha-
nisms for the conformity assessment of the system against
the selected properties [31].

With the increase of cyber attacks over the internet, it
is essential to explore monitoring solutions to mitigate
risks. Some promising solutions are Security Information
and Event Management (SIEM), Security Orchestration,
Automation, and Response (SOAR), eXtended Detection
and Response (XDR), or Endpoint Detection and Response
(EDR). SIEM systems gather, aggregate, and normalize
information from various events related to potential secu-
rity violations that occurred within the system [32]. SOAR
solutions, seen as the next generation of SIEM, add orches-
tration, automation, and response capabilities that enable
dynamic interactions at all phases of the incident work-
flows to cope with existing and emerging (or unknown)
threats [33]. On the other hand, XDR and EDR can boost
the SIEM analysis by providing information and tools that
will enhance the analysis executable through the SIEM. Usu-
ally, the collected data are stored in Data Lake [34], useful
for advanced forensic analysis.

This work aims to leverage the existing proposals and
provide a collaborative, easy-to-use, and effective solution
for applying the monitoring activity inside target domains.
In particular, focusing on challenges CH1 and CH3 pre-
sented in the introduction (“Introduction”), we provide

	 SN Computer Science (2023) 4:632 632   Page 4 of 16

SN Computer Science

facilities for easily: (1) identifying the most suitable func-
tional and non-functional properties that can be used during
the monitoring activity to detect failures and vulnerabilities
promptly; (2) detecting critical problems, failures, and secu-
rity vulnerabilities; (3) classifying and expressing important
warnings or system reconfiguration to assure a trustworthy
execution.

DAEMON Ontology Modules

To enable a solution envisioned to support a monitoring
process and evaluate the behaviour of the system each
time, a new IoT device is changed or added, the DAE-
MON is proposed. DAEMON is, therefore, an extension
of an initial core ontology, i.e., MONitoring onTOL-
OGY (MONTOLOGY) [1, 4], managed by the DAEMON
Manager (see “Ontology-Based Knowledge Management
Architecture”). The improvement comprises reinforcing
concepts and reorganizing the content to be more manage-
able and modularly to permit interoperability and facili-
tate both extensibility and maintainability. Additionally,
considering the existing IoT/SoS ontologies, such as the
ones later on mentioned in “Related Works”, DAEMON
intends to provide means to integrate later and/or reuse
them in the SystemOfSystems Module (please see descrip-
tion below).

In this line, DAEMON intends to mainly assist SoS
stakeholders in gathering functional and non-functional
properties related to the various parts of IoT/SoS. There-
fore, it enables the definition of concrete monitoring rules
associated with a specific property to demonstrate com-
pliance (or non-compliance) with the selected properties.
Therefore, the conceived enhanced ontology is intended
to be modular, manageable, and comprehensive, being
related to the challenges CH1, CH2 and CH3 described in
“Introduction”, allowing Knowledge derivation reasoning

and inference of new knowledge. As depicted in Fig. 1,
DAEMON is divided into five modules: SoS, Attributes,
Skills, Monitoring, and Rules, being all of them described
in the remainder of this section.

As such, the core ontology is composed of two main mod-
ules: the SystemofSystems (SoS) Module (containing eight
concepts) and the Monitoring Module (which includes five
concepts), with a total of 13 (thirteen) concepts.

SoS Module

Considering IoT systems from an SoS perspective, as
described in “Related Works”, it is important to maintain
and share semantic information between its different sub-
systems. In this line and preserving physical and functional
properties of the IoT/SoS systems, in DAEMON, as illus-
trated in Fig. 2, considering its operation and execution
context, the SystemOfSystems is modeled as a composition
of System, and it is influenced by a specific Environment.
Moreover, being the target of the monitoring actions, the
System is composed of a set of Devices.

Fig. 1   DAEMON Ontology
modules [1]

Fig. 2   DAEMON System of Systems (SoS) Module [1]

SN Computer Science (2023) 4:632 	 Page 5 of 16  632

SN Computer Science

Attributes Module

An Attribute is a functional and non-functional property
related to a specific SoS concept. To enable the monitor-
ing of the behavior through specific monitoring rules, the
Attribute hierarchy is developed by combining three major
sub-classes: EnvironmentAttribute, SystemAttribute, and
DeviceAttribute. As shown in Fig. 3, this module also
includes concepts related to the observable properties of the
classes in the SoS module and, similarly, it comprises two

specific concepts: QualitativeAttribute and ObservableAt-
tribute, both applied for quantitative attributes used to define
both the Measure and Metric part of the definition of the
monitoring rules. In this context, among others, examples of
Attributes can be: communication latency between compo-
nents; or to avoid/detect DoS attacks if the average amount
of messages is below a specific amount; or the total amount
of the allowed/authorized connections.

Skills Module

The concept of Skill represents the ability of an agent
(being it active or passive) to execute a particular activity.
To appropriately model and leverage the Skill concept, it
is composed of two specific sub-classes: BasicSkill and
ComplexSkill, as perceived in Fig. 4. A ComplexSkill is
composed, on the one hand, by a collection of BasicSkill,
and on the other hand, can also be composed iteratively
by a set of ComplexSkill. Furthermore, the concept of
ObservableSkill is proposed as a means to observe the
ability associated with the SoS concept that the monitoring
facilities can assess. Examples of Skill can be, for instance,
the ability of connection or movement. Moreover, directly
related to ObservableSkill, through a isRelatedToSkill

Fig. 3   DAEMON Attributes
Module [1]

Fig. 4   DAEMON Skills Module [1]

Fig. 5   DAEMON Rule Mod-
ule [1]

Fig. 6   Rule Transformation
Process [1]

	 SN Computer Science (2023) 4:632 632   Page 6 of 16

SN Computer Science

association, is the Requirement concept. In this way, each
ObservableSkill, specified as a collection of Requirements,
can be validated through a specific Rule.

Rule Module

A Rule can be defined as a collection of guidelines for
assessing the events of one or more issues in a flow or a
cloud of events. Commonly, rules are defined as a set of
if-then-else structures. As such, Rules are a core concept
to allow the monitoring of certain Skills.

As illustrated in Fig. 5, in DAEMON, Rule is composed
of three basic sub-classes: AbstractRule, WellDefinedRule,
and InstantiatedRule, where: (i) AbstractRule is based on a
generic rule, gathered from the navigation of DAEMON,
that is still not instantiated within the execution context; (iii)
WellDefinedRule, correlated to the monitoring of a precise
Device, where the rule is prepared for translation to the tar-
get language of a Complex Event Processor (CEP); Instan-
tiatedRule that is envisaged to be translated in a language
being understandable by a monitor engine. Additionally, the
Boundary concept includes the specific applicability value
ranges in which the Rule is expressed.

Figure 6 illustrates the complex process flow of the evo-
lution of rules: starting in AbstractRule, to InstantiatedRule,
to obtain a processable rule. In this context, the Abstrac-
tRule can be seen as a generic natural language description

of the purpose of the auditing activity that is simply com-
prehensible by non-expert users, such as the maximum
number of connections between two components that are
established simultaneously. Then, the AbstractRule is han-
dled to WellDefinedRule as a semi-structured and imple-
mentable rule. The users need to add specific details about
the context.

An example of AbstractRule and WellDefinedRule is
depicted in Fig. 7, where the main difference between them
is illustrated in the example of the maximum number of
simultaneous connections.

Lastly, the WellDefinedRule can be enhanced with the
name of the applied probes and automatically translated into
an InstantiatedRule to the monitoring language used. This is
then used during the execution by Monitoring System. Thus,
a standard structure of an InstantiatedRule can be seen as
follows in Fig. 8, where it is possible to include one or more
rules that specify the rule conditions and actions (when and
then):

Monitoring Module

The main aim of the Monitoring module is to provide the
basic functionalities to model the basic concepts and their
relationships. The central concept of this module is the
Monitor that primarily follows rules that are organized in
the Calendar, which includes a collection of rules. In turn,
during run-time, the Calendar concept can confirm a given
ObservableSkill in the Skills module. As illustrated in Fig. 9,
the Monitor can communicate with a Probe through a spe-
cific EntryPoint used for communication.

As such, a Probe can be described as a piece of soft-
ware code that is suitable to be injected into a monitored or
observed Component, Device, or System. The existence of
actions in an observed SoS entity produces relevant informa-
tion in the form of Events that can be sent, by the Probes, in
accordance with a specific format and at regular intervals or
in a particular situation. Therefore, the term Event describes
the state change within or of a System. This state change is
caused when a method call is executed or internal action is
authorized. In this case, the injected Probe packs the atomic
activity into an Event and notifies the Monitor to perform the
processing action on the event course. To be correctly man-
aged by a concrete Monitor, the Event should contain several

Fig. 7   From Abstract to
Well-defined Rule Enrichment
Process [1]

Fig. 8   Drools Rule Skeleton [1]

Fig. 9   DAEMON Monitoring Module [1]

SN Computer Science (2023) 4:632 	 Page 7 of 16  632

SN Computer Science

pieces of information needed for analyzing a snapshot of
what is happening within the IoT system under monitoring.

Ontology‑Based Knowledge Management
Architecture

This section describes the architecture where the DAEMON
ontology is supposed to be integrated. In line with chal-
lenges CH2 and CH3 presented in the introduction (“Intro-
duction”), the DAEMON architecture has been conceived
considering the principle of independence between the
components and to be used in heterogeneous environments.
Additionally, it provides the customization and management
of functional and non-functional properties and exploitable
dataset for further monitoring and validation activities.

By referring to “DAEMON Ontology Modules” and our
previous work [1] for more details, DAEMON peculiarities
are as follows: as reported in Fig. 10, DAEMON solution
relies on two main components that collaborate to predict
expected behavior and monitor functional and non-func-
tional properties of a given IoT System. In particular, the
proposed architecture includes the following components.

DAEMON GUI

This component lets the user interaction to perform all the
phases related to setup and settings. It interacts with the
DAEMON Manager, requesting information and providing
user inputs. It also manages the current state, saving the
user-provided information for later use.

Message BUS

This component manages the communication between all
the framework parts. It, therefore, allows the flow of spe-
cific messages according to a predefined schema that enables
interoperability and extensibility of the proposed framework.

Expected Behaviour Prediction

This component is responsible for predicting the behavior
of the monitored IoT System. Usually, it is supposed to
collaborate with the Monitoring system to predict future
events.

Fig. 10   DAEMON Reference
Architecture

Fig. 11   DAEMON Manager
Architecture

	 SN Computer Science (2023) 4:632 632   Page 8 of 16

SN Computer Science

Monitoring System

This component is responsible for monitoring the functional
and non-functional properties the IoT system should satisfy.
It is supposed to collaborate with the DAEMON Manager to
receive the set of properties (rules) to be monitored during
the execution. It exposes channels for events on which a CEP
listens to analyze them.

DAEMON Manager

This component implements the DAEMON proposal
described in “DAEMON Ontology Modules”. DAEMON
Manager is also responsible for the management of the spec-
ification process of the monitoring rules: from the abstract
to well-defined and finally to instantiated rules. A detailed
description of the DAEMON Manager is provided in the
next sections.

DAEMON Manager: Detailed Description

DAEMON Manager is the component responsible for
managing and supporting the implementation and the
DAEMON Ontology. Thus, its architecture is voluntarily
conceived as abstract as possible to instantiate its com-
ponents with available tools. DAEMON Manager is com-
posed of different components collaborating to achieve a
common goal, i.e., providing functionalities and means to
share information and knowledge about IoT systems and
their components. Figure 11 illustrates the updated stan-
dalone supporting architecture allowing the management
of the data produced by different Data Providers and
DAEMON Builder, allowing the DAEMON Final User to

interact with DAEMON Manager for ontology navigation
and management. In the following, more details about
each component are provided.

DAEMON Mapper

This component is responsible for specifying ontology enti-
ties and presenting specific use case domains. Figure 11
shows that the Data Provider is this component’s primary
target end-user group.

DAEMON Builder Tool

It is used for creating, modifying, and visualizing the ontol-
ogy according to the representation detailed in “DAEMON
Ontology Modules”. DAEMON Tool Builder is instantiated
with Protégé because it provides a friendly Graphical User
Interface (GUI) for defining ontologies; it can be adapted to
build even complex ontology-based applications thanks to its
modular architecture. The customization of the DAEMON
Tool Builder can be used offline as a standalone solution and
online as a web-based solution called WebProtégé 2. This
allows a more dynamic sharing of ontologies for collabora-
tive viewing and editing. Figure 12 shows a screenshot of
the adopted WebProtégé.

Fig. 12   DAEMON Ontology in
WebProtégé

2  WebProtégé software is available at: https://​webpr​otege.​stanf​ord.​
edu/.

https://webprotege.stanford.edu/
https://webprotege.stanford.edu/

SN Computer Science (2023) 4:632 	 Page 9 of 16  632

SN Computer Science

Triplifier

It is a triplifier based on OWL 3 (Web Ontology Language)
developed in Java. Triplifier takes the ontology data as input,
consisting of the individuals, and it is specified in JSON or
XML format. It also takes the rules the DAEMON Builder
Tool defines as input to allow the reasoning and inference
of new knowledge.

Reasoner

This component is utilized to infer new knowledge, and the
reasoning is conducted for consistency tests and inference
definition. Openllet is used in the semantic Reasoner’s cur-
rent implementation for the following reasons:

•	 It is Java-based and readily integrates with the OWL API.

•	 It is open-source software continuously developed and
offers, among other capabilities, the ability to examine
the coherence of ontologies.

Triple Store

In the current implementation, GraphDB has been selected
as the reference Triple Store, a free-to-use graph database
and a tool for knowledge discovery compliant with RDF
and SPARQL. It is available as a high-availability cluster.
Technically, the DAEMON GUI and the DAEMON End
Users interact with the DAEMON Manager by employing
well-defined SPARQL queries.

SPARQL Endpoint

This component allows specifying and executing specific
SPARQL queries to retrieve knowledge from the triple
store and dynamically update the KB content. In the next
subsection (“DAEMON Manager: Implementation Details
and Exchanged Data”), details about both Triple Store and
SPARQL Endpoint are also provided from the behavioral
point of view.

1 /daemon/sos
2 /daemon/sos/{id}
3 /daemon/sos/{id}/ environment
4 /daemon/sos/{id}/ system
5 /daemon/sos/{id}/ system /{id}
6 /daemon/sos/{id}/ system /{id}/ device
7 /daemon/sos/{id}/ system /{id}/ device /{id}
8 /daemon/sos/{id}/ system /{id}/ device /{id}/ component
9 /daemon/sos/{id}/ system /{id}/ device /{id}/ component /{id}

Fig. 14   DAEMON Server API endpoints for the SoS module

Fig. 15   DAEMON RESTful
Server Sequence Diagram

3  The W3C Web Ontology Language (OWL) is available at: https://​
www.​w3.​org/​OWL/.

Fig. 13   DAEMON RESTful
Server

https://www.w3.org/OWL/
https://www.w3.org/OWL/

	 SN Computer Science (2023) 4:632 632   Page 10 of 16

SN Computer Science

Fig. 16   DAEMON reference
JSON schema

Fig. 17   Extract of an Instance
of the DAEMON Reference
JSON Schema

SN Computer Science (2023) 4:632 	 Page 11 of 16  632

SN Computer Science

4  API Development for Everyone specification and terminologies
are provided at: https://​swagg​er.​io/​docs/​speci​ficat​ion/​paths-​and-​opera​
tions/.

DAEMON Manager: Implementation Details
and Exchanged Data

In this section, we provide some implementation details
of DAEMON Manager by focusing only on managing the
interaction and the communication between the DAEMON
GUI and the DAEMON Manager component. As shown in
Fig. 13, DAEMON provides services for querying/inter-
acting with the ontology. The DAEMON GUI uses the
provided information during user interaction. The server
handles GET, POST, PUT, and DELETE requests, which
are addressed with SELECT/CONSTRUCT, INSERT,
UPDATE, and DELETE SPARQL queries, respectively.

The model for the specification of the available endpoints
follows the OpenAPI Specification (OAS) .4 Fig. 14 shows
some examples of the proposed endpoints that the DAE-
MON server API exposes, in this case, for the SoS module
of the developed ontology (see “DAEMON Ontology Mod-
ules” for more details).

The HTTP operations are defined for each endpoint
(path) (GET, POST, PUT, and DELETE). A single path can

support more than one operation, and an operation would
have one path, except for the GET operation. For instance,
’GET /daemon/sos’ returns all available systems of systems
in the ontology, whereas ’GET /daemon/sos/{id} returns
information about a particular system of systems. For the
POST, PUT, and DELETE operations, the ’POST /daemon/
sos,’ ’PUT /daemon/sos/{id}’ and ’DELETE /daemon/sos/
{id}’, are used, respectively. These last operations must be
managed carefully, according to the daemon constraints.

Figure 15 shows the interactions between DAEMON
GUI when it performs GET and POST requests for return-
ing a particular System of Systems and inserting a new one.
When the Ontology Server receives the requests, it creates
the corresponding SPARQL query to retrieve/insert the
results from/in the knowledge graph database. The results
are retrieved in JSON format.

Exchanged Data Structure

DAEMON Manager is based on RESTful service and com-
municates with components by exchanging data. To facili-
tate that communication, we have defined a specific JSON
schema.

It represents the data exchanged and allows interoperabil-
ity with the current (and additional) components integrated
within a given IoT system. Figure 16 reports the conceived
JSON data structure schema. It highlights the structure of
the SoS JSON object, which has, among others, an SoS ID,
the SoS Name, and a Justification field containing the reason
for choosing that SoS.

Fig. 18   Coppelia simulation for the use case

https://swagger.io/docs/specification/paths-and-operations/
https://swagger.io/docs/specification/paths-and-operations/

	 SN Computer Science (2023) 4:632 632   Page 12 of 16

SN Computer Science

Example of Produced Data

All the data produced by DAEMON Manager must com-
ply with the above-mentioned schema. An instance of that
schema containing data related to the System of Systems
associated with the use case example, described in “An
Intralogistics Domain Use Case Scenario”, is reported
in Fig. 17.

An Intralogistics Domain Use Case Scenario

The present section focuses on describing how a DAEMON
instance can be applied to a concrete application scenario,
in this case, to support an auditing process within the con-
text of the BIECO project [6] under the H2020 programme.
Further details about the technical implementation can be
found in [1]. As part of the BIECO project, the present work
was instantiated for a multi-robot autonomous navigation
scenario applied to the intralogistics domain. In the use
case at hand, the execution environment consists of a Cop-
peliaSim simulation with two autonomous ground vehicles
responsible for transporting material between two different
workstations, as depicted in Fig. 18.

The DAEMON instance permits real-time observation
and verification of the robot’s operation and movement,
ensuring that the robot can explore the area safely and effi-
ciently. This is especially critical in both dynamic and com-
plex surroundings, as there may be a number of possible
obstacles and hazards for the vehicle to avoid, particularly
those that involve operating around people. Runtime moni-
toring makes it possible to identify problems early and take
quick corrective action, assuring that the vehicle may con-
tinue to operate with safe and trusted behavior at all times.

The following sections describe the DAEMON instance
setup and execution for the multi-robot navigation use case
in intralogistics. It focuses on the interaction between the
four main components (see “Ontology-Based Knowledge
Management Architecture”): the DAEMON GUI, the

DAEMON Manager, the runtime Monitoring System, and
the Expected Behaviour Prediction component.

Monitoring Setup for Autonomous Navigation

During runtime, the DAEMON instance targets the monitor-
ing of functional and non-functional properties of both the
robotic system and the execution environment. It involves
the interactions between the System of Systems, the execu-
tion environment, and the new component or device to be
introduced into the system, which in this case is considered
to be the local planner component of the robot for naviga-
tion. The execution of the DAEMON instance can be carried
out in three different situations:

1.	 Execution environment is simulated, i.e., a simulation
model able to represent the real environment. In this
case:

•	 System or component under evaluation can be simu-
lated or real.

•	 Models or stubs can be used to simulate the environ-
ment components in which the system or component
is executed.

2.	 Execution environment is running in a test-bed, i.e., it is
a representation of the real environment but executed in
a test-bed framework to have the possibility to control
the internal status of each of its components and to man-
age violations safely. In this case:

•	 The system or component under evaluation is a real
component.

•	 The execution environment components directly
interacting with the component or system under
evaluation can be (a) real components, (b) simulated
models, or (c) executed using stubs.

3.	 Execution environment is running in a real context, i.e.,
the execution environment and its components are exe-
cuted in a real (operational) environment. In this case:

Fig. 19   Graphical user interface
panels for the Pre-setup Phase
flow. This represents a realiza-
tion of the DAEMON ontology
modules shown in Figs. 2 and 3

SN Computer Science (2023) 4:632 	 Page 13 of 16  632

SN Computer Science

•	 The component or system under evaluation is a real
component.

•	 The execution environment components, directly
interacting with the component or system under
evaluation, are real components.

In this specific case, the system under evaluation is a part of
the robot. More specifically, it is the autonomous navigation
that was built with the Robot Operating System (ROS) stack,
and probes were inserted into the component that manages
the local planner.

The user can start the DAEMON execution by interact-
ing with the DAEMON GUI, beginning with selecting the
DAEMON instance setup features. The following sections
detail the execution of each phase, starting from the first
step, i.e., the Pre-setup phase.

Pre‑setup Phase

During this phase, the user explores the classification and
categorization of the different Systems of Systems, their
devices, and components (e.g., execution environment, tar-
get system). The Pre-setup Phase involves the collaboration
between the DAEMON GUI and the DAEMON Manager
components of the previously shown architecture. In par-
ticular, the DAEMON GUI provides the user an easy-to-use
means for navigating the ontology. In fact, the user selection
forces a suitable ontology query to guide the definition of the
rules to be used during the monitoring stage.

Once these values are configured, the DAEMON GUI
visualizes the components list to the user to let them
select the suitable one. As before, through the collabora-
tion between the DAEMON GUI and the DAEMON Man-
ager, the visualization of the specific component skills is
provided: connectivity and movement. In this use case,
connectivity is the skill considered for experimentation,
because it is regarded as the most critical from the security
point of view.

Again, the collaboration between the DAEMON GUI
and the DAEMON Manager provided the user with the
lists of the most suitable functional and non-functional

properties for the selected system and execution environ-
ment. The properties are presented as high-level speci-
fications and correspond to the ontology abstract rules.
According to the ontology representation, the abstract
rules are classified as standard rules, i.e., non-functional
properties that can be assessed through the Monitoring
System, and Pure Predictive rules, i.e., functional proper-
ties that can be predicted using the Expected Behaviour
Prediction component. An example of such a rule is, for
instance, the “Maximum number of established simulta-
neous connections”, which targets the mutual interaction
between Local Planner_1 and Autonomous Navigation.
Figure 19 provides an overview of these interfaces.

The rule boundaries can be established either using
data collected during the design and development stages
or provided by the user. In both cases, the values are man-
aged through the ontology and remain valid for all runtime
execution. Considering the pure predictive rules instead,
one of the properties considered is the “Expected commu-
nication pattern through an ordered list of message types.”
This rule is visualized as a DAEMON Manager query and
focuses on the behavior of the Local Planner_1. It requires
that the predictive engine forecasts the specific message
order that would be expected. The last interaction between
the DAEMON GUI and the DAEMON Manager concerns
the definition of boundaries. Indeed, if not provided by
the Blueprint data analysis, the user needs to insert the
boundaries for the selected abstract rules as the last step.
This concludes this first part of the pre-setup and starts
preparing the following steps described in the upcoming
sections.

Offline Activities

When the initial Pre-setup Phase ends, the interaction
between the DAEMON Manager and the DAEMON GUI
provides the user with downloadable artefacts helpful in pre-
paring for the following monitoring activities. More specifi-
cally, these artefacts include a jar file of the executable probe
and a set of guidelines helpful in instrumenting the code of
the target component.

Fig. 20   Graphical user interface
panel for the refinement of the
well-defined ruleset, implement-
ing the DAEMON ontology
modules and process previously
presented in Figs. 5 and 7

	 SN Computer Science (2023) 4:632 632   Page 14 of 16

SN Computer Science

Using this above information, the user can work offline to
instrument the Local Planner_1 and execution environment
with suitable probes.

Finish Pre‑setup

The user can finalize the auditing activity pre-setup phase
through DAEMON GUI by refining the well-defined rules.
This activity involves the DAEMON GUI and the DAEMON
Manager components. It focuses on the identifiers of the
probes injected into the target component and the execu-
tion environment. An example for this use case is provided
in Fig. 20. In this case, for the rule “Maximum number of
established simultaneous connections,” the user inserts the
identifier “Sua_Probe.”

Once finalized, the well-defined rules are translated into
instantiated rules and provided to the Monitoring System
for execution. This finally concludes the complete Pre-setup
Phase and the control goes back to the DAEMON GUI to
start the core of the monitoring activity.

Start DAEMON Monitoring

As soon as the user issues the start command from the DAE-
MON GUI, the DAEMON instance passes from the “online”
state to the “running” status. In this state, the Monitoring Sys-
tem raises the Complex Event Processor (CEP) and accepts
the instantiated rules defined in the Pre-setup Phase. Then, it
compiles the rules into meta-rules and Instantiated rules. At
this point, the monitoring starts listening to the events sent
by the probes on a dedicated channel. In parallel, listening
from the same channel, the Expected Behaviour Component,
if previously activated, receives the events useful for the

forecasting models. These are executed faster than the nor-
mal execution environment and can, therefore, provide pre-
dictions about trusted behavior. Considering, for instance, an
“Expected communication pattern through an ordered list of
message types” rule, a forecast event containing a prediction
regarding a velocity and trajectory score event sequence can
be monitored. Using the data of the forecast event, the monitor
instantiates the meta-rule into a new rule and injects it into the
CEP. The boundary value for the period validity of the new
rule is also provided. For this use case, the boundary is set to
5 s, as established in the forecast event.

On the Monitoring System side, it continuously receives
the Sua_Probe events containing Score, Velocity, and con-
nection status and checks the instantiated rules. Expected
Behaviour Prediction and Monitoring components continue
collaboration until the user decides to stop the auditing
activity or as soon as a rule violation is experienced.

Validation Scenario

In the use case execution, a malicious code attack has also
been simulated for validation purposes. Thus, a malicious
code injection has been performed through the UI shown
in Fig. 18. As depicted, this caused an increase in the con-
nections between the Local planner_1 and the Global plan-
ner. Consequently, through its monitoring, the DAEMON
instance observed the violation of the “Maximum number
of established simultaneous connections” rule, immediately
notified the user, and triggered the associate countermeas-
ure. If the DAEMON activity stops, the system’s dynamic
configuration can be performed offline. This detection is
shown in the runtime monitoring logs provided in Fig. 21.

Fig. 21   Runtime Monitoring Logger: Trace of rule violation raised

SN Computer Science (2023) 4:632 	 Page 15 of 16  632

SN Computer Science

5  More information about BIECO Use-Cases can be found at: https://​
www.​bieco.​org/​use-​cases/.

Once the system had been reconfigured, another round of
DAEMON execution was performed, verifying the system
returned to a safe and trusted condition.

Conclusions

This paper focuses on the advancements (technological and
research) concerning previous work [1]. More precisely, it
presents the improvements made to the DAEMON frame-
work, which integrates knowledge about the IoT/SoS and
monitoring domains from the cybersecurity perspective
into a single ontology, the implementation of the proposed
framework and its components, and the validation through
its instantiation in a multi-robot autonomous navigation sce-
nario applied to the intralogistics domain, one of the BIECO
project’s Use Cases .5

As future general works, the following activities will be
considered:

•	 Implementation of the final version of the proposed
framework and its components.

•	 Validation of the framework with all the BIECO Use
Cases and considering also other contexts and IoT sys-
tems, such as Smart Cities and Healthcare Sectors.

As specific future works, the following will be considered:

For the Runtime Monitoring, we are planning to include
features for using smart agents instead of the proposed
probes. The new probe should be capable of sending formal
events, receiving notifications from the CEP, and activat-
ing countermeasures. Therefore, the probe could be used to
change its host’s behavior while running to reduce the risk
of the detected violation. Solutions to be analyzed are low-
ering a transmission rate to avoid collision or congestion or
executing an alternative activity during the system running.

For DAEMON Manager, the planned future work con-
cerns the finalization of the components’ implementation
by identifying the alternative open-source tools to be used
and customized. This activity will also consider interoper-
ability and extensibility to improve the overall implementa-
tion performance.

Acknowledgements  This work was partially supported by the EU
H2020 BIECO project Grant Agreement No. 952702, by the Por-
tuguese FCT program, Center of Technology and Systems (CTS)
UIDB/00066/2020 / UIDP/00066/2020, and by the project SERICS
(PE00000014) under the NRRP MUR program funded by the EU
- NGEU.

Declarations 

Conflict of Interest  Authors declare no conflict of interest exists.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Daoudagh S, Marchetti E, Calabrò A, Ferrada F, Oliveira AI,
Barata J, Peres R, Marques F. An ontology-based solution for
monitoring iot cybersecurity. In: Camarinha-Matos LM, Ribeiro
L, Strous L (eds.) Internet of Things. IoT Through a Multi-disci-
plinary Perspective, 2022;p. 158–76. Springer, Cham.

	 2.	 Fortino G, Savaglio C, Spezzano G, Zhou M. Internet of things
as system of systems: a review of methodologies, frame-
works, platforms, and tools. IEEE Trans Syst Man Cybern.
2020;51(1):223–36.

	 3.	 Rastogi V, Srivastava S, Mishra M, Thukral R. Predictive main-
tenance for sme in industry 4.0. In: 2020 Global Smart Industry
Conference (GloSIC), 2020;382–90.

	 4.	 Calabrò A, Daoudagh S, Marchetti E. MENTORS: Monitoring
Environment for System of Systems. In: Proceedings of the 17th
International Conference on Web Information Systems and Tech-
nologies - WEBIST, 2021; p. 291–8. SciTePress, Portugal. https://​
doi.​org/​10.​5220/​00106​58900​003058. INSTICC.

	 5.	 Sforzin A, Bobba R et al. D5.4-requirements analysis of demon-
stration cases phase 2. 2021. https://​cyber​sec4e​urope.​eu/​publi​catio​
ns/​deliv​erabl​es/.

	 6.	 Ricardo Silva Peres et al. The BIECO conceptual framework
towards security and trust in ict ecosystems. In: Testing Software
and Systems, Cham, 2022;230–2.

	 7.	 Skouloudi RC, Malatras A, Dede G. Guidelines for securing the
internet of things. European Union Agency for Cybersecurity
2020.

	 8.	 Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 (General Data Protection Regulation).
Official J Eur Union. 2016;L119:1–88.

	 9.	 Maier P, Ma Z, Bloem R. Towards a secure scrum process for
agile web application development. In: Proceedings of the 12th
International Conference on Availability, Reliability and Security.
ARES ’17. Association for Computing Machinery, New York,
NY, USA 2017. https://​doi.​org/​10.​1145/​30989​54.​31031​71.

	10.	 Bartolini C, Daoudagh S, Lenzini G, Marchetti E. GDPR-based
user stories in the access control perspective. In: International
Conference on the Quality of Information and Communications
Technology, 2019;3–17. Springer

	11.	 DRIDI CE, BENZADRI Z, BELALA F. System of systems mod-
elling: Recent work review and a path forward. In: 2020 Interna-
tional Conference on Advanced Aspects of Software Engineering
(ICAASE), 2020;1–8.

https://www.bieco.org/use-cases/
https://www.bieco.org/use-cases/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5220/0010658900003058
https://doi.org/10.5220/0010658900003058
https://cybersec4europe.eu/publications/deliverables/
https://cybersec4europe.eu/publications/deliverables/
https://doi.org/10.1145/3098954.3103171

	 SN Computer Science (2023) 4:632 632   Page 16 of 16

SN Computer Science

	12.	 Nilsson R, Dori D, Jayawant Y, Petnga L, Kohen H, Yokell M.
Towards an ontology for collaboration in system of systems con-
text. INCOSE Int Sympos. 2020;30:666–79.

	13.	 Langford G, Langford T. The making of a system of systems:
ontology reveals the true nature of emergence. In: 2017 12th Sys-
tem of Systems Engineering Conference (SoSE), 2017; 1–5. IEEE

	14.	 Walden DD, Roedler GJ, Forsberg K, Hamelin RD, Shortell TM.
International council on systems engineering. Systems engineer-
ing handbook: a guide for system life cycle processes and activi-
ties 2015.

	15.	 Franzén LK, Staack I, Jouannet C, Krus P. An ontological
approach to system of systems engineering in product develop-
ment, 2019;35–44.

	16.	 Arp R, Smith B, Spear AD. Building ontologies with basic formal
ontology. Cambridge: The MIT Press; 2015. https://​doi.​org/​10.​
7551/​mitpr​ess/​97802​62527​811.​001.​0001.

	17.	 Bajaj G, Agarwal R, Singh P, Georgantas N, Issarny V. A study
of existing ontologies in the IoT-domain. arXiv preprint. 2017.
arXiv:​1707.​00112.

	18.	 Mascardi V, Cordì V, Rosso P. A comparison of upper ontologies.
In: Woa, vol. 2007, 2007;55–64. Citeseer

	19.	 Partridge C, Mitchell A, Cook A, Sullivan J, West M. A survey
of top-level ontologies—to inform the ontological choices for a
foundation data model. University of Cambridge; 2020.

	20.	 Lynch K, Ramsey R, Ball G, Schmit M, Collins K. Conceptual
design acceleration for cyber-physical systems. In: 2017 Annual
IEEE International Systems Conference (SysCon), 2017;1–6.
https://​doi.​org/​10.​1109/​SYSCON.​2017.​79347​71

	21.	 W3C: Semantic Sensor Network Ontology 2017.
	22.	 Gyrard A, Bonnet C, Boudaoud K, Serrano M. Lov4iot: a second

life for ontology-based domain knowledge to build semantic web
of things applications. In: 2016 IEEE 4th International Conference
on Future Internet of Things and Cloud (FiCloud), 2016;254–61.

	23.	 oneM2M Partners Type 1: Base ontology. Technical report. 2019.
https://​www.​onem2m.​org/​images/​pdf/​TS-​0012-​Base_​Ontol​ogy-​
V3_7_​3.​pdf.

	24.	 Bermudez-Edo M, Elsaleh T, Barnaghi P, Taylor K. Iot-lite: A
lightweight semantic model for the internet of things. In: 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Comput-
ing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of
People, and Smart World Congress (UIC/ATC/ScalCom/CBD-
Com/IoP/SmartWorld), 2016;90–7. https://​doi.​org/​10.​1109/​UIC-​
ATC-​ScalC​om-​CBDCom-​IoP-​Smart​World.​2016.​0035

	25.	 Won M. Intelligent traffic monitoring systems for vehicle clas-
sification: a survey. IEEE Access. 2020;8:73340–58.

	26.	 Fotescu R-P, Constantinescu R, Alexandrescu B, Burciu L-M.
System for monitoring the parameters of vehicle. In: Advanced
Topics in Optoelectronics, Microelectronics and Nanotechnolo-
gies X, vol. 11718, 2020;55–61. SPIE.

	27.	 Hidayanti F. Design and application of monitoring sys-
tem for electrical energy based-on internet of things. Helix.
2020;10(01):18–26.

	28.	 Santos MA, Munoz R, Olivares R, Rebouças Filho PP, Del Ser
J, de Albuquerque VHC. Online heart monitoring systems on the
internet of health things environments: a survey, a reference model
and an outlook. Inf Fusion. 2020;53:222–39.

	29.	 Bhamare D, Zolanvari M, Erbad A, Jain R, Khan K, Meskin N.
Cybersecurity for industrialcontrol systems: a survey. Comput
Secur. 2020;89: 101677.

	30.	 Khan S, Nazir S, García-Magariño I, Hussain A. Deep learning-
based urban big data fusion in smart cities: towards traffic moni-
toring and flow-preserving fusion. Comput Electric Eng. 2021;89:
106906.

	31.	 Burns M, Griffor E, Balduccini M, Vishik C, Huth M, Wollman D.
Reasoning about smart city. In: 2018 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), 2018;381–6.

	32.	 Bhatt SN, Manadhata PK, Zomlot L. The operational role of secu-
rity information and event management systems. IEEE Secur Priv.
2014;12(5):35–41.

	33.	 González-Granadillo G, González-Zarzosa S, Diaz R. Security
information and event management (siem): analysis, trends, and
usage in critical infrastructures. Sensors. 2021. https://​doi.​org/​10.​
3390/​s2114​4759.

	34.	 Holubová I, Vavrek M, Scherzinger S. Evolution management in
multi-model databases. Data Knowl Eng. 2021;136: 101932.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://doi.org/10.7551/mitpress/9780262527811.001.0001
http://arxiv.org/abs/1707.00112
https://doi.org/10.1109/SYSCON.2017.7934771
https://www.onem2m.org/images/pdf/TS-0012-Base_Ontology-V3_7_3.pdf
https://www.onem2m.org/images/pdf/TS-0012-Base_Ontology-V3_7_3.pdf
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0035
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0035
https://doi.org/10.3390/s21144759
https://doi.org/10.3390/s21144759

	DAEMON: A Domain-Based Monitoring Ontology for IoT Systems
	Abstract
	Introduction
	Related Works
	DAEMON Ontology Modules
	Ontology-Based Knowledge Management Architecture
	DAEMON Manager: Detailed Description
	DAEMON Manager: Implementation Details and Exchanged Data

	An Intralogistics Domain Use Case Scenario
	Monitoring Setup for Autonomous Navigation
	Pre-setup Phase
	Offline Activities
	Finish Pre-setup
	Start DAEMON Monitoring

	Validation Scenario

	Conclusions
	Acknowledgements
	References

