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Abstract

Remaining useful life (RUL) prediction is a key enabler for making optimal maintenance strategies. Data-driven approaches,
especially employing neural networks (NNs) such as multi-layer perceptrons (MLPs) and convolutional neural networks
(CNNs), have gained increasing attention in the field of RUL prediction. Most of the past research has mainly focused on
minimizing the RUL prediction error by training NNs with back-propagation (BP), which in general requires an extensive
computational effort. However, in practice, such BP-based NNs (BPNNs) may not be affordable in industrial contexts that
normally seek to save cost by minimizing access to expensive computing infrastructures. Driven by this motivation, here,
we propose: (1) to use a very fast learning scheme called extreme learning machine (ELM) for training two different kinds of
feed-forward neural networks (FFNNs), namely a single-layer feed-forward neural network (SL-FFNN) and a Convolutional
ELM (CELM); and (2) to optimize the architecture of those networks by applying evolutionary computation. More specifi-
cally, we employ a multi-objective optimization (MOO) technique to search for the best network architectures in terms of
trade-off between RUL prediction error and number of trainable parameters, the latter being correlated with computational
effort. In our experiments, we test our methods on a widely used benchmark dataset, the C-MAPSS, on which we search
such trade-off solutions. Compared to other methods based on BPNNs, our methods outperform a MLP and show a similar
level of performance to a CNN in terms of prediction error, while using a much smaller (up to two orders of magnitude)
number of trainable parameters.

Keywords Evolutionary algorithm - Multi-objective optimization - Extreme learning machine - Remaining useful life -
C-MAPSS

Introduction

Optimal decision-making for maintenance management is
related to costs and reliability. Recently, predictions regard-
ing the future state of industrial components have been
actively used to develop efficient maintenance strategies. In
particular, predicting the remaining useful life (RUL) plays
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Fig. 1 Flowchart of a data-
driven RUL prediction task

Industrial
components

be a key solution to accomplish this requirement [2]. The
existing works for RUL prediction can be mainly catego-
rized into two approaches [3]: physics-based approaches and
data-driven approaches. While the former require under-
standing the physics underlying degradation, the latter are
capable of estimating the lifetime of components solely from
past monitoring data. Today, the tremendous advances in
machine learning (ML) and the advent of deep learning (DL)
allow one to recognize complex patterns appearing in the
data and to learn their relationship with the lifetime of the
components. Thus, data-driven approaches, especially using
ML methods, have gained increasing attention. Despite the
increasing utility of ML-based approaches, physics-based
approaches are still used especially when collecting moni-
toring or simulated data is difficult [4]. On the other hand,
data-driven approaches are considered more useful when
monitoring and/or simulated data are easier to acquire [5].
Figure 1 illustrates the flowchart of a data-driven RUL pre-
diction task with a black-box ML model such as an artificial
neural network (ANN). The sensors installed on a target
industrial component measure physical properties related to
the lifetime of the target. The collection of the sensor meas-
urements over time can then be the health monitoring data,
which typically take the form of multi-variate time-series.
The following black-box model is responsible for providing
the RUL prediction as its output from the current sensor
measurements. The training of the model aims to minimize
the training error, which is defined as the difference between
the output and the actual RUL (i.e., the ground truth that is
assumed to be known for a set of training samples), where
historical data collected by run-to-failure operations are con-
sidered as the training data. Because the run-to-failure data
are scarce and the model should perform well with limited
data, developing an appropriate black-box model is a major
challenge for the data-driven RUL prediction task. In this
context, many ML and DL-based methods have been pro-
posed over the past decade.

A multi-layer perceptron (MLP), discussed in [6], is one
of the earliest works that use the traditional back-propa-
gation neural networks (BPNNs) for RUL prediction. The
authors also proposed employing a convolutional neural
network (CNN) for estimating the RUL of aircraft engines.
Later, a long short-term memory (LSTM) was used in [7] to
directly recognize temporal patterns in the data instead of
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extracting convolutional features. Another work [8] intro-
duced a stacked sparse autoencoder (SAE) and optimized
its hyperparameters with a grid search. Focusing on the
objective of minimizing the prediction error, the DL archi-
tectures for RUL prediction have become more and more
complex. The authors of [9] proposed a directed acyclic
graph (DAG) network that combines an LSTM with a CNN
by placing them in parallel to improve the accuracy of the
RUL prediction. A serial combination of an LSTM and a
CNN was introduced in [10], where the LSTM is used to
extract temporal features, while the CNN is used as a spa-
tial feature extractor. The authors of [11] employed a multi-
head CNN-LSTM combining a parallel branch of CNNs in
series with an LSTM, and optimized its architecture based
on evolutionary algorithm (EA). More recently, a combina-
tion of a convolutional autoencoder (CAE) with an LSTM
has been proposed [12]. The authors of [13] presented an
autoencoder-based deep belief network (AE-DBN) model
to obtain accurate RUL predictions, in which, while the AE
is used for extracting features, the DBN learns long-term
dependencies. Most of the solutions presented so far are too
focused on minimizing the RUL prediction error, which is
typically achieved using deeper and more complex DL archi-
tectures. However, in practice, the recent DL models that
place an overemphasis on prediction accuracy may not be
affordable in industrial contexts that normally seek to save
cost by minimizing access to expensive computing infra-
structures. To be more specific, the recent DL architectures
consist of a huge number of trainable parameters through
many layers. Training a large number of parameters needs
multiple iterations of computationally expensive gradient-
based computations, which require having access to pow-
erful hardware, such as a graphics processing unit (GPU).
Moreover, it may happen that more monitoring data are
collected after training the network. This requires continu-
ous access to computing resources needed for retraining,
which, in turn, increases costs. In this paper, we address the
problem of reducing the computational cost of the model
used for RUL prediction by employing the extreme learn-
ing machine (ELM) [14]. ELM is a fast learning algorithm
for single-layer feed-forward neural networks (SL-FFNNs)
for which learning consists in determining the network out-
put weights by solving a regularized least-squares problem
on top of a set of randomly initialized input weights. The
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authors of [14] claim that ELMs provide the best gener-
alization performance at an extremely fast learning speed.
Moreover, studies in the existing literature have proven that
the performance of ELMs is comparable, in terms of accu-
racy, to that of BPNNs on various classification tasks [15,
16]. Considering the advantages of ELMs, here, we develop
an ELM-based model as an RUL prediction tool providing
both good prediction accuracy and short learning time given
by their lower number of trainable parameters, compared to
BPNNs. This is explicitly beneficial when an RUL predic-
tion model should be trained regularly on newly collected
data. In this scenario, an ELM-based RUL prediction model
could be quickly retrained on the up-to-date data even with
rather constrained hardware resources, while a DL-based
RUL prediction model would be comparably more costly
and time-consuming to train, thus being more difficult to
update frequently. Furthermore, in addition to the vanilla
ELMs, we also consider a convolutional ELM (CELM) [17],
which is obtained by combining a set of convolutional layers
with random filters (whose weights are not updated dur-
ing the feature extraction step) with a fully connected layer
trained by an ELM. The weights on the nodes between the
fully connected layer and the output layer are updated using
the ELM learning scheme. Finally, we optimize the archi-
tecture of both ELMs and CELMs with respect to the two
conflicting objectives of reducing the RUL prediction error
while minimizing the number of trainable parameters, so
as to find the best trade-off solutions in terms of prediction
error vs. number of trainable parameters. To this end, we use
a multi-objective optimization (MOO) technique, namely
the well-known non-dominated sorting genetic algorithm II
(NSGA-II) [18]. To evaluate the proposed methods, we use
the commercial modular aero-propulsion system simulation
(C-MAPSS) dataset provided by NASA [19], which is the
de facto standard benchmark for RUL prediction. On each of
its four sub-datasets, we search for optimal ELM and CELM
trading off the RUL prediction error and the number of train-
able parameters, and compare their performance to BPNNs
in terms of the two objectives. To summarize, the main con-
tributions of this work can be highlighted as follows:

— We use an MOO algorithm to achieve a successful trade-
off between RUL prediction error and number of train-
able parameters.

— In two out of four sub-datasets, the obtained solutions
outperform an MLP and a CNN in terms of prediction
error as well as number or parameters.

— To the best of our knowledge, this is the first use case of
CELM applied to RUL prediction (and, in particular, on
the C-MAPSS dataset).

This paper extends our previous work [20] in which, for the
first time, we tackled the data-driven RUL prediction task by

means of ELMs optimized by means on evolutionary com-
putation. The additional materials w.r.t. our previous work
can be outlined as follows: first, we consider the MOO of
CELMs and employ the optimized CELMs for the RUL pre-
diction task (the section ““ Convolutional Extreme Learning
Machine); second, both the ELMs and CELMs are evaluated
on the very widely used C-MAPSS dataset and, in doing so,
we compare our experimental results to the numerical results
reported in the literature presenting different methods (the sec-
tion “Experimental Results”). The rest of the paper is organ-
ized as follows: in the section “Background”, the background
concepts on vanilla ELMs and CELMs are introduced. The
specifications of the parameters to be optimized and the opti-
mization algorithm are presented in Section “Methods”. Then,
the experimental setups considered in our work are outlined in
the Section “Experimental Setup”. The section “Experimental
Results” presents the experimental results and their analysis.
Finally, the Section “Conclusions discusses the conclusions
of this work.

Background

ELM is a fast learning scheme for SL-FFNNs. While training
typical BPNNSs is a time-consuming process, ELM can in fact
train the networks very quickly by analytically determining the
output weights after randomly initializing the input weights
[14]. In this section, we explain the basic principles of the fast
learning algorithm for SL-FFNNs, and describe the CELM
model, which is an extension of this ELM learning scheme
to CNNS.

Extreme Learning Machine

When the output of SL-FFNNs can be represented as a linear
system, training an ELM consists in finding the smallest norm
least-squares solution of that linear system by computing the
Moore—Penrose inverse. The idea behind the ELM model is
that in FFNNs the input weights may not need to be adjusted
at all [21, 22]. For training an SL-FFNN comprising L hid-
den neurons with N labeled training samples, an ELM can be
formally described as follows. Each training sample is made
up of a d-dimensional input vector with a corresponding
c-dimensional label. Then, a given set of N training samples
is written as (x;,¢;),7 € [1, N]with x; € RYand t; € R, where
x; and ¢; denote each input vector and its corresponding label
respectively. Since the RUL prediction problem is a regression
task, in our case, the label is a scalar real number, i.e.,c = 1.
Figure 2 visualizes an SL-FFNN and the notation used
for describing the ELM model. As shown in the figure, the
SL-FFNN used in this work consists of d input nodes, a sin-
gle output node, and a single hidden layer of L neurons with
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Fig. 2 Illustration of the ELM model based on an SL-FFNN

activation function g(-). For a given input sample x;, the output
of a SL-FFNN o is defined by

L
0, = Z Big(w; - x; +b;). 1)
-1

J=

where w; = [wlj, ,wdj] is a vector of weights associated
to the connections between the d input neurons (which are
assumed to be linear) and the jth hidden neuron, f; is the
weight on the connection between the jth hidden neuron and
the output neuron, and b; denotes the bias for the jth hid-
den neuron. The N equations computing the output for each
training sample x,, ..., X, can be written compactly as

_g(Wl "Xy +b1) : g(WL (X +bL)

H-p= : .. :
g(w -xy+by) -~ g(w, - xy+b,)

- 2
By @

| AL
where H is the hidden layer output matrix (of size N X L),
and B (of size L X 1) consists of the weights of all the con-
nections between the hidden neurons and the output neuron.
LetT =[¢,... ,tN]T be the target values, i.e., the labels for
the N training samples. Then, the training of the SL-FFNN
can be defined as minimizing the error between the network
outputs and the target values. This is equivalent to find a
least-squares solution f§ to the linear system H-f=T.
Thus, the training procedure can be mathematically formu-
lated as

“His - T|| = min |H.f - T]|. 3)
The weight vector minimizing the error § is the smallest

norm least-squares solution of the above equation
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Fig.3 Correlation between the number of trainable parameters and
the training time of the ELM models. The best-fit curve shows a
super-quadratic dependency between the training time and the num-
ber of trainable parameters, in line with the cubic complexity derived
analytically, O(NL? + L3)

B=H'T, )

where H' denotes the Moore—Penrose generalized inverse of
the matrix H. The inverse matrix is defined as (H H)"'H .
To prevent the inverse term H'H from becoming singular,
an L2 regularization term af can be added. As such, H' with
the regularization term can be written as

H = (H'H+al) 'H', )

where @ € R is an arbitrarily small value. Overall, the ELM
training algorithm for SL-FFNNs, which consists in finding
a solution to Eq. (3), is defined by

B=H"H+ao)'H'T. (6)

Compared to BPNNs, the ELM training specified in Eq.
(6) not only achieves significantly faster training speed, but
also provides comparable performance in terms of prediction
accuracy [16, 23]. Moreover, it has been shown that the gen-
eralization performance of ELMS is in general better than
that provided by BP training algorithms [24, 25]. According
to Eq. (6), the computational complexity of the ELM train-
ing algorithm is determined by the size of the matrix H:
more specifically, it is OWVL? + L3). Namely, the complexity
is cubic w.r.t. the number of trainable parameters, which is
the same as L. The empiric characterization of the training
time w.r.t. L is shown in Fig. 3.

When we design an ELM with an SL-FFNN, increasing
the number of hidden neurons L can contribute to decreas-
ing the prediction error, but the computational complexity
(hence the training time) increases. Thus, finding the opti-
mal value of L as well as the other parameters of an ELM
is a crucial element affecting the prediction error. In this
paper, we use evolutionary search to explore this parameter
space, so that we obtain the solutions resulting in a trade-off
between the prediction error and the number of trainable
parameters.
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Fig.4 Illustration of the CELM
model based on CNNs
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Convolutional Extreme Learning Machine

CNNss are a kind of multi-layer FFNNs that were first estab-
lished by LeCun et al. [26] and applied to the classification
task of two-dimensional (2D) images of handwritten digits.
After years of research, CNNs have provided outstanding
performances on several computer vision tasks [27, 28],
and they have also achieved excellent results on regression
tasks on one-dimensional (1D) time-series, based on convo-
lutions with 1D filters [29, 30]. Figure 4 describes a CNN
structure for a regression task, such as the RUL prediction,
on multi-variate time-series. The network mainly comprises
the feature extraction stage and the regression stage. The
feature extraction stage includes a set of 1D convolutional
layers aiming to extract high-level feature representations,
while the following regression stage is a fully connected
layer computing an output RUL value from the extracted
features. BP algorithms are extensively used to train CNNss,
but gradient-based learning algorithms are in general slower
than required, because they tune all the parameters of the
network iteratively. Considering that the slow speed of BP
algorithms can be a major bottleneck in the applications of
CNNs, here, we apply CELMs, which are fast training as
they do not require an iterative gradient computation. Simi-
lar to the ELM model, based on an SL-FFNN, the training
of CELMs consists in analytically determining the output
weights on the connections between the hidden neurons of
the fully connected layer and the output neuron, in conjunc-
tion with random initialization of all the remaining weights.
In other words, the convolutional filters are randomly gener-
ated, and we randomly choose the input weights to the fully
connected layer, as well. Thus, a major difference between
the ELM and the CELM models considered in our work is
the presence of the feature extraction step using the random
filters.!

! We should note that, strictly speaking, “ELM” refers to the learning
algorithm only. However, in the rest of this paper, both “ELM” and
“CELM” will be generically used to refer to both the learning algo-
rithm and the neural network itself.
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Methods

We present now the details of the proposed methods: the sec-
tion “Individual Encoding” describes the individual encod-
ing. In the section “Individual Encoding”, the evolutionary
algorithm used for the MOO process is outlined.

Individual Encoding

Following what we have seen in the section “Extreme
Learning Machine”, both the RUL prediction error and the
computational complexity (which correlates to the training
time) are largely affected by the number of hidden neurons
L. Furthermore, the performance of the ELMs varies with
the choice of the activation function g(-) used in the hidden
neurons. Here, we consider two widely used activation func-
tions, namely the hyperbolic tangent tanh and the sigmoid
sigm, as our g(-) for the ELMs. In addition, the L2 regulari-
zation parameter a described in the section “Background”
is also optimized by the evolutionary algorithm. Based on
the above discussion, we optimize the following integer
parameters:

— Ry, Dumber of hidden neurons with hyperbolic tangent
activation;

Ngjem» NUMber of hidden neurons with sigmoid activation;
— r, L2 regularization parameter.

Hence, a genotype consists of three parameters: n,,,,, 1
and r.

sigm?

The lower and upper bounds (chosen empirically) for
each parameter in the ELMs are set, as shown in Table 1.
Regarding the parameters for the number of hidden neurons,

Table 1 Bounds of the

Parameter Min Max
parameters of the ELMs

Mg 1 200

Niom 200

r 2 6
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these are multiplied by a fixed value of 10 when we gener-  Table2 Bounds of the Parameter Min Max

ate an ELM instance (i.e., the phenotype), so that we use a ~ parameters of the CELMs

discretization on the number of hidden nodes to reduce the chy 1 20

search space yet allowing ELMs of up to 2000 tan/ hidden ky 1 20

neurons and 2000 sigmoid hidden neurons. In other words, chy 1 20

both n,,,/ and ng,,, range in the interval [1, 200], while the ky 1 20

corresponding number of hidden neurons can range between chy 1 20

10 and 2000 with a step size of 10. These values have been ks 1 20
L 1 80

chosen empirically. In particular, the maximum value for L
(given by the sum of the two kinds of neurons) is 4, 000, and
this upper bound is determined to limit the size of the hidden
layer output matrix H, which is N X L, while keeping its cal-
culation affordable during the evolutionary search. Because
the whole range of integers between 1 and 2000 would be
too large to explore, we divide it by 10, to decrease the num-
ber of possible combinations for those two parameters: by
doing so, we reduce the number of possible combinations
from 4 x 10° to 4 x 10*. The remaining parameter, r, refers
to the order of magnitude of the L2 regularization param-
eter a described in the section “Background”, i.e.,a = 107"
This value should be relatively small to avoid affecting the
ELM performance, but large enough to prevent the inverse
term in Eq. (4) from becoming singular; we find that such
a lower and an upper bound correspond to & = 102 and
a = 1079, respectively. The above ELM optimization has two
major limitations: (1) there are only few parameters deter-
mining the network performance; and (2) we noted that the
ELMs tend to converge to a certain value of L, above which
the performance does not make any meaningful improve-
ment (this latter aspect will be further discussed in the sec-
tion “Experimental Setup”). On the other hand, the CELM
model involves many more hyperparameters that can largely
affect both the prediction error and the total number of train-
able parameters in the network. In fact, the performance of
the ELMs relies on the configuration of the fully connected
layer, whereas the performance of the CELMs is determined
not only by the fully connected layer, but also by the archi-
tecture of the preceding convolutional layers. Regarding the
optimization of the CELM model shown in Fig. 4, we con-
sider the following architecture parameters:

— chy, number of filters in the first convolution layer;

— ky, length of each filter of chy;

— ch,, number of filters in the second convolution layer;

— k,, length of each filter of ch,;

— chs, number of filters in the third convolution layer;

— ks, length of each filter of chs;

— L, number of hidden neurons in the fully connected layer.

Considering that also, in the CELM case, the architec-
ture parameters are all integers, the genotype consists in this
case of seven integer values. The first six are reserved for
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constructing the three convolutional layers, while the num-
ber of hidden neurons in the following fully connected layer
is determined by the remaining integer value L. Because a
good performance of the CELMs with stacked convolutional
layers (in particular three) has been proved in previous works
[31, 32], we fix the number of the convolutional layers to
three. Instead, the parameters regarding the filters in each
convolutional layer are encoded, so that each individual
generated during the evolutionary search extracts different
convolutional features. It should be noted that the param-
eters regarding the number of filters are multiplied by a
fixed value of 10 when we generate the phenotype, while the
parameters regarding the filter lengths are used as they are.
The bounds (chosen empirically) for the seven parameters of
the CELMs are shown in Table 2. Since we set the maximum
value of L is 4, 000 for the ELMs, the same upper bound is
considered also for the CELM:s to conduct a fair comparison
between the two models. As shown in Table 2, the bounds
of the parameter regarding the number of hidden neurons
L are set to [1, 80]; however, this integer is multiplied by a
fixed value of 50 when each genotype is translated into cor-
responding phenotype. As explained in the case of the ELM
optimization, the multiplicand is used to decrease the pos-
sible number of combinations determined by the bounds of
the parameters: thanks to this discretization, we reduce the
number of possible combinations in the search space from
2.56 x 10'% to 5 x 10°. Concerning the activation function,
we use the sigmoid function for all the nodes in the fully
connect layer of the CELMs. This choice follows the exist-
ing works on CELMs [31, 33, 34], that all make use of the
sigmoid function in the fully connected layer, and the recent
study [34], where the authors tested different widely used
activation functions, including the sigmoid and the hyper-
bolic tangent, and verified that the sigmoid can achieve the
best prediction accuracy.

Optimization Algorithm

To optimize the parameters of the ELMs and CELMs described
in the section “Individual Encoding”, we consider an MOO
approach looking for the best trade-off solutions in terms of
RUL prediction error vs. number of trainable parameters. In the
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evaluation step of our evolutionary search, the fitness of each
individual is calculated by generating the phenotype, an ELM
or a CELM, respectively, associated with the corresponding
genotype, which is a vector containing the parameters (three
or seven, respectively, for the case of ELMs and CELMs), as
explained in the previous section. Given that the benchmark
dataset on which we evaluate our methods consists of a train-
ing set D,;, and a test set D, the training set D, ,;, is further
divided into training purpose data, E,,;,, and validation pur-
pose data, E,; (.., Dyain = Eiain Y Evap)- Hence, any individ-
ual appearing during the evolutionary search is first trained on
E,.in» and then, its fitness is calculated using E, ;. More specifi-
cally, MOO is achieved using a very well-known evolutionary
algorithm, NSGA-II [18]. At the beginning of the evolutionary
run, a population of n,,,, individuals is initialized at random.
In the main loop of the algorithm, following the initial gen-
eration, an offspring population of equal size n,, is generated
by tournament selection, crossover, and mutation. The tourna-
ment selection primarily checks the dominance level of each
individual in the population. The secondary criteria, crowding
distance, are then used to promote individuals that lie in less
crowded areas of the Pareto front. Regarding the crossover and
the mutation, we consider one-point crossover, with crossover
probability p_, set to 0.5, and uniform mutation, with mutation
probability p . set to 0.5. The probabilities have been chosen,
such that, in most cases, individuals are produced by either
mutation or crossover (exclusively), so as to avoid disruptive
effects due to the combination of mutation and crossover that
may lead to bad individuals. The new individuals generated
by the above genetic operators are then put together with the
parents. The combined population of the parents and the oft-
spring is then sorted according to non-domination. Finally, the
best non-dominated sets are inserted into the new population
until no more sets can be taken. For the next non-dominated set,
which would make the size of the new population larger than
the fixed population size n,,,,,, only the individuals that have the
largest crowding distance values are inserted into the remain-
ing slots in the new population. After that, the next generation
starts. This loop is terminated after a fixed number of genera-
tions ., and the evolutionary algorithm returns the solutions
on the Pareto front. n,,, and n, are set both to 20. We have
empirically found that these values allow enough evaluations to
observe an improvement w.r.t. the hypervolume (HV) spanned
by the solutions on a Pareto front. We refer to this method
based on NSGA-II based for ELM as MOO-ELM. Similarly,
the method for the CELM is referred to as MOO-CELM.

test>

train

Experimental Setup

The details of our experimentation for evaluating the
proposed methods are presented in this section: first, we
describe the C-MAPSS dataset in the section “Benchmark

dn\ C ombustormhlll i
\ Nozzle
HPT

LPC  HPC N2

Fig.5 Simplified diagram of the turbofan engine simulated in
C-MAPSS [35]

Dataset” and the evaluation metrics in the section “Evalua-
tion Metrics”. In the section “Back-Propagation Neural Net-
works (BPNNs)”, we describe the BPNNs that are used for
the comparison with our methods. Then, the computational
setup and the data preparation steps are outlined in the sec-
tion “Computational Setup and Data Preparation”.

Benchmark Dataset

As discussed in the section “Introduction”, aircraft engine
maintenance can have a significant impact on the total cost
of operation in the aviation industry, and data-driven RUL
prediction methods make possible to optimize maintenance.
However, large representative run-to-failure data for devel-
oping the data-driven methods are unavailable in real opera-
tions, because failures during flight should not obviously
occur in such safety-critical systems. To overcome this chal-
lenge, NASA introduced the C-MAPSS dataset, which con-
sists of run-to-failure trajectories simulated by C-MAPSS.
The C-MAPSS is a tool for simulating a realistic large com-
mercial turbofan engine, as depicted in Fig. 5, which allows
input variations of health-related parameters and recording
of the resulting output sensor measurements. More spe-
cifically, the C-MAPSS simulator produces various sensor
response surfaces as its outputs, based on a set of health-
parameter inputs. This enables users to simulate the effects
of faults in a set of rotating components which are crucial
components associated with the engine’s failure [19]: fan,
low-pressure compressor (LPC), high-pressure compressor
(HPC), high-pressure turbine (HPT), and low-pressure tur-
bine (LPT). The outputs produced by the C-MAPSS simula-
tion are used as input data for our experiments.

The C-MAPSS dataset contains trajectories from 21 dif-
ferent sensor measurements, generated under four differ-
ent simulation settings. As outlined in Table 3, the dataset
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Table3 C-MAPSS dataset overview

Sub-dataset FD001 FD002 FDO003 FDO004

Number of engines in train- 100 260 100 249
ing set
Number of engines in test set 100 259 100 248

Max/min cycles in training 362/128 378/128 525/145 543/128

set
Max/min cycles in test set 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

consists of four sub-datasets: FD0O01, FD002, FD003, and
FDO004, according to the operating states and fault mode.
Each sub-dataset is split into a training set D,,;, and a test
set D, The training set of each sub-dataset is made up of
run-to-failure histories of different engines. In contrast, the
simulation of each test engine is terminated before its fail-
ure, so that the RUL of each engine in the test set is required
to be predicted for evaluating the prediction performance.
One additional note is that the data of each engine consist
of 21 multi-variate time-series, but 7 time-series that do not
show changes over time are discarded. Thus, we use only 14
time-series as inputs. All the sensor readings and the RUL
prediction are updated at the same frequency; the time unit
for both the RUL prediction and the sensor measurements
is referred to as cycle.

Evaluation Metrics

We evaluate our methods in terms of number of train-
able parameters and prediction error. While, for the for-
mer, we merely count this number directly, the predic-
tion error is quantified w.r.t. two metrics, namely the
RMSE and the s-score [19], which are defined as follows.
Let the error between the predicted and target RUL be
d; = RULP*"“ — RUL"**". The RMSE on D,,,, is defined as

tes

(N

where N is the total number of test samples in D,,,. The
s-score metric is also based on the error d;, but it differ-
entiates between “optimistic” and “pessimistic” predictions
using an asymmetric function. Specifically, it assigns a
larger value to optimistic RUL predictions w.r.t. pessimistic
RUL ones. This reflects the risk of predicting an RUL value
higher than the real one. As such, the s-score is formulated
as follows:
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Table 4 Compared RUL prediction methods for the C-MAPSS data-
set

Method Description
MLP [6] 1 hidden layer
CNN [6] 2 convolutional layers, 2 pooling layers,
and 1 fully connected layer
LSTM [7] 2 LSTM layers and 2 fully connected layer
N 4i
-1, d<0
s-score = Z SF,, SF= 4 ! . 8
i=1 ev—1, d; >0

It should be noted that we use the s-score solely for evalu-
ating the methods on the test set; on the other hand, we
perform the evolutionary optimization on the RMSE, since
it provides more information from an optimization point of
view w.r.t. the s-score. In fact, based on our previous work
[36], networks optimized using the RMSE as fitness function
provide better results in terms of both metrics, compared to
networks optimized based on the s-score.

Back-Propagation Neural Networks (BPNNs)

As we discussed in the section “Introduction”, data-
driven methods such as traditional neural networks have
been widely used in the field of RUL prediction. In par-
ticular, we consider for comparison three recent models
introduced in [6] and [7], all based on BPNNs. For the
evaluation purposes, these models are trained on D,,,;, and
their performance is evaluated by calculating the RMSE
and the s-score on D,.,. We specify the details of these
compared methods in the following. The first two BPNNs
are two FFNNs proposed in [6]: an MLP and a CNN. The
architecture of the MLP comprises one hidden layer of 50
neurons. Regarding the CNN, the model consists of two
pairs of convolutional layers and pooling layers, followed
by a fully connected layer. The first convolutional layer
has 8 filters of size 12, while the following convolutional
layer contains 14 filters of size 4. Each pooling layer per-
forms average pooling with size 1 X 2 to halve the feature
length. The feature map is flattened at the end of the last
pooling layer and passed to the fully connected layer of
50 neurons. Both the MLP and the CNN use a sigmoid as
activation function. The third BPNN is an LSTM network
introduced in [7]. The LSTM has four hidden layers: two
stacked LSTM layers and two fully connected layers. The
number of hidden units in each LSTM is 32, and the fol-
lowing two fully connected layers contain 8 neurons in
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each layer. For all the BPNNs, the architecture is followed
by a single output node. The architecture of the compared
algorithms is summarized in Table 4. Regarding the train-
ing setup for the specified BPNNs, we followed the setup
used in the papers introducing them. In particular, we used
the RMSprop optimizer with a leaning rate 0.001 and set a
mini-batch size to 512.

Computational Setup and Data Preparation

All the neural networks considered in our experimentation,
including the proposed ELMs and CELMs, are implemented
in Python. In particular, TensorFlow 2.3 is used to build the
BPNNSs described in the section “Back-Propagation Neural
Networks (BPNNs)”. To implement the ELMs, we use the
high-performance toolbox for ELM (HP-ELM)? that sup-
ports GPU computation. The CELMs are implemented in
PyTorch. All the experiments have been conducted on a
workstation with an NVIDIA TITAN Xp GPU. The evolu-
tionary optimization algorithm introduced in section “Indi-
vidual Encoding” is implemented using the DEAP library.’
Since we employ neural networks, each time-series is nor-
malized in the range [—1, 1] by min—max normalization. The
methods employing an FFNN, i.e., the MLP and the ELM,
take a 14-dimensional vector as an input for each times-
tamp. On the other hand, the networks that have a feature
extraction step, i.e., the CNN, the LSTM and the CELM,
require time-windowed data as input. To prepare the input
for those networks, we apply a fixed-length time window
with stride 1. For each sub-dataset, the length of the time
window is the same as the minimum number of cycles in
the test set, as described in Table 3. Finally, we split D, ;,
in E,;, and E,,: specifically, we randomly choose 80% of
the data in Dy, and assign them to E,;,, used for training
each individual. The remaining 20% are designated as E,
for the fitness evaluation.

train

Experimental Results

The aim of our experiments is to evaluate the optimized
ELMs and CELMs discovered by the proposed methods,
MOO-ELM and MOO-CELM. To perform a thorough eval-
uation, we compare them with the BPNNs described in the
section “Back-Propagation Neural Networks (BPNNs)” not
only in terms of number of trainable parameters, but also
in terms of RUL prediction error, the latter being based on
the two metrics defined in the section “Evaluation Metrics”.
For each parameter space (i.e., for the ELMs and CELMs)

2 https://github.com/akusok/hpelm.
3 https://github.com/DEAP/deap.

and each of the four C-MAPSS sub-datasets, we execute
10 independent runs of the MOO algorithm with different
random seeds. The multiple runs are considered to enhance
the reliability of the results obtained by the proposed meth-
ods based on NSGA-II. The convergence of each MOO run
is analyzed by collecting the HV across 20 generations.
After collecting the HV values, we normalize them to [0, 1]
by min—max normalization, i.e., the maximum HV value
is set to 1, while the minimum one is set to 0. As shown
in Figs. 6 and 7, in all cases, the mean HV monotonically
increases across the generations. This indicates that the used
evolutionary search keeps successfully finding better non-
dominated solutions across the generations. In addition to
this gradual improvement, the slope of the mean HV and
its standard deviation reveal convergence at the end of the
generations. This implies that the algorithm explores the
search space enough within 20 generations, regardless of
which initial population it starts with.

When we consider the 10 independent runs for each set-
ting, each run of the evolutionary search returns multiple
solutions on the final Pareto front. Because NSGA-II tends
to find “isolated” solutions considering how close the non-
dominated solutions are to each other (due to the crowding
distance sorting), the solutions widely spread across the two
conflicting objectives. In practical applications, one should
select from the Pareto front the solutions of interest based on
domain knowledge or any other particular preference crite-
ria. Here, to perform a comparative analysis with the other
methods, we take a subset of the solutions by aggregating the
10 independent runs in the following way: first, we collect
all the non-dominated solutions across the 10 runs. Then, we
select a fraction of the solutions based on their density in the
fitness space, as described in Figs. 8 and 9. When we do not
have any preference for a particular objective, this strategy
can be used to derive a subset of the solutions implicitly
“preferred” by the MOO algorithm. As shown in the figures,
we first place all the solutions from the 10 runs in the fitness
space, which is discretized in equally spaced bins. The den-
sity of the solutions can then be measured by counting the
number of solutions lying in each bin. As a result, we take
the solutions from the bin with the highest density.

Based on this selection procedure, MOO-ELM finds 15,
31, 20, and 30 solutions on the four sub-datasets, respec-
tively. In case of MOO-CELM, the numbers of selected solu-
tions are 6, 4, 6, and 4. In each experiment, we calculate the
test RMSE, the s-score, and the number of trainable param-
eters, for each of the available solutions. Their averages are
then computed as the final results. For instance, the result
of MOO-ELM on the FDOO1 can be derived as follows: the
selected solutions are represented as 15 dots in the yellow-
colored bin of Fig. 8a. For each dot, we train the correspond-
ing ELM on D,,;, and calculate the test RMSE, the s-score
on D, and the number of trainable parameters. After
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Fig. 6 Normalized hypervolume across generations (mean =+ std. dev. across 10 independent runs) for the proposed MOO-ELM approach on the
four sub-datasets, respectively: a FD0OO1 dataset; b FD0O02 dataset; ¢ FD0O03 dataset; d FD004 dataset

collecting these three values for the 15 solutions, we use the
average test RMSE, the average test s-score, and the average
number of trainable parameters to compare the proposed
MOO-ELM with the other methods. The comparative results
of all the considered methods are presented in Tables 5 and
6. In terms of test RMSE (Table 5), our methods are much
better than the MLP, since we can obtain lower RMSE val-
ues with a smaller number of trainable parameters. Although
both the proposed methods and the MLP use hundreds of
parameters, our methods are considerably better in terms of
computational cost and training time, because we apply an
extremely fast ELM learning algorithm, while the MLP is
trained by BP, which is relatively slow and expensive. The
CNN has an even larger number of trainable parameters and
achieves a much better test RMSE, compared to the MLP.
Nevertheless, the test results of the proposed methods are
still fairly comparable to those obtained by the CNN in terms
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of test RMSE, while our methods achieve these results using
a much smaller number of trainable parameters. In particu-
lar, in terms of test RMSE, the results of MOO-ELM are
slightly worse but very close to the results of the CNN for
all four sub-datasets. MOO-CELM outperforms the CNN in
terms of test RMSE on FD00O1 and FDO0O03, but it does not
provide as good results on the remaining sub-datasets. This
implies that MOO-ELM can achieve a sufficient and stable
performance on all the datasets including FD002 and FD004
that contain the data of six working conditions, while MOO-
CELM is only advantageous for the RUL prediction task on
less-complicated datasets such as FDOO1 and FDO0O3 col-
lected under only one condition. Additionally, we compare
our results to the LSTM; as shown in Table 5, it is the best
method in terms of test RMSE, but the number of trainable
parameters in the LSTM is more than two orders of mag-
nitude larger. In fact, the solutions given by MOO-CELM
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Fig.7 Normalized hypervolume across generations (mean + std. dev. across 10 independent runs) for the proposed MOO-CELM approach on
the four sub-datasets, respectively: a FDOOI dataset; b FD002 dataset; ¢ FD003 dataset; d FD004 dataset

not only have a clear advantage in terms of number of train-
able parameters but also can produce low prediction errors
(comparable to those achieved by the LSTM) on the two
less challenging datasets. Most of this analysis on the test
RMSE is also valid for the s-score results summarized in
Table 5. When we look at the score values in this table, those
given by MOO-ELM are close to the results of the CNN.
Moreover, MOO-CELM achieves the best score among the
compared methods on FD0O03, as well as a good score (close
to the score of the LSTM) on FD0OO1.

Finally, the comparative results are visualized in
Fig. 10, which easily allows to compare the performance
of the different methods in terms of trade-off between
the two conflicting objectives; due to the fact that the
analysis of the score results is not much different from
that carried out on the RMSE results, in the figure, we
only illustrate the results w.r.t. the test RMSE, previ-
ously reported in Table 5. We can observe that none of

the BPNNs dominates the others. Among the BPNNs,
the MLP uses a lower number of trainable parameters,
while the LSTM offers the best performance in terms of
test RMSE. The CNN is placed between the MLP and the
LSTM for both objectives. Note that the impact of the ran-
dom initialization of the weights in NNs is not examined
in our experiments (i.e., we assume that each architecture
yields deterministic performance after its training), while
we take into account 10 different random seeds for our
evolutionary search. Each run of the GA with a different
random seed produces indeed a different set of solutions.
Therefore, having multiple runs of the proposed evolution-
ary algorithm allows us to verify its robustness over dif-
ferent random seeds. When we compare the two proposed
methods with each other, adding convolutional layers with
random filters to the SL-FFNN (i.e., using MOO-CELM
instead of MOO-ELM) improves the RUL prediction for
less-complicated data, as shown in Fig. 10a, c, although
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Fig.8 Trade-off between validation RMSE and number of train-
able parameters at the last generation for the 10 independent runs of
the proposed MOO-ELM approach (aggregate results across runs).
For further analysis, the fitness space is discretized in 20 X 20 bins.

the number of trainable parameters slightly increases. In
contrast, we find that introducing randomly generated con-
volutional filters can disturb the RUL prediction made by
the ELMs on FD002 and FD004. The proposed methods,
MOO-ELM and MOO-CELM, dominate the MLP for all
the datasets except for FD0OO4. In Fig. 10d, the number
of trainable parameters of MOO-CELM is slightly larger
than that of the MLP, but our method is still better in terms
of computational cost, because it uses ELM, which is a
much more efficient training algorithm compared to BP.
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The bin highlighted in yellow corresponds to the one with the high-
est density of solutions: a FD0O1 dataset; b FD002 dataset; ¢ FD003
dataset; d FD00O4 dataset

In two out of four datasets (FDOO1 and FDO003), the solu-
tions discovered by MOO-CELM dominate the CNN. The
results given by MOO-ELM show a comparable prediction
performance while using a significantly lower number of
trainable parameters, compared to the CNN. Although our
proposed methods cannot outperform the LSTM in terms
of test RMSE, they still can be good RUL prediction tools
considering the much smaller number of trainable param-
eters and the advantages of the ELM training.
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Fig.9 Trade-off between validation RMSE and number of trainable
parameters at the last generation for the 10 independent runs of the
proposed MOO-CELM approach (aggregate results across runs).
For further analysis, the fitness space is discretized in 20 X 20 bins.

Conclusions

In this paper, we applied evolutionary computation to
explore the parameter space of two different kinds of FFNNs
trained with ELM. Our goal was to find a proper data-driven
RUL prediction tool for industrial applications that implic-
itly require a good trade-off between prediction error and
number of trainable parameters. To achieve this goal by

LI
SR LA Lol Sl v b A g
R L L L

Validation RMSE
(d)

The bin highlighted in yellow corresponds to the one with the high-
est density of solutions: a FD0O1 dataset; b FD002 dataset; ¢ FD003
dataset; d FD00O4 dataset

automatically designing ELMs and CELMs, we used an
MOO evolutionary algorithm, namely NSGA-II. The results
obtained by the proposed methods were compared to those
given by three BPNNs, namely an MLP, a CNN, and an
LSTM network. The comparative evaluation was based on
the C-MAPSS dataset, which is the de facto standard bench-
mark in the area of RUL prediction. We verified that the
solutions discovered by our methods are clearly better than
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Table 5 Summary of the Method RMSE Trainable

comparative analysis based on param-

the test results on C-MAPSS in eters

terms of test RMSE and number

of trainable parameters FDO0O1 FD002 FDO003 FD004
MLP [6] 37.36+0.00 80.03+0.00 37.39+0.00 77.37+0.00 801
CNN [6] 18.45+0.00 30.29+0.00 19.82+0.00 29.16+0.00 6,815
LSTM [7] 16.14+0.00 24.49+0.00 16.18+0.00 28.17+0.00 14,681
MOO-ELM 18.93+0.19 30.46+0.12 20.56+0.15 31.70+0.19 326
MOO-CELM 16.54+0.57 39.98+0.35 17.97+0.80 42.62+0.78 751

For our methods, we report the values in terms of mean + std. dev. across 10 independent runs. Note that
the std. dev. of the trainable parameters is neglected, because it is relatively small. For the remaining meth-
ods, we report only one solution related to one single run (since their computations are deterministic)

The boldface indicates the best value per column

Table 6 Summary of the

> : Method s-score X (10%) Trainable
comparative analysis based on param-
the test results on C-MAPSS in eters
terms of s-score and number of
trainable parameters FDO001 FD002 FD003 FD004
MLP [6] 18.00+0.00 7800.00+0.00 17.40+0.00 5620.00+0.00 801
CNN [6] 1.29+0.00 13.60+0.00 1.60+0.00 7.89+0.00 6,815
LSTM [7] 0.34+0.00 4.45+0.00 0.85+0.00 5.55+0.00 14,681
MOO-ELM 1.12+0.08 14.31+0.41 2.12+0.16 10.63+0.19 326
MOO-CELM 0.46+0.07 64.62+1.90 0.64+0.15 47.12+0.98 751

For our methods, we report the values in terms of mean =+ std. dev. across 10 independent runs. Note that
the std. dev. of the trainable parameters is neglected, because it is relatively small. For the remaining meth-
ods, we report only one solution related to one single run (since their computations are deterministic)

The boldface indicates the best value per column

the MLP. We also found that, in terms of test RMSE, MOO-
ELM shows a similar performance w.r.t. the CNN for all the
four sub-datasets, while MOO-CELM outperforms it on two
out of four datasets. However, our solutions have smaller
structures as well as can be trained quickly with ELM. Com-
pared to the LSTM, our solutions perform slightly worse in
terms of test RMSE, but the number of trainable parameters
is much smaller, and this, in turn, implies a significantly
shorter training time, thus a lower computational cost lever-
aging the advantages of ELM. One major limitation of our
work is that the random filters cannot successfully extract
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convolutional features for ELM training on the more com-
plicated data collected under different operating conditions
(sub-datasets FD002 and FD0044). In future work, we can
address this problem by employing predefined filters [37,
38] that can provide better prediction performance, instead
of using random filters. Finally, in this work, we consid-
ered merely two different activation functions in neurons,
but many other functions [39], such as rectified linear unit
(ReLU) and leaky ReL.U, can be used. Thus, one possible
future direction would be to consider those additional func-
tions when we define the search space.
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Fig. 10 Trade-off between test RMSE and number of trainable
parameters for the methods considered in the experimentation. For
MOO-ELM and MOO-CELM, we report the result of each of the
10 available runs, and their average. For the BPNNs, we report only
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as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
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permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
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