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Abstract
We present SLUG, a recent method that uses genetic algorithms as a wrapper for genetic programming and performs feature 
selection while inducing models. SLUG was shown to be successful on different types of classification tasks, achieving state-
of-the-art results on the synthetic datasets produced by GAMETES, a tool for embedding epistatic gene–gene interactions 
into noisy datasets. SLUG has also been studied and modified to demonstrate that its two elements, wrapper and learner, are 
the right combination that grants it success. We report these results and test SLUG on an additional six GAMETES datasets 
of increased difficulty, for a total of four regular and 16 epistatic datasets. Despite its slowness, SLUG achieves the best 
results and solves all but the most difficult classification tasks. We perform further explorations of its inner dynamics and 
discover how to improve the feature selection by enriching the communication between wrapper and learner, thus taking the 
first step toward a new and more powerful SLUG.

Keywords  Feature selection · Epistasis · Genetic programming · Genetic algorithms · Wrapper · Learner · Machine 
learning

Introduction

Epistasis can generally be defined as the interaction between 
genes, and it is a topic of interest in molecular and quantita-
tive genetics [1]. In machine learning (ML), several types 
of epistatic interactions have been studied. In evolutionary 
computation, epistasis has traditionally been interpreted as 
the interaction between characters, sets of characters or, 
generally speaking, parts of the chromosome representing 
solutions. This type of epistatic interaction has attracted the 
interest of researchers mainly because of its effect on fitness 
landscapes and, consequently, problem hardness. The topic 
has been studied since the early 90s (see, for instance, [2, 
3]), and one of the most popular outcomes of those studies 
was the NK-landscapes benchmark [4], in which the amount 
of epistasis is tunable by means of two parameters, N and K. 
This benchmark has been used in several circumstances for 
testing the performance of genetic algorithm (GA) variants 
(see for instance [5–10], just to mention a few), and more 
recently, it has also been extended to genetic programming 
(GP) [11].

An in-depth, although not very recent, survey of studies 
of epistasis in GA can be found in [12]; while in [13], the 
effect of epistasis on the performance of GA is critically 
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revised, highlighting the difficulty of GA in optimizing 
epistatic problems. In [14], epistasis was used to select the 
appropriate basis for basis change space transformations 
in GA, and in the same year [15] proposed a method to 
decipher the exact combinations of genes that trigger the 
epistatic effects, focusing on multi-effect and multi-way 
epistasis detection. Recently, a new benchmark was pro-
posed [16] where epistasis-tunable test functions are con-
structed via linear combinations of simple basis functions. 
A different way of interpreting epistasis in ML is by study-
ing the interactions between features in data. The problem 
of attribute interdependency is well known in ML. It has 
been studied in several approaches, using, for instance sev-
eral types of correlation [17] or mutual information [18].

In this paper, we tackle a rather different type of prob-
lem: we want to be able to deal with datasets where, 
among many variables, only a very limited number of 
them are useful and able to explain the target, and they 
must necessarily and only be used together for the model 
to be accurate. In other words, all the few “important” 
variables must be selected, while the many “confounding” 
ones must be left out. If only one (or more) of the “impor-
tant” variables are left out, then the model is not able to 
perform better than a simple random guest. Furthermore, 
these few important variables are not necessarily corre-
lated between each other, or have any other relationship of 
interdependency. This type of behavior can be observed, 
for instance, in some of the Korn’s benchmark problems 
proposed in [19], or in some medical problems, where 
finding epistasis can be crucial to identify the association 
between disease and genetic variants, and consequently be 
able to develop medical treatments and prevention [20]. It 
is a common intuition that, for problems characterized by 
such a typology of data, feature selection plays a crucial 
role. However, many of the existing feature selection algo-
rithms will fail, for not being able to catch the epistatic 
relation between features. The objective of this work is 
to present a feature selection strategy that, integrated in a 
very natural way with the modeling algorithm, is appropri-
ate for working with epistatic datasets.

The epistatic datasets studied in this paper have been 
generated using the GAMETES algorithm, introduced in 
[21], and have already been used in [22] as a benchmark to 
validate the M4GP classification method. Similar types of 
datasets have also been studied in [23], where a GP-based 
pipeline optimization tool (TPOT-MDR) was proposed to 
automatically design ML pipelines for bioinformatics prob-
lems. For tackling problems characterized by this type of 
data, Urbanowicz and colleagues recently presented RelieF-
based feature selection [24], a unique family of filter-style 
feature selection algorithms that are sensitive to feature 
interactions and that can be applied to various types of prob-
lems, including classification and regression. In [22], this 

method has been coupled with M4GP, achieving state-of-
the-art results on the tested GAMETES datasets.

Our proposal consists of using a GA for feature selection. 
The idea, presented for instance in [25–27], is framed in a 
well-established research track, and surveys can be found in 
[28, 29]. With the proliferation of data and the consequent 
development of ML, the use of GA for feature selection 
increased in the last decade. Numerous recent contributions 
can be found, for instance, aimed at improving the method 
in presence of vast amounts of data [30, 31], or applying 
the method in several different real-world scenarios, includ-
ing medicine [32], economy [33], image processing [34], 
remote sensing [35] and sociology [36], just to mention a 
few. However, in this work, we match the GA with another 
evolutionary algorithm, Genetic Programming (GP), obtain-
ing an integrated, and purely evolutionary, method that is 
able to perform feature selection and at the same time induce 
good models using the selected features. The GA part acts 
as a wrapper to the GP part, that is the learner. We call our 
approach SLUG (which stands for feature SeLection Using 
Genetic algorithms and genetic programming), and com-
pare it to both standard GP and other GP-based algorithms 
already used on the GAMETES datasets, such as M3GP [37] 
and M4GP [22]; we also compare it with other GA-wrapped 
ML classifiers that also perform feature selection, such as 
decision trees, random forests, and XGBoost.

Although substantially different from SLUG, some 
related methodologies have been studied in the past. In 
[38], the opposite of SLUG was proposed, a methodology 
where GP was used for feature selection and GA for feature 
construction. In [39], GP is wrapped around GP itself with 
the objective of reducing the dimensionality of a dataset 
with one million features while also making use of GPU 
hardware to speed up the computation. In [40], the authors 
proposed a competitive and cooperative coevolutionary 
approach (Symbiotic Bid-Based GP) to perform both attrib-
ute subspace identification and classifier design at the same 
time. This approach was able to reduce the total attribute 
space from hundreds of thousands to no more than seventy 
features, while the classifiers themselves only used five to 
seven features. In [41], the authors proposed Cooperative 
Co-Evolutionary Genetic Programming, a new framework 
for high-dimensional problems. The proposed framework 
performs co-evolution at three different levels (genotype, 
feature, output) and the results showed that performance 
improves only when the output level cooperation happens.

Prior research had focused on the selection of features in 
high-dimensional datasets, and a notable example of a reli-
able benchmark is the feature selection challenge presented 
at the Neural Information Processing Systems (NEURIPS) 
conference in 2003 [42]. The aforementioned challenge 
evaluated the efficacy of various model combinations from 
multiple teams on five UCI datasets with different levels 
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of dimensionality, ranging from 500 to 100,000 features. 
Besides establishing robust baselines on what models and 
feature combinations are better suited for this task, which 
provided interesting insights for future research, it was pos-
sible to conclude that sometimes eliminating extraneous 
features is not critical to achieving a good classification 
performance, with some of the solutions using all the avail-
able features.

Our proposal also consists of using GP for further fea-
ture selection and for classification. Similar to the work of 
several authors that use GP-based methods for classification 
in high-dimensional data, such as eGP [43], M3GP [44], 
M4GP [22], GP-SVI [35] and the standard GP itself [39, 
45–47], SLUG [48] also showed promising results in this 
type of problem.

SLUG was first introduced in [48], where it has shown 
to be successful on different types of classification tasks, 
achieving state-of-the-art results on several GAMETES 
datasets. It has also demonstrated that the GA as wrapper 
and GP as learner are the right elements that grant SLUG its 
success. In this paper, we extend that initial work, by report-
ing the previous results and testing the original SLUG on six 
further GAMETES datasets of increased difficulty. Also, we 
study and discuss the inner dynamics of SLUG and describe 
a simple and promising improvement to its feature selection 
process, proposing an enriched combination of wrapper and 
learner for a future and more powerful SLUG. The following 
are the main contributions of the current work:

•	 We demonstrate the effectiveness of SLUG on six addi-
tional GAMETES datasets of increased difficulty, show-
ing the applicability of the method on a wider range of 
epistatic problems;

•	 We conduct a comprehensive analysis of the inner work-
ings of SLUG, also proposing an enriched combination 
of wrapper and learner that is expected to improve the 
performance of SLUG on high-dimensional datasets.

SLUG

The proposed method, feature SeLection Using Genetic 
algorithms and genetic programming (SLUG), uses a coop-
erative approach that joins these two evolutionary algo-
rithms. Each GA individual is represented using a binary 
chromosome of the same length as the total number of fea-
tures in the original dataset. This chromosome encodes a 
selection of features, where an allele equal to 1 means that 
the corresponding feature is used, while an allele equal to 0 
means that the corresponding feature is not used. The quality 
of each GA individual is assessed by running GP with the 
features selected by that GA individual. More specifically, 
the fitness of the GA individual corresponds to the fitness of 

the best GP individual at the end of this GP run. A graphical 
representation of the SLUG pipeline is shown in Fig. 1, with 
the evaluation of the individuals being detailed in Fig. 2. As 
it is customary, once the GA individuals have been evalu-
ated, a new GA population is formed by applying selection 
and the genetic operators, and after a number of generations 
the GA terminates and returns both the chromosome with 
the best selected features and the GP model that achieved the 
best results using only those features as input data (Fig. 1). 
Finally, the best GP model is evaluated on the test dataset 
using the features selected by the GA.

Naturally, the GP model does not have to use all the 
GA-selected features, since GP also performs its own fea-
ture selection during its evolution. In fact, this is one of 
the strengths of SLUG for epistatic datasets. The number of 
informative features on the GAMETES datasets is so low 
that not even a method like GP, which has feature selection 
abilities, can isolate them from the numerous other ones. 
So, in SLUG the GA only has the task of reducing the num-
ber of features that GP can potentially use, so its task is 
facilitated. In other words, the strength of SLUG is that the 
feature selection step performed by the GA does not need 
to be accurate: as long as the right features are among a 
reasonable number of selected ones, GP can do the rest of 
the job. We may think of the feature selection process of 
SLUG as composed of two phases: a sort of “preselection” 
(or explicit feature selection) performed by the GA in a pre-
processing phase (where hopefully all the informative fea-
tures are maintained, but many of the non-informative ones 
are eliminated), and the final feature selection (or implicit 
feature selection) performed by GP at learning time, whose 

Dataset

Train data Test data

StartNew GA population

Stop? End

Selected features

Evaluate individuals

Select parents

Apply genetic operators

GP model

Evaluation

Fig. 1   A graphical representation of the SLUG pipeline
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objective is to keep all and only the informative features in 
the final model.

The main limitation of SLUG, promptly identified in [48], 
is its high computational cost, caused by the obvious fact 
that an entire GP run is needed for evaluating each GA indi-
vidual. Some alternatives are discussed in Sect. “Wrappers 
and Learners”. Given that the goal is not, and never was, 
to obtain the best possible model, but rather to identify the 
epistatic features, one way to reduce the running time could 
be to accelerate the convergence and stop the evolution once 
they are found. Recognizing the moment in which the key 
features are found has prompted an exploration of the evo-
lutionary dynamics of SLUG, described in Section “Accu-
racy and Key Features”, which ultimately uncovered another 
limitation: once the key features are found by GP, they 
may be lost because the GA is not informed of which GP-
selected features were responsible for the reported fitness. 
Section “Feature Selection Pressure” proposes a possible 
solution for this problem.

Data

We test the SLUG method on two distinct sets of problems: 
regular and epistatic. For the first set, we use four stand-
ard binary classification problems: HRT (Heart) [49]; ION 
(Ionosphere) [49], PRK (Parkinsons) [49] and SON (Sonar) 
[50]. Details regarding the composition of these datasets can 
be found in Table 1.

For the second set, we use GAMETES datasets, which 
are a collection of simulated gene–disease association data-
sets produced by a tool for embedding epistatic gene–gene 
interactions into noisy genetic datasets [51]. GAMETES 
generates random, pure, strict n-locus models, and respec-
tive simulated datasets for these models. According to [51], 
an n-locus model is purely and strictly epistatic if all n loci, 
but no fewer, are predictive of disease status.

We use 16 different problems that vary according to three 
measures of difficulty: number of epistatic loci (2, 3), which 

represent the key genes/features that solve the problem (the 
higher the number, the harder the problem); number of fea-
tures (10, 100, 1000) with binary values 0 or 1 (the higher 
the number of features, the more difficult it is to find the few 
essential ones); signal-to-noise ratio (0.05, 0.1, 0.2, 0.4), 
which refers to the degree of separation between the true 
signal and the noise (the higher the signal-to-noise ratio, 
the easiest it is to locate the key epistatic features). Each 
problem consists of a perfectly balanced binary classification 
task where a two-way or three-way epistatic interaction (2 or 
3 loci) is present but is masked by the presence of confound-
ing features and noise, and the label predicts the presence or 
absence of the disease.

Due to computational and time constraints, we did not 
perform experiments on all the possible combinations of 
number of features and signal-to-noise ratio. We selected 
ten two-way (2w) datasets and six three-way (3w) datasets, 
and named them (joining the information on features and 
ratio): 2w_10_005 , 2w_10_01 , 2w_10_02 and 2w_10_04 ; 
2w_100_005 , 2w_100_01 , 2w_100_02 and 2w_100_04 ; 
2w_1000_02 and 2w_1000_04 ; 3w_10_01 and 3w_10_02 ; 
3w_100_01 and 3w_100_02 ; 3w_1000_01 and 3w_1000_02.

The main advantage of the GAMETES data when com-
pared with the NEURIPS data mentioned earlier [42] is that 
it offers a controlled experimental environment, allowing for 
the manipulation of the measures previously mentioned to 
assess the limits of each model. In contrast, the NEURIPS 
data comprise varied and uncorrelated datasets. Nonethe-
less, we believe that conducting additional research evalu-
ating the models explored in this study on datasets like the 

Fig. 2   Illustration of the way the 
GA individuals are evaluated 
by running GP with only the 
selected features. The best fit-
ness of the GP run is the fitness 
of the respective GA individual
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Table 1   Number of features, observations, and negative/positive ratio 
on each dataset

Datasets HRT ION PRK SON

Features 13 33 23 61
Observations 270 351 195 208
Neg/Pos Ratio 45/55 65/35 75/25 46/54
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ones utilized in the NEURIPS challenge could offer valuable 
insights and further strengthen our claims.

Methods

Besides standard GA and standard GP, which are part of the 
SLUG method, we also compare our results with the follow-
ing GP-based methods:

M3GP: M3GP stands for multidimensional multiclass 
GP with multidimensional populations [37]. Originally 
designed for multiclass classification, in M3GP each indi-
vidual is composed of a mutable number of trees, also called 
dimensions, from which we extract a set of hyper-features 
that are then given to a classifier. Along with the standard 
crossover and mutation operators, M3GP includes an addi-
tional crossover, which swaps dimensions between individu-
als, and two additional mutations, which add/remove dimen-
sions to/from an individual. The fitness of each individual 
is calculated by running a classifier on the hyper-feature 
space created by the trees of the individual. On the original 
implementation of M3GP, this is by default the Mahalanobis 
distance classifier.

M4GP: While the M3GP uses a tree-based structure 
for the individuals, M4GP, the successor of M3GP, uses a 
stack-based structure, which naturally provides support for 
multiple outputs. Regarding genetic operators, M4GP uses 
stack-based operators that are equivalent to the ones used by 
M3GP. For selection, M4GP uses lexicase selection, which 
outperformed standard tournament selection, and age-fitness 
Pareto survival selection in experiments [22].

M4GP+EKF: Expert knowledge filter (EFK) is a pre-
processing feature selection algorithm from the RelieF fam-
ily [52]. In M4GP+EKF it is used to reduce the dataset to 
the top ten features before giving it to the M4GP algorithm 
[22]. Since EKF is applied only as a preprocessing opera-
tion, it causes only some residual overhead and does not 
affect the training time. From now on, we will call this vari-
ant M4GP-E.

As part of the discussion, we also present some results 
obtained by replacing the GP part of SLUG with other ML 
methods, namely, decision trees (DT), random forests (RF), 
and extreme gradient boosting, better known as XGBoost 
(XGB). It should be noted that the DT, standard GP, M3GP 
and M4GP methods perform implicit feature selection by 
evolving models that do not use all available features. We 
can say the same about the RF and XGBoost models. How-
ever, due to the ensemble characteristic of the algorithms, 
more features are selected, mitigating their feature selection 
capabilities. As such, the principal feature selectors in this 
work are the GA part of the SLUG variants and the EFK part 
of the M4GP-E algorithm.

Experimental Setup

We run SLUG for 50 generations of the GA, using a popula-
tion of 100 individuals. The GP populations also have 100 
individuals, but they evolve for only 30 generations, which 
our initial experiments revealed to be sufficient to evaluate 
the quality of the selected features. GP uses the traditional 
binary arithmetic operators [+,−, ∕, ∗] and no random con-
stants. Fitness is the overall accuracy in the training set, 
measured after transforming the real-valued outputs of GP 
into class labels. The best fitness of each GP run is passed 
to the GA as the fitness of each individual, as explained in 
Sect. “SLUG”, and therefore the GA (and therefore SLUG) 
also uses the overall accuracy as fitness (as do all the other 
GP and non-GP methods used here). Both GA and GP select 
the parents of the next generation using tournaments of size 
5. Regarding the genetic operators, GP uses the standard 
subtree crossover and mutation with 50% probability each. 
GA also uses standard crossover that swaps same-sized 
blocks between 2 chromosomes with probability of 70% , 
and standard mutation that performs bit-flip on the chromo-
some with probability of 1/n (where n is the population size) 
and each bit has probability of 1/m of being flipped (where 
m is the length of the chromosome, i.e., the number of fea-
tures of the problem). Both GA and GP use some elitism: 
GP guarantees that the best individual of one generation 
survives into the next; GA does not guarantee the survival 
of the best chromosome from one generation to the next, 
to avoid diversity loss, but it keeps track and returns the 
best chromosome (and respective GP model) that was ever 
achieved during the entire run.

Standard GP, M3GP, and both M4GP variants all use pop-
ulations of 500 individuals evolving for 100 generations and, 
like SLUG, they all use tournaments of size 5. For more spe-
cific details on the M3GP and M4GP implementations and 
settings, the reader should consult Sect. “Methods” and the 
papers cited therein. The implementation of the GP methods 
will be available for download once the paper is accepted. 
The STGP, M3GP, M4GP, and SLUG implementations we 
use in this work can be found here.1 Regarding the methods 
DT, RF, and XGB mentioned in the discussion, we use the 
implementations provided by Scikit-learn [53]. We perform 
hyperparameter optimization by means of grid search with 
fivefold cross-validation on the entire dataset, for each of 
the three methods. For DT, we optimize the split criterion 
and maximum depth; for RF, we optimize the split criterion, 
number of estimators, and maximum depth; for XGB, we 
optimize the learning rate, maximum depth, and number of 

1  https://​github.​com/​jespb/​Python-​STGP, https://​github.​com/​jespb/​
Python-​M3GP, https://​github.​com/​caval​ab/​m4gp-​gamet​es and https://​
github.​com/​NMVRo​drigu​es/​SLUG.

https://github.com/jespb/Python-STGP
https://github.com/jespb/Python-M3GP
https://github.com/jespb/Python-M3GP
https://github.com/cavalab/m4gp-gametes
https://github.com/NMVRodrigues/SLUG
https://github.com/NMVRodrigues/SLUG
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estimators. The GA runs with the exact same parameters as 
SLUG. In all cases, we randomly split the datasets 30 times, 
one for each run, in 70% training and 30% test.

Results

We measure the overall accuracy of the methods and present 
the results as boxplots (training and test) of the 30 runs and 
tables with the (test) medians. To assess the statistical sig-
nificance of the results, we perform one-way non-paramet-
ric ANOVA analysis by means of pairwise Kruskal–Wallis 

with Holm correction, using 0.05 as the significance thresh-
old. The Appendix contains the Holm-corrected p-values 
obtained in all the comparisons.

Regular Classification Tasks

Taking into consideration the results presented in Table 2, 
Fig. 3, and Appendix Table 5, we can see that our approach 
performs well, on par with the other GP methods such as 
M3GP and M4GP. Compared to the baseline of standard 
GP, SLUG performs better on both HRT and PRK datasets, 
and presents no significant differences on the remaining two. 
Regarding the M3GP and M4GP baselines, the results are 
also positive, with SLUG outperforming both methods on 
one problem, presenting no significant difference on two 
others, and being outperformed in the remaining problem. 
Lastly, regarding M4GP-E, this method outperforms SLUG 
in one problem, and no significant difference was found 
between them in the remaining problems. Finally, we could 
not help but notice one thing that appears to be different 
between SLUG and most other methods, that is the consist-
ently low dispersion of the results on training (observable 
in Fig. 3).

Table 2   Median test overall accuracy of each method on the non-
GAMETES binary classification tasks. Best results for each problem 
are identified in bold. Results with no statistically significant differ-
ence from the best are also highlighted in bold

HRT PRK ION SON

GP 0.778 0.831 0.858 0.698
M3GP 0.790 0.881 0.873 0.786
M4GP 0.784 0.864 0.868 0.762
M4GP-E 0.802 0.873 0.854 0.738
SLUG 0.827 0.864 0.877 0.730

Fig. 3   Performance on the non-GAMETES binary classification datasets. Each plot contains, for each method, the results on the training (left) 
and test (right) sets



SN Computer Science            (2024) 5:91 	 Page 7 of 17     91 

SN Computer Science

GAMETES Classification Tasks

Starting with the two-way epistatic datasets, taking into 
consideration the results presented in Table 3, Fig. 4 and 
Appendix Table 6, the first thing to notice is the fact that 
the standard GP baseline was one of the best methods on 
the 10-feature GAMETES problems. It outperformed both 
M4GP and M4GP-E on the 2w_10_005 dataset, M4GP-E on 
2w_10_01 , and all except SLUG on 2w_10_02.2 We hypoth-
esize that, on these easier problems, the exploration of dif-
ferent dimensional feature spaces that M3GP and M4GP 
perform is not helpful to the search, preventing the exploita-
tion of better solutions.

Regarding our approach, the results were again highly 
positive, with SLUG invariably being one of the top-per-
forming methods in all problems. The GA of SLUG is able 
to preselect a set of features which are then further filtered 
by the standard GP populations, also producing a ready-to-
use model to apply to the problem.

On the 2w_1000_04 dataset, SLUG produced results 
significantly worse than M4GP-E. We attribute this to the 
default parameterization of SLUG, which always uses very 
small populations of 100 individuals. Particularly in the GA, 
this is too small to allow a proper exploration of the search 
space on the 1000-feature problems, making it harder for 
SLUG to filter out the redundant features. To confirm this 
hypothesis, we ran SLUG with a larger GA population of 
200 individuals. Although this is the double of the previous 
population size, it is still a very low number of individuals 
for such a large search space (however, further increasing 
the size of the population becomes computationally demand-
ing, an issue that is discussed later). We named this varia-
tion SLUG Large (SLUG-L). As seen on Fig. 5, particularly 
on the 2w_1000_04 dataset, SLUG-L is slightly improved, 
enough to be significantly better than the other solutions, 
and not significantly worse than M4GP-E. Once again we 
notice that SLUG exhibits a lower dispersion of results than 
most other methods (Fig. 4), this time not only on training 
but also on test.

Moving to the three-way epistatic datasets, the results 
presented in Table 4, Fig. 6 and Appendix Table 7 show 
that, once again, SLUG performs better than the other meth-
ods. On the 10-feature problems, it shares the best results 
with both M4GP variants (and with GP on 3w_10_01 ); on 
the 100-feature problems, it is the sole winner, clearly the 
only method performing better than random guess; on the 
1000-feature problems, no method was significantly better 
than the others, all performing as bad as random guess.

Discussion

From the previous results, we can state that SLUG is a pow-
erful method that performs feature selection while inducing 
high-quality models. On the set of four regular problems, it 
was one of the best methods in three of them. On the set of 
ten two-way GAMETES problems, it was always one of the 
best methods, although it required a larger population size 
on one of them. On this one exception, one of the hardest 
problems, the other winner besides SLUG-L was M4GP-E. 
Finally, on the six three-way GAMETES problems, SLUG 
was the only method that always ranked first, although fail-
ing to produce useful models for the 1000-feature problems, 
like all the other methods.

Wrappers and Learners

Published results on M4GP [22] had already shown that 
wrapping a feature selection method around a powerful 
classifier can improve the results significantly, and here we 
confirm that indeed, M4GP-E is often significantly better 
than M4GP. Reminding that SLUG is also the product of 
wrapping a feature selection method (GA) around a powerful 
classifier (GP), our results reconfirm the advantages of such 
an approach, since SLUG is very often significantly better 
than standalone GP.

Naturally, we are interested in searching for the best match 
between wrapper and learner, and we begin by exploring why 
SLUG performs so well; which of its parts is more impor-
tant, the GA wrapper of the GP learner. On the one hand, we 
observe that M4GP is in general a stronger learner than GP; 
on the other hand, M4GP-E is not stronger than SLUG. There-
fore, GA seems to be a better wrapper than the EKF used in 
M4GP-E, and mainly responsible for the success of SLUG.

While the combination of GA with M4GP seems like a 
promising match to explore in the future, for now we try to 
answer a simple question: is GA such a good wrapper that 
it can improve also the performance of other ML methods, 
arguably less powerful than the GP-based ones, like DT, RF, 
and XGB? This question is not only academically interesting, 
but also important from a practical point of view. Two evolu-
tionary algorithms nested in each other is never an efficient 
solution in terms of computational effort, so it is not a surprise 
that SLUG is sluggish. Any of the three other mentioned ML 
methods runs much faster than GP, so wrapping GA around 
any of them could result in a much faster SLUG. Furthermore, 
like GP, these methods can also perform feature selection on 
their own, on top of the preselection made by GA.

Therefore, we experiment with alternative variants of 
SLUG where GP is replaced by DT, RF, and XGB. The 
problem chosen to test these variants is the GAMETES 
2w_1000_04 , coincidentally the one problem where SLUG-L 

2  We performed 30 runs using the same total number of comparisons 
as SLUG using the standard GP (10000 individuals and 1500 gen-
erations). With this, the median test accuracy achieved was 0.4982, 
while the best was 0.5348.
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Fig. 4   Performance on the 
GAMETES two-way datasets. 
Each plot contains, for each 
method, the results on the train-
ing (left) and test (right) sets
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was required because SLUG was not one of the best meth-
ods (see Sect. “Results”). We chose this particular problem 
because it has already been used in previous studies [22, 43] 
where the standalone unwrapped versions of DT, RF, and 
XGB were unable to solve the problem.

The obtained results are shown in Fig. 7 and reveal that, 
even when wrapped with GA, these methods are not able to 
solve the problem, and this means that GP is also essential for 
the success of SLUG. Since the other methods also perform 
feature selection, the reason why GP is essential is not clear, 
particularly after observing that in one of the 30 runs the DT 
method, which is undoubtedly the less powerful one, was able 
to obtain a high-quality model (highest outlier in test, Fig. 7), 
and it did so after only 17 generations.

Accuracy and Key Features

Figure 8 shows the evolution of test accuracy (medians of the 
30 runs) for all the 16 GAMETES problems tested here. The 
names of the problems are on the right, by the same order as 
the respective lines, and the colors, thickness, and markers are 
explained in the caption of the figure. Clearly, the difficulty 
of the problems is mostly driven by the number of epistatic 
loci (two-way problems mostly at the top and three-way at 
the bottom). On the two-way problems the difficulty is also 

driven by the signal-to-noise ratio; while for the three-way 
problems, it is driven by the number of features. As shown 
previously, SLUG achieves state-of-the-art results on most 
of these problems, except on the two 3w_1000 problems, 
the most difficult ones. The reason why SLUG fails on these 
problems is because, unlike on the other problems, it is rarely 
able to find the three key features. This is shown in Fig. 9, 
which plots the distribution of the number of key features 
included in the best GA individual at the end of the run, in the 
30 runs. It can be observed that, whereas for all the two-way 
problems the two key features are always included (with two 
outliers on each of the 1000-feature problems), for the three-
way problems this only happens on the 10-feature problems. 
On the 100-feature problems, the median is still the correct 
number of key features, but on the 1000-feature problems, the 
GA seldom includes all of them. Given this failure, we now 
perform further explorations of how the accuracy evolves with 
generations, and in the next section we discuss why the pres-
sure for feature selection is lower than initially thought, and 
how it could be increased in order to improve SLUG.

Figure  10 shows the evolution of accuracy on two 
1000-feature problems, one where SLUG succeeded 
( 2w_1000_04 ) and one where it failed ( 3w_1000_02 ). The 
lines represent the medians of the 30 runs, while the boxplot-
like representations behind the lines represent the distribu-
tions of the accuracy values in the different runs. On the top 
plot ( 2w_1000_04 , where SLUG succeeded), the lines reveal 
a sharp increase of accuracy once the key features are found. 
The distributions reveal a wide dispersion of results, particu-
larly after the initial generations and until more than half of 
the evolution. This happens mostly because not all runs find 
the key features around the same time in the evolution, which 
means that, in any given generation, some runs have already 
performed the accuracy “jump” while others have not, result-
ing in wildly different accuracy values. This also explains 
why, toward the end of the evolution, when most runs have 
already found the key features, the dispersion decreases.

Another factor that causes dispersion is that, even on 
a single run, there may occur several jumps in accuracy 
because the key features may be found and then lost again. 
And the fact that this may happen (and indeed happens) is 
a symptom of insufficient feature selection pressure, which 

Fig. 5   Performance of different SLUG variants on the two higher 
dimensional GAMETES datasets. Each plot contains, for each vari-
ant, the results on the training (left) and test (right) sets

Table 3   Median test overall 
accuracy of each method on 
the GAMETES two-way tasks. 
Best results for each problem 
are identified in bold. Results 
with no statistically significant 
difference from the best are also 
highlighted in bold

2w_ 10_005 10_01 10_02 10_04 100_005 100_01 100_02 100_04 1000_02 1000_04

GP 0.628 0.682 0.710 0.663 0.521 0.535 0.509 0.510 0.502 0.495
M3GP 0.622 0.677 0.692 0.796 0.513 0.637 0.680 0.537 0.490 0.507
M4GP 0.617 0.675 0.692 0.792 0.561 0.661 0.681 0.759 0.500 0.511
M4GP-E 0.613 0.665 0.699 0.784 0.607 0.672 0.709 0.781 0.692 0.775
SLUG 0.629 0.682 0.710 0.797 0.617 0.681 0.722 0.777 0.720 0.753
SLUG-L - - - - - - - - 0.720 0.757
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may be the cause for the failure of SLUG that is visible on 
the bottom plot ( 3w_1000_02 ) of Fig. 10.

Feature Selection Pressure

It may seem surprising that, once the key features are found, 
they may be lost again. It may also be tempting to think 
that, to avoid this, the GA elitism should guarantee that the 
best individual is never lost from the population. However, 

the problem is not lack of elitism, but rather lack of com-
munication between the GA and the GP. Let us recall that 
the GA informs GP of what features GP can use, and GP 
informs the GA of what fitness (accuracy) was obtained by 
the best model. However, GP never reports to the GA which 
of the allowed features were actually included in the model. 
Therefore, even if elitism is used to always keep the best GA 
individual in the population, this individual does not know 
which of its features are important or not. Each time a new 

Fig. 6   Performance on the 
GAMETES three-way datasets. 
Each plot contains, for each 
method, the results on the train-
ing (left) and test (right) sets

Table 4   Median test overall 
accuracy of each method on the 
GAMETES three-way tasks

Best results for each problem are identified in bold. Results with no statistically significant difference from 
the best are also highlighted in bold

3w_ 10_01 10_02 100_01 100_02 1000_01 1000_02

GP 0.6241 0.6275 0.4950 0.5033 0.5033 0.4966
M3GP 0.6108 0.6450 0.4958 0.5116 0.4966 0.5108
M4GP 0.6425 0.6558 0.4966 0.5066 0.5016 0.5083
M4GP-E 0.6425 0.6425 0.4908 0.5050 0.4983 0.4900
SLUG 0.6375 0.6575 0.5792 0.5550 0.4967 0.4983
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GA individual is evaluated, a new GP run is performed, with 
new random initial models and a final best model that may 
or may not be using the right features. The larger the set of 
features allowed by GA, the higher the probability of GP not 
finding the important ones.

An enriched communication between GP and the GA is 
one of the improvements proposed as future work, in the 
next section. If GP reported back to the GA which subset of 
allowed features it actually used, the GA could use this infor-
mation to further reduce the number of allowed features. 
This would reduce the chances of losing the key features, 
therefore speeding the convergence toward good models. 
Ideally, this increased pressure to reduce the number of fea-
tures would be useful not only to focus on the key features 
but also to obtain the smallest possible models. When ana-
lyzing the high-quality models evolved by the current SLUG 

system, we realize that many of them contain not only the 
key features that grant them success, but also extra features 
that do not seem to bring them any advantage. For example, 
on the 2w_1000_04 problem (where SLUG succeeded), 26 
of the 30 final models contain the two key features, but 23 of 
them also contain some extra features. Although the (nega-
tive) correlation between the number of extra features and 
the accuracy of the model is not high ( −0.38 on training and 
−0.43 on test), maybe it would still be enough to cause a 
further reduction of the number of features at the GA level.

What about the cases in which GP is not able to find the key 
features, like 3w_1000_02 ? In this case, the problem begins 
with the GA, that seldom selects the three key features (see 
Fig. 9), and continues with GP that, in these few cases, is not 
able to find them among the others. What can GP report back 
to GA to inform that it should further reduce the number of fea-
tures? How can GP even know that the reason for not achieving 
good models is too many allowed features, and not too few? 
The correlation between the number of features used by the 
final GP model and its accuracy is practically nonexistent (0.1 

Fig. 7   Performance of different SLUG variants using DT, RF, XGB 
and GP (the original SLUG) on the GAMETES 2w_1000_04 prob-
lem. Each plot contains, for each variant, the results on the training 
(left) and test (right) sets

Fig. 8   Evolution of test accu-
racy on all the GAMETES 
problems. Lines are green/yel-
low/blue for 10/100/1000-fea-
ture problems; lines are thicker 
for higher signal-to-noise ratios; 
lines are dotted for the three-
way problems. The names of the 
problems on the right appear by 
the same order as the lines
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Fig. 9   Boxplot of the number of key features found by the GA at the 
end of the run, for the 30 runs. Two-way problems have two key fea-
tures, while three-way problems have three key features
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on training and 0.25 on test), so the enriched communication 
between GP and the GA would not be helpful. Forcing a blind 
reduction of the number of features at the GA level would be 
a highly biased decision, since we cannot safely assume that a 
reduction is always needed, particularly on non-epistatic prob-
lems. However, when dealing with epistatic problems like the 
ones addressed here, it would certainly help. Other possible 
improvements are mentioned in the next section.

Conclusion and Future Work

We have presented SLUG, a method for feature selection 
using genetic algorithms (GA) and genetic programming 
(GP). SLUG implements a cooperative approach that joins 
these two evolutionary algorithms, where the quality of each 
GA individual is assessed by performing a GP run with the 
features selected by the GA. The GA acts like a wrapper, 
selecting features for GP, the learner. At the end of the pro-
cess, both the set of GA-selected features and the best GP-
induced model are returned, and therefore SLUG comprises 
the entire pipeline from data preprocessing to predictive mod-
eling. No efforts are put into the optimization of the model, as 
this is not the main purpose of the work.

We tested SLUG on four regular binary classification 
datasets and on 16 synthetic datasets produced by GAM-
ETES, a tool for embedding epistatic gene-gene interac-
tions into noisy datasets. We compared the results of SLUG 
with the ones obtained by standard GP and other GP-based 
methods like M3GP and two different M4GP variants, one 

of them also wrapped by the EKF algorithm for feature 
selection. SLUG obtained the best results in practically all 
the problems, with special relevance for the good results 
obtained on the epistatic datasets, whose difficulty was the 
driver for this research in the first place. Although we main-
tained the focus on the GAMETES problems, the six new 
datasets represent a new level of difficulty (finding three key 
features, instead of two) that, to the best of our knowledge, 
had not yet been subject to comparative studies. Although 
most of the new results did not show statistically significant 
differences between the methods used, the few significant 
differences revealed an interesting finding: all the methods 
solve the 10-feature problems; none of the methods solves 
the 1000-feature problems; only SLUG was able to solve the 
100-feature problems.

We discussed the merits and weaknesses of SLUG and the 
parts that compose it. Its slowness is its obvious limitation, 
as it requires considerable computational effort to run two 
nested evolutionary algorithms. We experimented with alter-
native implementations, replacing the GP backbone of SLUG 
with faster methods like decision trees, random forests and 
XGBoost, all wrapped with GA for feature selection. However, 
even with tuned parameters, none of them was able to catch 
up with SLUG.

From the above, we conclude that SLUG is a powerful 
method that performs feature selection while inducing high-
quality models, even without putting any effort into model 
optimization. In the future, we intend to address the main lim-
itation of SLUG, by reducing its computational demands and 

Fig. 10   Evolution of accu-
racy on the 2w_1000_04 and 
3w_1000_02 problems. The 
lines represent medians of the 
30 runs, training (black) and 
test (red); the lighter boxplots 
behind them represent the 
respective distribution of accu-
racy values
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therefore making it less sluggish. Many other improvements 
and extensions are possible, like the ones described below.

One possible approach to improve SLUG is by following 
the approach described in [39] regarding the optimal size of 
a population. The size of the SLUG populations could be 
adapted to a calculated number of individuals that can cover 
all the available features. This would avoid unnecessary com-
putational expense by having smaller populations for low 
dimensional datasets, and would increase the success rate in 
high dimensional datasets by improving the coverage rate on 
the first generation. This is a promising approach, particularly 
because we know that increasing the GA population size has 
previously improved the performance of SLUG on the two-way 
1000-feature problems [48]. We can hypothesize that increas-
ing the population size may be all that is needed for SLUG to 
succeed also on the three-way 1000-feature problems.

Regarding other possible improvements, the backbone of 
SLUG is currently standard GP, which is not appropriate for 
multiclass classification. However, it can be replaced by other 
methods. The ones we tried did not produce good models, 
however other options exist, including M3GP and M4GP 
themselves, which are some of the best GP-based multiclass 
classification methods available today. Replacing GP with 
M3GP would give us the added flexibility of being allowed 
to plug any learning algorithm to the pipeline to work with 
the hyper-features evolved by M3GP. Instead of GA+GP, we 
would have a GA+M3GP+classifier pipeline, where GA pre-
selects the features, M3GP uses them to build hyper-features 
tailored to classifier, and classifier finally induces an opti-
mized predictive model, with the added advantage that the 
classifier can be whatever method best suits the needs of the 
domain application. Naturally, the same rationale can be used 
for regression instead of classification.

Regarding the improvement of the wrapper, the main 
issue with GA is, and has always been, the delicate balance 

between exploration and exploitation, here with an intense 
concern regarding computational demands. On the one 
hand, we want to make GA converge faster to a good subset 
of selected features, also to save computational effort; on 
the other hand, it must be able to properly explore the search 
space, particularly on the most difficult higher dimensional 
problems, but without requiring large populations that 
would increase the computational time. Alternatively, rather 
than optimizing the GA as a wrapper, other feature selec-
tion methods that show good results on high-dimensional 
datasets can be explored, e.g., particle swarm optimization 
[54] or other evolutionary algorithms [55].

To accelerate convergence, GP (or any other backbone 
SLUG is using) could inform GA of what features are 
actually being used, from the ones preselected. In case the 
backbone does not perform feature selection itself, it can 
probably still inform what features are more important. This 
way, the GA could use more information from the learner 
than just the fitness achieved with each subset of features, 
increasing the cooperation between the two methods. It is 
reasonable to think that, in this case, the GA binary chro-
mosomes would become real-valued ones, where each bit 
would now contain a sort of probability of selecting each 
feature, that the learner could use to build its own models. 
To promote the exploration of the search space without hav-
ing to increase the population size, and particularly when 
adding measures for faster convergence, our idea is to use 
novelty search [56] on the GA to increase the bias toward 
yet unexplored subsets of features.

Appendix

See Tables 5, 6 and 7.

Table 5   Holm-corrected p values using Kruskal–Wallis for the regular classification problems. The bold/italic colors indicate that the method on 
the left is significantly better/worse than the method on the top using p < 0.05

HRT GP M3GP M4GP M4GP-E SLUG PRK GP M3GP M4GP M4GP-E SLUG

GP — 0.9922 1.1556 0.2843 0.0027 GP — 0.0000 0.7658 0.0627 0.0441
M3GP 0.9922 — 0.6884 0.8486 0.0490 M3GP 0.0000 — 0.0597 0.4882 0.1015
M4GP 1.1556 0.6884 — 0.6599 0.0124 M4GP 0.7658 0.0597 — 0.8317 0.7966
M4GP-E 0.2843 0.8486 0.6599 — 0.7852 M4GP-E 0.0627 0.4882 0.8317 — 0.7220
SLUG 0.0027 0.0490 0.0124 0.7852 — SLUG 0.0441 0.1015 0.7966 0.7220 —

 ION GP M3GP M4GP M4GP-E SLUG SON GP M3GP M4GP M4GP-E SLUG

GP — 0.3297 2.2914 1.6595 0.3457 GP — 0.0000 0.0010 0.0154 0.3311
M3GP 0.3297 — 0.9674 0.3734 0.9704 M3GP 0.0000 — 0.2653 0.3660 0.0232
M4GP 2.2914 0.9674 — 1.7345 1.1531 M4GP 0.0010 0.2653 — 0.6295 0.2414
M4GP-E 1.6595 0.3734 1.7345 — 0.3530 M4GP-E 0.0154 0.3660 0.6295 — 0.4270
SLUG 0.3457 0.9704 1.1531 0.3530 — SLUG 0.3311 0.0232 0.2414 0.4270 —
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