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Abstract
Human activity recognition has been an open problem in computer vision for almost 2 decades. During this time, there have 
been many approaches proposed to solve this problem, but very few have managed to solve it in a way that is sufficiently 
computationally efficient for real-time applications. Recently, this has changed, with keypoint-based methods demonstrat-
ing a high degree of accuracy with low computational cost. These approaches take a given image and return a set of joint 
locations for each individual within an image. In order to achieve real-time performance, a sparse representation of these 
features over a given time frame is required for classification. Previous methods have achieved this using a reduced number 
of keypoints, but this approach gives a less robust representation of the individual’s body pose and may limit the types of 
activity that can be detected. We present a novel method for reducing the size of the feature set, by calculating the Euclidian 
distance and the direction of keypoint changes across a number of frames. This allows for a meaningful representation of the 
individuals movements over time. We show that this method achieves accuracy on par with current state-of-the-art methods, 
while demonstrating real-time performance.
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Introduction

The automated detection and classification of human activi-
ties from video have been an open problem in computer 
vision for over 2 decades. However, previous attempts to use 

computer vision to detect social signals come with a number 
of drawbacks. The computational cost, in particular, means 
most traditional methods do not scale well when there is a 
large number of individuals in a scene [1]. The recent emer-
gence of deep learning techniques has enabled the develop-
ment of methods for fast extraction of skeletal keypoints 
features, which (alongside continued increases in computing 
power) has been a breakthrough in enabling the development 
of real-time methods for human activity recognition that can 
readily scale to multiple people [2].

In Ref. [3], we presented a keypoint trajectories based 
approach from Ref. [4], where the set of keypoints for an 
individual, extracted over a given time period, is converted 
to a feature set of “keypoint changes”. These keypoint 
changes encode a temporal history of the Euclidian distance 
and the direction of keypoint movement. We measured the 
keypoint changes using a reduced sample rate and reduced 
sample size, and we also measure the short-term keypoint 
changes between concurrent frames. In this way, we were 
able to maintain a sparse representation of an individual 
movement but were are also able to detect actions which 
are characterised by rapid movements. In this paper, we 
expand on this work, and present further results for the key-
point trajectories based approach from Ref. [3], performing 
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experiments with a range of additional machine learning 
methods in order to prove the robustness of these features for 
activity recognition. In addition, we conduct further experi-
ments where we change the sample rate and the number of 
samples taken for each activity in order to obtain a better 
understanding of the impact that changing these values has 
on the classification accuracy. The remainder of the paper 
is organised as follows. In Sect. “Literature Review”, we 
present the related literature. In Sect. “Methodology”, we 
outline the proposed approach and the experimental design. 
In Sect. “Experimental Setup”, we present the performance 
evaluation results and discussion. In Sect. “Accuracy Evalu-
ation”, we compare the results with other state-of-the-art 
methods, and in Sect. “Runtime Evaluation”, we perform 
runtime analysis. Finally, in Sect. “Conclusion”, we con-
clude the paper and discuss possible future work.

Literature Review

Human activity recognition, defined as the challenge of 
classifying an individual’s activity from a video, is one of 
the oldest problems in the field of video processing. There 
have been a number of proposed approaches to solving this 
problem, with the majority based on either spatio-temporal 
features [5–7], optical flow [8–12] or deep learning [13–16]. 
These methods have been shown to achieve high accuracy 
on benchmark datasets but incur a significant computational 
cost. As such, their use for real-time applications is limited.

Feature extraction is an approach to reduce computational 
cost in image and video processing, for example, by com-
pressing an image into a sparse set of interest points such 
as in Ref. [17]. Early attempts to do this used general inter-
est point detectors such as SIFT and SURF. However, these 
methods had a number of drawbacks, most notably that there 
was no agreed standard for human representation [18]. To 
solve these problems, specialised “key point” detectors were 
developed, which can be applied to an image and a set of 
locations of key body joints for each individual within the 
image is returned. Two of the most popular approaches are 
OpenPose, which uses a bottom up approach based on part 
affinity fields [19], and AlphaPose, a top down approach 
based on the use of a technique known as pose flow [20], 
though recently transformer-based methods such as ViTPose 
[21] have demonstrated state-of-the-art performance for this 
task.

Generally, methods for activity recognition using key-
point features sample a number of consecutive frames, 
and then concatenate these values to form a feature vector, 
such as the method for fall detection implemented in Ref. 
[22]. Recently, Camarena et al. [17] presented an approach 
for fast human activity recognition based on the method 
used in [23]. In order to speed up this approach, they used 

a reduced feature set of six keypoints (those for the neck, 
right wrist, left elbow, left wrist, mid hip and left ankle), 
generated using OpenPose [19]. In doing so, they reduced 
the number of features used by approximately a factor of 5 
and achieved an approximate 8 times improvement in speed 
over the original method [23], with a reduction in accuracy 
of only 1.4%. This enabled the approach to run sufficiently 
fast for real-time classification, a breakthrough for human 
activity recognition. In order to achieve this speed gain, their 
approach only sampled a small number of body keypoints. 
However, by doing this, they have a less generalizable rep-
resentation of the individual’s body pose; this may limit the 
type of activity that can be detected. For example, in a situ-
ation where it is necessary to detect whether an individual 
is kicking with their right leg, this approach would struggle 
as they have extracted no keypoints relating to the right leg. 
In contexts where it is necessary to detect a large range of 
different actions, using a reduced set of keypoints may not 
be feasible.

Recently, the work of Reid et al. [24] showed that by 
reducing the frame rate and sample size used for keypoint-
based activity recognition, the computational cost can be 
reduced sufficiently to perform real-time activity recogni-
tion on upwards of 14 individuals simultaneously. However, 
this approach also comes with downsides, the most obvious 
of which is that by reducing the sample rate; in this way, it 
may be difficult to detect actions which are characterised 
by rapid movements, such as clapping, where the move-
ment may be completed between frames being sampled. In 
addition, this method may be prone to translation variance 
and could struggle to detect activities that occur in different 
parts of the image, unless translated data are included in 
training. Earlier methods for overcoming this issue using 
traditional keypoints involved measuring keypoint trajecto-
ries, but such approaches are limited by the fact that they are 
unable to track specific landmarks (e.g. elbows and hands) 
[25]. Later improvements to such methods achieved impres-
sive accuracies on a number of benchmark datasets but were 
still hampered by poor runtime performance [26]. Due the 
recent breakthroughs in the area of human landmark detec-
tion, keypoint trajectories are once again coming into focus 
as a viable method for human action recognition [27, 28].

Methodology

Where we will describe the proposed keypoint-based 
approach for fast human activity recognition, which is based 
on the temporal history of keypoint changes (in terms of 
the Euclidian distance and direction). We use OpenPose for 
keypoint extraction [19] as it provides a high level of accu-
racy with very low computational cost that remains constant 
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when more individuals are detected, unlike with other meth-
ods such as AlphaPose [20].

For each individual within an image, OpenPose extracts 
a set of 25 body keypoints as shown in Fig. 1. For these 
experiments, we use the full set of 25 keypoints, as this pro-
vides the most detailed representation of the human pose. 
OpenPose first uses a feedforward neural network to predict 
a set of 2D confidence maps of body part locations and a set 
of 2D vectors of part affinity fields (PAFs) which encode the 
degree of association between parts. These confidence maps 
and the PAFs are then parsed by a greedy inference method 
to output the 2D keypoints for all individuals in the image. 
For more details on the model architecture please see [19].

It is worth noting, however, that the novel contributions 
of this paper are not reliant on any specific keypoint estima-
tion approach and can be implemented with any methods, 
such as AlphaPose [20], Megvii [29], or similar techniques. 
Regardless of the method used for keypoint extraction, each 
keypoint is defined as

where xi and yi are the 2D image coordinates of the extracted 
keypoint. We represent an individual’s movement as the 

Euclidian distance between two keypoints 
(
x1
y1

)(
x2
y2

)
 

defined as

(1)ki =

(
xi
yi

)

and the angle between them as

where the tan function returns the unambiguous angle θ 
between the two keypoints on the Euclidian plane.

We can prove that these measurements are translation 
invariant as follows: suppose we define the value α as an 
arbitrary translation in the x coordinate, and the value β 
as another arbitrary translation in the y coordinate, we can 
define the translated pair of coordinates as

then we can see that

and by extension,

meaning that the values for θ and ∆ are invariant to transla-
tion in both the x and y coordinates. For two sets of � key-
points, L and M, corresponding to an individual, the set of 
keypoint changes C is defined as

For our first set of experiments, we computed a coarse 
representation of the individual’s movement by calculat-
ing n such sets of keypoint changes in order to build up a 
temporal history feature vector. The final feature vector at 
time t is defined as

where Kt is the set of keypoints extracted for the video frame 
at time t and m is the fixed time difference between the two 
sampled frames. Therefore, for the second experiment, we 
attempted to compute a fine-grained representation of the 
keypoint changes, by measuring the keypoint changes from 
the intervening frames. This enables us to compute a more 
fine-grained representation of an individual’s movement. 
Again, a set of n such keypoint changes is used in order to 

(2)Δ
(
k1, k2

)
=

√(
x2 − x1

)2
+
(
y2 − y1

)2

(3)�
(
k1, k2

)
= tan

(
y2−y1

x2−x1

)

(4)
(
x1 + α

y1 + β

)(
x2 + α

y2 + β

)

(5)
(
x2 + α

)
−
(
x1 + α

)
≡ x2 − x1,

(6)
(
y2 + β

)
−
(
y1 + β

)
≡ y2 − y1

(7)C(L,M) =

⎧⎪⎨⎪⎩

Δ
�
L1,M1

�
, �
�
L1,M1

�
,

Δ
�
L2,M2

�
, �
�
L2,M2

�
,

…

Δ
�
L� ,M�

�
, �
�
L� ,M�

�

⎫⎪⎬⎪⎭

(8)Coarse
t
=

⎧⎪⎨⎪⎩

C
�
K
t
,K

t−m

�
,

C
�
K
t−m,Kt−2m

�
,

…

C
�
K
t−(n−1)m,Kt−nm

�

⎫⎪⎬⎪⎭

Fig. 1  The 25 keypoints extracted by OpenPose
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build up a temporal history of the individuals’ movement 
over time. This feature vector is defined as

where ε is defined as a short time period such that ε < m. In 
the experiments, ε = 1. This enabled a fine-grained represen-
tation of the instantaneous keypoint changes.

For the final set of experiments, we test whether an 
approach trained on both short-term and long-term key-
point changes would be more effective than using either 
one individually. This would increase the number of fea-
tures used; however, the representation would still be 
sparser than sampling every individual frame. For this 
experiment, the combined approach is represented as

We used this methodology to investigate how changing 
the sample rate and number of frames impacted classifica-
tion accuracy. To do this, we conducted a range of experi-
ments using a number of different sample rates (rate at 
which frames are sampled, measured in frames per second) 
and sample size (number of frames sampled, defined as n 
in (9) and (10)). The set of sample rates used, measured in 
fps, were as follows:

Since the original frame rate of the dataset used was 25 
fps, the corresponding values used for m in Eqs. (8) and 
(9) are as follows:

The sequence length refers to the total number of 
frames subsampled. We use different sequence lengths in 
order to determine the optimal activity time period and to 
allow us to compare different sample rates over different 
time periods. The set of sequence lengths corresponds to 
the values used for n in Eqs. (8) and (9) is as follows:

The longer the sequence length is, the longer the fea-
ture vector used for training and inference. These feature 
vectors were then used to train the following ML Classi-
fiers: kNN, XGBoost, Multi-layer Perception (MLP), Clas-
sification and Regression Tree (CART), Random Forest 
and Support Vector Classification (SVC). The activity 
type (i.e. walking, jogging, and running) was used as the 
classification label. All reported accuracies used fivefold 
cross-validation.
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(11)Sample Rate = {25.0, 12.5, 8.3, 5.0, 2.5, 1.6, 1.0, 0.5}

(12)m = {1, 2, 3, 5, 10, 15, 25, 50}

(13)Sequence Length = {1, 3, 5, 10, 15, 30, 50, 75, 100}

Experimental Setup

We evaluated the approaches using the well-established 
KTH dataset [8]. This dataset contains short video clips 
of 6 distinct actions: Walking, Jogging, Running, Boxing, 
Clapping and Waving. For each activity there are 25 sets of 
videos each containing a different individual. Each video 
set contains 4 videos, each with a different background: 
outdoor, outdoor with a different scale, outdoor with dif-
ferent clothes and indoor. This results in a total of 600 
video clips, with an average length of 4 s, recorded at a 
rate of 25 fps. The videos have a resolution of 160 × 120 
pixels. Figure 2 shows example frames from the dataset.

For each combination of sample rate and sequence 
length, a set of keypoint changes was taken from each 
video starting from the middle and working outwards, with 
an equal number of frames sampled before and after the 
midpoint as shown in Fig. 3. In this way, we ensure that all 
feature vectors contain the peak of the activity sequence 
and thus can evaluate the impact of changing the sam-
ple rate and sample size across an activity. These feature 
vectors were then used to train the six machine learning 

Boxing Clapping

Waving Walking

Jogging Running

Fig. 2  Example frames of the six activities in the KTH dataset

Fig. 3  Sampling strategy for the dataset
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models for each experimental setup to classify the activity. 
Hyperparameter tuning was performed to optimise each 
model using a grid search in order to find the best param-
eters. The values used for the grid search are outlined in 
Table 1.

Accuracy Evaluation

A. Long-term keypoint changes

Results using each of the machine learning methods with 
long-term keypoint changes are presented in Tables 2, 3, 
4, 5, 6, and 7. We can see that with the long-term keypoint 

changes approach, the model accuracy does not necessarily 
improve as the time period is increased. The results indi-
cate these methods are more sensitive to changes in the 
sequence length and the sample rate. The highest accuracy 
achieved for the Random Forest approach was 90.64%. The 
SVC and KNN approaches both performed much worse 
when compared to the XGBoost model. The SVC approach 
fails to achieve an accuracy of > 65% for any configuration 
of sequence length and sample rate. The kNN approach 
achieves an accuracy of over 70% for some configura-
tions; however, a number of combinations fail to achieve 
50% accuracy. The results for the CART, XGBoost and 
MLP classifiers are presented in Tables 14, 15 and 16. It 
can be seen that the CART approach performs inconsist-
ently with the long-term keypoint changes approach. The 

Table 1  Hyperparameters used 
for the grid search

Model Parameter Values

SVC Kernel Radial basis function, Linear, Polynomial
C 1, 10, 100, 1000
Gamma 0.001, 0.0001

KNN Neighbours 5, 7, 9, 11
Distance metric Euclidian, Manhattan, Chebyshev

Decision tree Splitter Best, Random
Max depth None, 5, 10
Criterion Gini, Entropy
Minimum samples per split 2, 5, 7

Random Forest Estimators 10,50,100
Criterion Gini, Entropy
Max depth None, 5, 10
Minimum samples per split 2, 5, 7
Bootstrap True, False

MLP Activation Identity, Logistic, Tanh, Relu
Solver lbfgs, sgd, adam
Learning rate Constant, scaling

XGBoost Min child weight 5, 10
Gamma 1, 1.5, 2
Subsample 0.8, 1.0
Colsamble by tree 0.8, 1.0
Max depth 3, 5

Table 2  Long-term keypoint 
changes accuracy with Random 
Forest

Random Forest
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 64.61% 64.61% 64.61% 64.61% 64.61% 64.61% 64.61% 61.44%
2 68.28% 74.29% 78.79% 82.47% 82.97% 79.47% 64.94% 72.12%
3 82.80% 85.81% 87.31% 87.65% 82.97% 70.44% 80.47% 83.64%
5 88.81% 89.48% 88.82% 85.47% 77.13% 83.31% 85.81% 88.31%

10 89.64% 88.48% 85.97% 81.64% 86.31% 86.14% 88.31% 89.31%
15 88.65% 85.47% 84.14% 86.98% 87.14% 88.98% 90.15% 89.81%
25 85.30% 85.13% 87.31% 87.14% 88.47% 90.64% 89.64% 87.97%
50 85.97% 86.81% 87.47% 89.31% 89.31% 90.15% 87.65% 84.47%
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accuracy was sensitive to sequence length and sample rate 
changes, but generally performed significantly better at the 
lower sample rates and sequence lengths. Finally, the MLP 
approach performed poorly when compared with the other 

approaches, failing to achieve an accuracy of over 70% for 
any combination of sequence length and sample rate.

B. Short-term keypoint changes

Table 3  Long-term keypoint 
changes accuracy with SVC

SVC
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 57.10% 57.10% 57.10% 57.10% 57.10% 57.10% 57.10% 30.06%
2 35.55% 37.40% 42.41% 43.90% 50.43% 50.91% 30.38% 33.72%
3 39.40% 44.59% 49.92% 56.27% 59.94% 34.56% 39.57% 45.74%
5 54.92% 61.77% 64.11% 63.60% 35.55% 41.25% 48.91% 51.25%

10 63.26% 57.76% 64.95% 44.23% 56.09% 61.60% 63.94% 62.94%
15 61.78% 62.77% 47.92% 61.95% 63.77% 60.09% 61.78% 64.28%
25 62.77% 52.42% 60.77% 58.26% 58.60% 64.78% 62.77% 62.10%
50 50.09% 56.42% 61.76% 61.27% 62.61% 64.28% 62.11% 62.77%

Table 4  Long-term keypoint 
changes accuracy with kNN

KNN
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 59.10% 59.10% 59.10% 59.10% 59.10% 59.10% 59.10% 32.06%
2 39.22% 44.06% 52.77% 52.25% 54.09% 54.09% 31.39% 43.74%
3 49.24% 57.93% 58.10% 63.11% 61.26% 32.88% 44.07% 56.76%
5 69.78% 70.61% 63.28% 61.27% 36.39% 48.09% 59.10% 70.95%

10 69.28% 57.26% 66.28% 39.91% 68.11% 75.12% 75.29% 54.77%
15 57.94% 65.45% 50.25% 77.29% 67.12% 46.59% 43.08% 49.60%
25 65.45% 67.95% 55.26% 40.73% 37.07% 43.74% 48.76% 60.44%
50 71.62% 38.73% 33.72% 37.23% 42.58% 49.60% 57.94% 65.45%

Table 5  Long-term keypoint 
changes accuracy with CART 

CART
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 57.43% 57.43% 57.43% 57.43% 57.43% 57.43% 57.43% 49.10%
2 57.10% 59.44% 67.44% 69.11% 69.95% 65.77% 49.58% 55.09%
3 67.61% 73.61% 75.12% 77.13% 74.29% 49.75% 61.76% 67.45%
5 73.46% 75.13% 75.96% 76.31% 55.75% 64.93% 68.95% 70.95%

10 76.12% 75.45% 73.97% 61.10% 63.44% 67.61% 71.45% 78.30%
15 75.45% 76.47% 59.93% 62.77% 70.94% 72.11% 75.29% 75.95%
25 76.98% 57.60% 67.62% 70.29% 72.78% 77.13% 76.30% 75.96%
50 61.45% 67.79% 71.78% 70.62% 75.46% 76.45% 76.46% 75.97%

Table 6  Long-term keypoint 
changes accuracy with XGBoost

XGBoost
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 66.3% 66.3% 66.3% 66.3% 66.3% 66.3% 66.3% 64.6%
2 66.4% 72.1% 77.3% 79.5% 79.8% 76.6% 64.3% 69.8%
3 80.8% 85.5% 85.6% 86.6% 81.1% 69.6% 80.5% 83.0%
5 88.5% 88.0% 87.8% 83.8% 75.8% 82.8% 84.6% 86.8%

10 88.6% 88.0% 83.6% 81.8% 85.1% 85.3% 88.3% 89.3%
15 88.5% 84.5% 83.5% 85.5% 87.3% 88.6% 89.1% 89.5%
25 84.5% 82.8% 85.5% 88.8% 88.1% 88.0% 88.6% 87.5%
50 83.6% 86.8% 87.8% 88.1% 88.8% 89.5% 88.0% 84.6%
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The results for the short-term keypoint changes along 
with the six machine learning approaches are presented in 
Tables 8, 9, 10, 11, 12, and 13. In Table 8, we can see that 
for the Random Forest, the short-term keypoints perform 

slightly better for some of the shorter sequence lengths, but 
generally performs slightly worse overall than the long-
term keypoint approach. The SVC performs worse with 
the short keypoint changes, achieving accuracy of below 
60% for all configurations compared with using long-term 

Table 7  Long-term keypoint 
changes accuracy with MLP

MLP
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 59.93% 55.42% 58.76% 58.42% 58.26% 60.43% 57.92% 30.40%
2 38.40% 39.73% 44.42% 48.75% 51.42% 53.92% 30.88% 33.05%
3 38.74% 47.09% 54.09% 54.60% 58.44% 33.05% 41.24% 43.91%
5 54.27% 60.27% 61.43% 64.28% 32.71% 36.56% 44.56% 47.24%

10 59.26% 57.10% 66.45% 34.06% 45.41% 51.75% 54.09% 59.43%
15 61.61% 66.61% 40.57% 48.24% 48.74% 53.25% 59.27% 64.61%
25 68.11% 42.08% 46.57% 51.59% 54.60% 62.78% 63.11% 61.93%
50 42.42% 47.41% 52.41% 57.93% 60.60% 65.94% 62.28% 67.78%

Table 8  Short-term keypoint 
changes accuracy with Random 
Forest

Random Forest
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 61.44% 62.78% 65.12% 68.44% 72.95% 70.78% 70.78% 70.11%
2 64.94% 67.95% 73.79% 75.30% 77.29% 77.45% 78.62% 78.97%
3 70.44% 77.46% 78.80% 81.80% 82.30% 82.12% 82.64% 81.47%
5 77.13% 81.30% 82.30% 82.63% 82.80% 84.31% 81.97% 80.81%

10 81.64% 82.97% 83.97% 85.30% 84.97% 85.47% 83.64% 80.96%
15 84.14% 86.14% 86.14% 85.47% 85.98% 84.64% 82.64% 80.80%
25 85.13% 84.47% 86.64% 85.97% 86.14% 84.31% 83.14% 79.97%
50 85.64% 85.81% 85.97% 86.47% 84.48% 83.31% 81.80% 80.63%

Table 9  Short-term keypoint 
changes accuracy with SVC

SVC
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 30.06% 32.88% 30.22% 31.38% 27.72% 28.55% 29.22% 29.56%
2 30.38% 29.38% 32.56% 30.89% 31.56% 32.89% 28.73% 35.56%
3 34.56% 34.71% 33.39% 35.88% 32.72% 33.05% 38.40% 40.90%
5 35.55% 33.38% 37.39% 35.39% 36.74% 45.25% 41.91% 44.92%

10 44.23% 47.08% 44.08% 47.92% 44.73% 52.08% 52.59% 44.90%
15 47.92% 51.42% 53.58% 53.42% 56.59% 54.26% 52.42% 44.90%
25 52.42% 56.76% 57.10% 54.75% 57.77% 57.26% 50.09% 45.09%
50 50.26% 54.43% 54.08% 56.60% 56.76% 54.26% 52.42% 44.90%

Table 10  Short-term keypoint 
changes accuracy with kNN

kNN
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 32.06% 33.05% 34.23% 35.72% 34.06% 34.38% 35.90% 33.06%
2 31.39% 32.89% 34.72% 38.57% 40.90% 48.75% 44.07% 30.05%
3 32.88% 39.22% 40.91% 50.58% 61.10% 50.91% 26.21% 22.21%
5 36.39% 38.41% 49.08% 62.44% 48.41% 27.88% 21.20% 21.54%

10 39.91% 60.93% 70.62% 42.90% 24.04% 22.86% 22.37% 22.21%
15 50.25% 74.12% 42.57% 24.87% 23.87% 22.86% 22.37% 22.21%
25 67.95% 39.40% 23.71% 24.54% 23.20% 23.20% 21.20% 21.54%
50 72.46% 26.54% 23.37% 23.87% 23.87% 22.86% 22.37% 22.21%
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keypoint changes. This SVC models find it difficult to clas-
sify short-term keypoint changes into respective activity 
classes. The kNN provides interesting results. As the time 
period increased, the accuracy diminished to below 30% for 
most configurations; however, for some of the configura-
tions, the accuracy was over 74%. The CART and XGBoost 
both performed quite well when compared with the other 
approaches on the short-term keypoint changes. The CART 
performed quite poorly when compared with the long-term 
keypoint changes models, achieving a maximum accuracy 
of 65.93% and there is little consistency to the results. The 
XGBoost approach performed quite similarly to how it 
performed using long-term keypoint changes, albeit with 
a slightly lower accuracy across all configurations. How-
ever, when compared to the other short-term approaches this 
method performed the best. The MLP again performs very 

poorly using the short-term keypoint changes. This method 
achieved accuracies of ≤ 45.92% for all configurations.

C. Combining long- and short-term keypoints

The results for each of the models using a combination of 
both short- and long-term keypoint changes are presented 
in Tables 14, 15, 16, 17, 18, and 19. We can see that the 
Random Forest performs on par with the long- and short-
term approaches individually, achieving high accuracy for 
most configurations. The SVC performs better than when 
using the short- and long-term keypoint changes separately; 
however, the results are still significantly less than the other 
approaches.

Table 11  Short-term keypoint 
changes accuracy with CART 

CART
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 49.10% 49.24% 48.92% 50.93% 56.26% 53.75% 56.76% 54.76%
2 49.58% 48.41% 56.59% 55.09% 56.42% 56.60% 58.60% 60.11%
3 49.75% 55.60% 59.09% 59.59% 57.93% 64.43% 62.60% 59.93%
5 55.75% 59.94% 62.28% 61.76% 59.77% 62.61% 60.45% 62.77%

10 61.10% 59.43% 62.59% 61.43% 63.10% 61.77% 64.94% 58.94%
15 59.93% 63.11% 62.44% 65.93% 63.60% 62.60% 65.77% 58.42%
25 57.60% 61.44% 62.43% 63.94% 64.11% 62.93% 62.94% 63.11%
50 61.45% 63.60% 62.10% 63.44% 63.28% 63.77% 64.94% 59.42%

Table 12  Short-term keypoint 
changes accuracy with XGBoost

XGBoost
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 64.60% 63.60% 66.46% 68.62% 75.47% 73.29% 74.46% 74.13%
2 64.27% 67.95% 72.46% 75.96% 80.13% 80.96% 81.47% 81.31%
3 69.61% 77.46% 78.96% 83.14% 81.96% 84.29% 83.30% 81.47%
5 75.79% 82.81% 82.64% 83.80% 85.65% 84.63% 83.13% 82.47%

10 81.80% 81.97% 82.97% 83.64% 84.47% 86.31% 84.30% 81.46%
15 83.47% 83.64% 83.81% 84.97% 84.64% 86.47% 84.64% 81.13%
25 82.80% 86.64% 85.97% 86.31% 85.47% 84.97% 83.98% 82.31%
50 83.97% 84.64% 85.98% 84.81% 86.47% 84.30% 81.63% 86.14%

Table 13  Short-term keypoint 
changes accuracy with MLP

MLP
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 30.56% 33.56% 34.23% 34.23% 30.88% 30.73% 33.06% 31.21%
2 29.22% 33.72% 33.55% 31.21% 32.39% 34.90% 32.06% 40.23%
3 33.39% 30.20% 29.21% 33.55% 33.39% 35.89% 34.22% 39.06%
5 32.88% 31.39% 37.56% 35.23% 35.56% 39.73% 33.06% 32.22%

10 36.38% 40.24% 35.73% 38.73% 36.88% 35.38% 33.39% 36.56%
15 39.73% 39.40% 40.07% 40.24% 37.72% 36.55% 34.56% 38.23%
25 40.24% 40.40% 45.41% 42.91% 36.57% 36.73% 34.05% 35.06%
50 40.24% 45.92% 43.74% 42.57% 40.73% 34.89% 35.05% 36.56%
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The kNN performed similarly as to when it was applied 
using the short-term keypoint changes, where the accuracy 
was quite low when the time period increased. The results 
for the CART are presented in Table 17. We can see that 
CART achieved reasonable accuracy when compared with 

the other approaches; however, there was no major improve-
ment over the use of individual short-term or long-term key-
point changes. The results for the XGBoost are presented in 
Table 18 where we can see the combined keypoint changes 
performed well with a maximum accuracy of 89.98%. 

Table 14  Combined short- and 
long-term keypoint changes 
accuracy with Random Forest

Random Forest
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 62.61% 64.28% 70.11% 77.13% 81.80% 84.30% 85.47% 86.64%
2 64.95% 72.62% 80.30% 83.81% 86.31% 86.47% 86.31% 87.31%
3 68.95% 76.46% 83.30% 86.47% 86.98% 86.97% 87.14% 86.97%
5 74.12% 82.97% 87.30% 87.64% 87.47% 88.14% 88.64% 88.64%

10 82.30% 86.47% 88.31% 89.98% 88.48% 89.32% 90.31% 89.81%
15 85.64% 88.81% 88.64% 90.48% 89.15% 89.81% 89.14% 89.65%
25 84.81% 87.98% 89.15% 89.14% 89.32% 89.32% 87.98% 88.48%
50 81.14% 84.80% 86.31% 85.81% 86.64% 86.64% 84.64% 85.31%

Table 15  Combined short- and 
long-term keypoint changes 
accuracy with SVC

SVC
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 29.89% 29.88% 33.56% 35.39% 40.23% 45.91% 51.58% 55.10%
2 35.39% 33.05% 43.23% 43.07% 53.09% 52.09% 60.27% 60.76%
3 31.88% 35.22% 46.24% 46.74% 59.44% 57.43% 61.77% 62.59%
5 32.89% 38.40% 48.08% 51.60% 59.76% 61.27% 58.59% 62.76%

10 34.90% 40.58% 50.75% 57.76% 55.76% 60.10% 63.78% 61.27%
15 35.73% 43.74% 52.93% 62.60% 57.77% 59.78% 59.10% 59.44%
25 39.41% 46.09% 56.43% 53.43% 57.77% 57.77% 58.77% 57.77%
50 44.91% 54.92% 57.60% 59.44% 58.43% 58.43% 59.78% 58.43%

Table 16  Combined short- and 
long-term keypoint changes 
accuracy with kNN

kNN
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 32.06% 31.39% 32.88% 36.39% 39.91% 50.25% 67.95% 71.96%
2 34.88% 36.73% 42.56% 41.24% 64.94% 76.96% 47.91% 31.88%
3 36.23% 39.40% 47.59% 54.76% 76.96% 55.27% 30.71% 27.71%
5 40.73% 44.24% 60.93% 69.28% 65.11% 33.89% 28.38% 28.88%

10 45.74% 54.43% 71.28% 72.95% 35.40% 32.22% 32.39% 32.06%
15 53.93% 61.78% 72.12% 56.10% 34.57% 33.90% 35.73% 33.90%
25 50.92% 64.94% 48.26% 39.57% 38.40% 38.40% 38.40% 38.40%
50 52.75% 51.60% 51.42% 56.26% 57.60% 57.60% 56.26% 57.60%

Table 17  Combined short- and 
long-term keypoint changes 
accuracy with CART 

CART
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 49.26% 49.58% 50.25% 56.59% 60.93% 60.27% 59.26% 62.45%
2 50.77% 54.25% 61.11% 65.77% 64.44% 66.11% 65.45% 65.78%
3 53.43% 58.10% 66.12% 67.45% 64.78% 69.95% 67.29% 70.62%
5 60.94% 67.11% 69.61% 71.78% 70.61% 73.12% 71.28% 71.45%

10 68.27% 71.61% 73.46% 74.79% 76.79% 75.12% 77.46% 74.96%
15 68.28% 75.11% 74.11% 74.96% 75.62% 74.45% 76.46% 74.61%
25 72.63% 76.13% 76.29% 74.12% 75.62% 75.12% 74.62% 75.95%
50 68.11% 71.79% 71.95% 76.46% 71.95% 71.79% 74.96% 72.29%
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Finally, the results for the MLP are presented in Table 19. 
We can see that this approach performed poorer than the 
other ML models.

Runtime Evaluation

In Ref. [3], we computed the computation time of the com-
bined approach using the Weizmann dataset which con-
sists of 5701 frames. Experiments were conducted on an 
Intel XeonE5-1620 PC running Ubuntu version 18.04.3. 
The GPU used was a Nvidia Titan Xp with 16 GB RAM. 
This is consistent with other approaches such as Cama-
rena et al. [17] who also used GPU accelerated hardware 
when testing the runtime of their approach. The time taken 
for the OpenPose library to compute the keypoints for the 
entire dataset was 227.3 s. This is a rate of 39.8 ms per 
frame and represents the most significant bottleneck of 
this approach. The time taken to compute the set of key-
point changes for the entire dataset is 1.7 s, approximately, 
0.3 ms per frame. We found that the MLP algorithm took 
1 s to classify the activities for the test set, which con-
sisted of 701 frames. Therefore, classification is performed 
at a rate of 1.39 ms. The average computation time for 
the entire pipeline is 41.5 ms per frame, 24.0 frames per 
second. The runtime for the KTH dataset was also calcu-
lated and found to be the same. Hence, the approach is fast 
enough to perform activity recognition in real time.

Table 20 presents comparative results for the proposed 
approach and other state-of-the-art approaches using the 
KTH dataset. Table 7 shows that the approach of Wang et al. 
[23] achieves an accuracy of 95.7%. While this is higher 
than the proposed approach, the computational cost of this 
method prevents it from running in real time. We also com-
pare our approach with that in Reid et al. [24] who used a 
reduced sample rate and sample size to achieve real-time 
performance using body keypoints, with the results demon-
strating that the proposed approach performs better.

Conclusion

We have presented a number of experiments for human 
activity recognition based on calculating the keypoints 
changes (Euclidean distance and angle). We have also inves-
tigated how adjusting the number of samples, and the sample 
rate can affect the accuracy obtained when training a number 
of machine learning models for activity recognition. Further, 

Table 18  Combined short- and 
long-term keypoint changes 
accuracy with XGBoost

XGBoost
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 64.77% 64.60% 69.61% 76.96% 81.97% 83.47% 83.97% 82.81%
2 64.26% 70.11% 79.80% 83.30% 84.81% 85.14% 85.31% 85.98%
3 66.78% 73.79% 83.64% 85.47% 84.97% 86.32% 86.98% 86.48%
5 73.11% 81.47% 86.30% 87.97% 87.31% 88.98% 87.98% 88.48%

10 80.80% 86.48% 86.97% 87.47% 89.31% 89.48% 88.64% 89.15%
15 83.63% 88.14% 88.64% 89.98% 89.48% 89.31% 88.64% 89.65%
25 84.97% 87.31% 87.15% 88.15% 87.81% 87.98% 88.48% 87.98%
50 80.31% 83.81% 85.98% 86.48% 84.81% 86.31% 86.48% 85.81%

Table 19  Combined short- and 
long-term keypoint changes 
accuracy with MLP

MLP
Sequence length

3 5 10 15 30 50 75 100

Sample 
rate

1 32.06% 33.55% 33.72% 32.73% 34.90% 39.57% 41.40% 42.24%
2 33.05% 33.39% 37.39% 37.90% 43.57% 44.57% 45.75% 51.58%
3 33.39% 35.72% 41.40% 41.57% 44.24% 48.91% 52.10% 55.58%
5 32.88% 35.90% 41.22% 44.41% 51.09% 55.93% 50.58% 59.43%

10 35.06% 44.91% 47.92% 47.74% 52.59% 54.76% 57.60% 59.09%
15 39.73% 48.08% 47.41% 50.58% 57.76% 55.09% 59.61% 58.59%
25 45.08% 44.74% 50.24% 54.59% 58.60% 57.77% 61.27% 59.77%
50 47.07% 50.42% 53.42% 57.09% 60.10% 58.43% 58.61% 59.26%

Table 20  Comparison of approaches on the KTH dataset

Performance evaluation using the KTH dataset

Approach Accuracy (%) Speed/FPS

[23] 95.7 3
[24] 90.20 24
Keypoint changes 90.48 24
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we have conducted runtime experiments and shown that this 
method is sufficiently fast for real-time applications. In the 
future work, we will investigate how this approach performs 
for multi-person activity recognition and adapt this approach 
for more complex activities and scenes.

Data availability Data used for this article can be obtained through 
implementation of the methods using the open source datasets and 
methods decribed.
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