
DPDR: A novel machine learning method for the Decision Process
for Dimensionality Reduction

Jean-Sébastien Dessureault, Daniel Massicotte

June 22, 2022

ABSTRACT
This paper discusses the critical decision process of extracting or selecting the features in a supervised learn-
ing context. It is often confusing to find a suitable method to reduce dimensionality. There are pros and cons
to deciding between a feature selection and feature extraction according to the data’s nature and the user’s
preferences. Indeed, the user may want to emphasize the results toward integrity or interpretability and
a specific data resolution. This paper proposes a new method to choose the best dimensionality reduction
method in a supervised learning context. It also helps to drop or reconstruct the features until a target resolu-
tion is reached. This target resolution can be user-defined, or it can be automatically defined by the method.
The method applies a regression or a classification, evaluates the results, and gives a diagnosis about the best
dimensionality reduction process in this specific supervised learning context. The main algorithms used are
the Random Forest algorithms (RF), the Principal Component Analysis (PCA) algorithm, and the multilayer
perceptron (MLP) neural network algorithm. Six use cases are presented, and every one is based on some
well-known technique to generate synthetic data. This research discusses each choice that can be made in
the process, aiming to clarify the issues about the entire decision process of selecting or extracting the features.

Feature extraction; feature selection; Random Forest algorithm; PCA algorithm; MLP neural network

1 Introduction

When we think about reducing dimensionality, there
are different schools of thought. It is possible to
extract, select, or leave the totality of the features
intact. It is not always clear for the data scientist
when it is time to choose the best method and pa-
rameters. Several points must be taken into account,
and too often, this decision is taken empirically with
some tries and errors. This research proposes a new
method that combines supervised and unsupervised
machine learning algorithms resulting in a better
dataset reduction of dimensionality. It has input,
output, and metrics to make the right choice. This
decision between feature extraction and feature se-
lection leads to, for instance, a regression or a clas-
sification since the method applies to a supervised
learning context. It is based on the machine learn-
ing methods RF, PCA, and MLP.

This method can help solve several types of prob-
lems. Choosing between a feature selection and a
feature extraction can sometimes be obvious, but it
is not always the case. Furthermore, it is most of the

time arduous to know how many features to remove
to downsize to a correct level of data resolution. This
method can support the visualizing process of data
in 2D or 3D graphics or even in more dimensions in
a radar graphic. It can help to reduce the overfit-
ting problem, to optimize the accuracy and simplify
a model, and speed up the processing time. In sum-
mary, this method can help solve Bellman’s "curse of
dimensionality [5], choosing the proper method be-
tween feature selection and feature extraction, and
selecting the correct number of features to downsize.

This novel method is inspired by a similar
method named DPDRC [10]. The principle is
roughly the same, but this first method can only be
applied in an unsupervised learning context. This
DPDRC method must then generate some labels (a
clustering consistency named "Silhouette index") to
evaluate the importance of the features. The Fea-
ture Ranked Silhouette Decomposition (FRSD) al-
gorithm [23] is used to do so. It solves this evaluation
of features for clustering using a Silhouette Index
(SI) metric. It generates SI for every possible com-
bination of features. It loops for each value of k (the

1

ar
X

iv
:2

20
6.

08
97

4v
1

 [
cs

.L
G

]
 1

7
Ju

n
20

22

number of clusters) in a k-means clustering algo-
rithm. An RF algorithm replaces the FRSD method
to evaluate the feature selection in this new method.
PCA is used in both methods for feature extraction.
DPDRC finishes the process with k-means cluster-
ing since the context is unsupervised. In this new
method, an MLP neural network is used to process
regression or classification according to the nature
of the data. Hence, DPDRC applies in an unsuper-
vised learning context (for clustering), and DPDR
applies in a supervised learning context (for regres-
sion and classification). Both are useful to make the
right reduction of dimensionality choice.

To evaluate the importance of the features in a
supervised learning context, we have to first use a
RF algorithm [6] [11] [19], based on decision trees
and Bayesian network [20]. There are myriads of
applications. In [8], there is an example of an RF
application that evaluates the feature importance in
detecting a network intrusion. The method needs
to lower the cardinality of the dataset to process a
Support Vector Machine (SVM), and the RF helps
to find the best features to keep in the dataset.

Principal Component Analysis (PCA) is a prac-
tical algorithm to extract features and reduce the
dimensionality of a dataset [13]. It consists of linear
transformations to convert a set of correlated vari-
ables into a set of linearly uncorrelated variables.

Others like [9] use a PCA algorithm combined
with cluster analysis (CA) to study social-economic
indexes (i.e., non-agriculture population; gross in-
dustry output value; the business volume of post and
telecommunications; local governments revenue, and
others.) The analysis is applied to 17 counties and
cities. In this example, a PCA algorithm retrieves
the first and second principal components (PC1 and
PC2). According to PC1 and PC2, the CA classi-
fies the cities into four classes of growth poles. Re-
searches like [3][17] also use a PCA algorithm to ex-
tract features in big data and smart cities.

An MLP is also executed in this method. Al-
though this method is an ancient one based on the
works of Rosenblatt [21], it is still a basic but useful
kind of neural network. A recent book [22] gives a
new look at today’s usages of this method. Using
an MLP, [7] presents a method for diagnosing low
back pain and sciatica. A chapter in [18] is about
the MLP usage for ecological models. Finally, [15]
needs MLP to process magnetic resonance (MR) im-
ages and improve the signal quality.

The 6 datasets used in the research comes from
the scikit learn framework [4] [14]. The func-
tions sklearn.datasets.make_classification() [1] and
sklearn.datasets.make_regression() [2] allow to per-

fectly generate some different datasets for classifica-
tion and regression, respectively, according to some
desired parameters. Each function can generate a
specific number of features and rows, according to a
certain distribution. Both functions are commonly
used in the scientific litterature. For instance, the
function sklearn.datasets.make_regression() is used
in [12] and sklearn.datasets.make_classification() is
part of the process in [16]. This first presents a
method that allows a model to "forget" a user data
from a machine learning system when this user is
removed. This is for security purposes. The second
presents imbalanced-learn, an open-source python
toolbox aiming at providing a wide range of meth-
ods to cope with the problem of imbalanced datasets
frequently encountered in machine learning and pat-
tern recognition.

The main contribution of this paper is a new ma-
chine learning method to automatize the reduction
of the dimensionality decision process (feature ex-
traction or feature selection) according to the data
scientist preferences (target resolution of data, in-
terpretability oriented or integrity oriented param-
eters). It also helps to determine the amplitude of
the reduction according to the user preference or ac-
cording to an equation.

The next sections of this paper are organized
with the following structure: Section 2 describes the
proposed methodology. Section 3 presents the re-
sults. Section 4 discusses the results and their mean-
ing and Section 5 concludes this research.

2 Methodology

2.1 Datasets and features

The 6 datasets have been generated to create re-
gression problems and classification problems. The
number of samples and the number of features vary
from dataset to dataset and are documented in table
1. The data about regression problems have been
generated with sklearn.datasets.make_regression()
function. The classification problems are generated
with sklearn.datasets.make_classification(). The
features are all composed with float type values.
For the regression problems, a target field (a float)
defines the regression value. For the classification
problems, a class field (an integer) defines the cate-
gory of the sample.

2

Table 1: Datasets list

Dataset Type Rows Feat.
1. Regression 500 5
2. Classification 500 5
3. Regression 500 25
4. Classification 500 25
5. Regression 1000000 8
6. Classification 10000 100

For all those datasets, the parameter "ran-
dom_state" has been set to 1. It means that always
the same data sequence will be generated, leading
to perfect reproducibility. Setting this parameter to
"None" would mean a different data sequence each
time.

2.2 Proposed model design
The whole proposed model is a combination of sev-
eral parts using different machine learning algo-
rithms. The result of the process is parameteriz-
able by the data scientist. The first parameter is the
nature of the problem (regression or classification).
The two following parameters are the preference of
the data scientist, whether he prefers results based
on interpretability or integrity. For instance, the in-
terpretability parameter could have a value of 40%,
while the integrity parameter could have a value of
60%, meaning that a bias toward data integrity will
be induced. Those two parameters are in a α and
1−α pattern. Those parameters will help orient the
choice between a feature selection or a feature ex-
traction method. The last parameter is the required
minimum resolution of data. This parameter will
help decide the correct number of features to keep
in the resulting dataset. If no parameter is sent to
the algorithm, it will assume that the integrity and
interpretability parameters will have a 50% value.
The resolution parameter will be automatically cal-
culated to obtain the best possible value according
to an equation defined later.

Fig. 1 presents the architecture of the complete
methodology. There are two pipelines in the model:
1. The feature selection pipeline, and 2. the feature
extraction pipeline. It consists of processing both of
them. At the end of each one, a score will be deliv-
ered. This score will be used to make the right choice
between a feature selection and a feature extraction
and, ultimately, to return the reduced dataset to the
data scientist.

Let us start with the first pipeline: The feature
selection pipeline. This part uses an RF algorithm
to evaluate the importance of the features, sorting
the features in descending order of importance. This

sorted list is then filtered to keep only the first most
important feature, just enough to reach the required
minimum resolution parameter. The less important
ones are dropped. The reduced ordered features list
is then sent to the input layer of an MLP. This MLP
performs a regression or a classification according
to the parameter and the used dataset. The MLP
returns an accuracy score for this feature selection
pipeline.

Let us see the second pipeline: The feature ex-
traction pipeline. Since this part is about feature ex-
traction, the importance of the features is analyzed
by a PCA algorithm. Like in the feature selection
pipeline, the features are placed in descending order
of importance. The method counts the n number of
features required to reach the value of the minimum
resolution parameter. Instead of simply dropping
the features, all the features are extracted to gener-
ate n new features called "Principal Component 1",
"Principal Component 2", ..., "Principal Component
n", (PC1, PC2, ... PCn). The resulting reduced
list feeds the MLP neural network that performs a
regression or a classification. In the end, the MLP
returns an accuracy score. This is the output of the
extraction pipeline.

Ultimately, the two resulting scores feed two
equations that compute the interpretability and in-
tegrity scores. The higher score will determine
the best method between feature selection (inter-
pretability) and feature extraction (integrity).

Figure 1: Architecture of the methodology

The following section describes each part of the
process and its machine learning algorithms.

3

2.3 Evaluation of features using Ran-
dom Forest

There are several machine learning methods to ana-
lyze the importance of the features in a dataset. One
effective method is the RF algorithm. Being a par-
ticular case of a Bayesian network, an RF is based on
multiple decision trees. A single decision tree may
lead to some bias. Having tenths of decision trees
gives better results, as it pools all the outcomes to
return the most frequent answer. The RF algorithms
are popular for solving some regression problems and
some classification problems. Furthermore, the so-
lution can be visualized in a tree graph where the
nodes represent the decision, the branches represent
the possible outcomes, and the leaves represent the
possible answers (combined with their probability).
Having the ability to compute a whole Bayesian
probability tree, the RF algorithm is also capable
of calculating the feature importance in the decision
process. It can evaluate the role of each feature in
producing the outcome. If a feature plays an essen-
tial role in the final decision, the value will be high.
On the opposite, the less a feature is important in
the final decision, the lower the importance value
will be. All the feature importances are normalized,
and the sum of all the features is 1. The final result,
a list of features and their importance, is needed at
the next step in the feature selection.

2.4 Feature selection using Random
Forest

This part of the whole method selects only the most
critical features, just enough to reach the minimum
resolution parameter value. For instance, if a re-
quired minimum resolution is set to 80%, and there
are five features of importance 35%, 30%, 15%, 10%,
and 10%. Then the first three features would be se-
lected. The sum of the first three more important
features gives 80%. Hence two more features are not
required. The resulting reduced list of features will
be helpful to the neural network in the next part.

2.5 Evaluation of features using PCA
The algorithm executes a PCA algorithm on the
dataset. At this time, the number of extracted fea-
tures equals the number of features. The result is
simply the importance of the features in an unsuper-
vised learning context. The target (for the regression
problem) or the class (for the classification problem)
is not considered. One of the outputs of this process
is the explained variance between the features. After
dividing this explained variable for each feature by

the total amount of variance, it gives the importance
of each feature for the extraction process.
This list of features and their importance will be es-
sential in the next step of the process.

2.6 Feature extraction using PCA
At this level, having the importance of the feature,
the goal is to extract the data of the feature to down-
size to the number of features required to reach the
minimum resolution parameter. The newly created
features are named "principal components" (PCs).
The first principal component (PC1) has the high-
est possible variance compared to the other princi-
pal components. The second principal component
(PC2) has the second-highest possible variance, and
so on. The advantage of this method is that the
data of every feature has been extracted and taken
into account. The disadvantage is that all the fea-
ture names are lost and replaced by non-significative
names like PC1, PC2, and PCn.
The resulting list of PCs will be the input of the
MLP neural network in the next part.

2.7 Determining target resolution
This part can be found in both feature selection and
feature extraction pipelines. In the case there is no
specified value for the target_resolution parameter,
the system will propose a good one, based on some
basic rules.

Before explaining the rules and the equations, let us
define what could be a "good resolution". When a
data scientist intuitively tries to find a "good place"
to divide (to keep on the left and drop on the right)
the features in descending importance order, he
looks at several points: 1. He makes a sum of the
most important features to ensure he has enough
data resolution. 2. He looks at the differences
between the importance of the features that are not
included in the minimum resolution needed. 3. He
selects the most important difference in this range
of features and cuts there. The key point is: having
a maximum resolution with a minimum dimension.
This intuitive method is the base of this proposed
algorithm.

The following are the formal rules to implement this
concept. First, every feature that is part of the last
30% of resolution and has an importance of less than
3% will not be kept. After having applied this rule,
equations (1), (2), (3) and (4) are defining each step
of the algorithm. (5) resumes whole equation sys-

4

tem. All the features are in descending order of im-
portance and multiplied by 10.

λf =
f.nb.∑
i=1

φi (1)

Where φ is the normalized importance of the feature,
f.nb. is the number of features, λ is the resolution of
the data at feature f.

∆f = φf − φf+1 (2)

Where ∆f is, at feature f, the difference of impor-
tance between one feature and the next feature.

w∆f = (∆f)2 (3)

Where w∆f is the weighted difference of the features
at feature f.

α = Maxn−1
i=1 λf + w∆f (4)

Where α is the best score.

α = n−1max
i=1

(
f∑

i=1
φi + (φf − φf+1)2

)
(5)

Fig. 2 explained some crucial components of the
equations using a typical graphic of the feature’s im-
portance. This representation is when f = 2 in the
iteration .

Figure 2: Equations variables explained, for f=2.

Fig. 3 shows the graph of the score for each fea-
ture/PC. It can be seen that every value has been
multiplied by 10. The blue part is the sum of the
features’ importance until the feature itself. The or-
ange part is the importance difference between the
feature itself and the following feature. The sum of
those two values is the score. The higher score is

kept as the α value, representing where the cut is
made.

Figure 3: Representation of the scores determining
the best place to cut.

Fig. 4 shows the final graph at the end of the pro-
cess. The vertical red line is situated where the cut
is made for feature selection or feature extraction.

Figure 4: Final graph at the end of the process.

2.8 Regression and classification us-
ing neural network

Both pipelines (feature selection and feature extrac-
tion) end with a neural network of type MLP. The
reason is to try the two new reduced sets of data, the
first from the feature selection process and the sec-
ond from the feature extraction process. According
to the nature of the data and parameter, MLP exe-
cutes a regression or classification on both datasets.
The algorithm uses k-Fold cross-validation (where
k=10) to ensure that the gradient descent does not
overfit the result. The algorithm usually quits before

5

the maximum epoch parameter allowed.
The architecture configuration of the MLP is shown
in the table 2.

Table 2: MLP architecture

Parameters Values
Solver Stoch. Gradient Descent
Learning rate 0.001
TOL 0.0001
Cross-validation K-Fold, k=10
Input neurons (as many as the number

of features/PCs)
Hidden layers 1
Neurons in hidden layer 1.2 X (# input neurons)
Output neurons (as many as the number

of targets/classes)
Max Epoch 100000

The result is the accuracy percentage for feature se-
lection and feature extraction pipeline. The two de-
cision equations will need those results in the next
step.

2.9 Choice between feature extrac-
tion and feature selection

First, let us define the important "interpretabil-
ity/integrity" axis. It is crucial since it is at the
heart of the choice between a feature selection and
a feature extraction. The feature selection favours
interpretability. It has the advantage of keeping
each feature’s name intact, except for those that are
dropped. For instance, if a dataset is composed of
4 features named Age, Weight, Height, and Blood
pressure, and the feature selection process drops the
Height feature, it will remain Age, Weight, and Blood
pressure. This feature selection process favours in-
terpretability. Although, some features and the con-
tained information are excluded from the reduced
dataset, disadvantaging the data integrity. On the
other part, feature extraction favours the integrity
of the data. When downsizing a dataset, the in-
formation included in all the features is considered.
Better integrity of data is kept compared to feature
selection. The counterpart is that all of the names
of the features are lost, being replaced by abstract
other names called "Principal component", or PC.
Using the same example as above, our features Age,
Weight, Height, and Blood pressure would become
PC1, PC2 and PC3 after the feature extraction pro-
cess. A feature called PC1, is less interpretable than
a feature named Age, for instance.
Two parameters are defining this interpretabil-
ity/integrity axis: 1. interpretability-oriented and

2. integrity-oriented. Both are on a scale of 0% to
100%, representing the importance of the axe. The
sum of those percentages must be equal to 100%.
Both parameters describe how important this value
is.
The decision can be taken after the result of both the
feature selection pipeline and the feature extraction
pipeline. The decision considers both the perfor-
mance of the MLP regression/classification and the
preference of the data scientist for interpretability or
integrity.
An interpretability score is computed as defined in
(6)

interprets = interpretp ∗MLP.accuracyfs (6)

interpret_s is the interpretability score, inter-
pret_p is the interpretability parameter, and
MLP.accuracy_fs is the accuracy of the MLP algo-
rithm after a feature selection. Similarly, an integrity
score is computed in (7)

integs = integp ∗MLP.accuracyfe (7)

integ_s is the integrity score, integ_p is the integrity
parameter, and MLP.accuracy_fe is the accuracy of
the MLP algorithm after a feature extraction.
The two scores are compared, and the higher
will be the algorithm’s choice. Then, the new
set of features/PCs will be returned according to
the algorithm choice (feature selection or feature
extraction). The justification of the decision is also
displayed and returned to the data scientist.
The justification of the decision is composed of
1. Normalized importance of features after the
RF process 2. Normalized importance of features
after the PCA process 3. Best MLP Accuracy for
Feature selection 4. Best MLP Accuracy for feature
extraction 5. Interpretability score 6. Integrity
score 7. Chosen method (selection of extraction)
8. Number of selected features to obtain the target
resolution (if feature selection is used) 9. Number of
principal components to obtain the target resolution
(if feature extraction is used) 10. Resolution of data
reached.

6

3 Results

3.1 MLP accuracy before reduction
of dimensionality

An MLP (regressor or classifier, according to the
nature of the datasets) algorithm has been executed
on every dataset to establish an accuracy reference.
Table 3 shows the accuracy of the MLP model
before having reduced dimensionality on datasets.

Table 3: MLP accuracy for datasets before reduction
of dimensionality

Dataset Type Rows Feat. Acc.
1. Regression 500 5 99.99
2. Classification 500 5 93.20
3. Regression 500 25 99.99
4. Classification 500 25 96.20
5. Regression 1000000 8 99.99
6. Classification 10000 100 98.86

3.2 Cases using different parameters

The following part describes six cases. The cases
are based on the dataset presented in table 1 and
use different parameter values to test the proposed
method. Each case shows how the orientation and
the resolution parameters affect the decision process.

Case 1: Simple selection
This scenario is based on dataset 1, which is
a regression problem. We suppose that it is
equally important to orient the results toward
data interpretability and data integrity and that
a good feature resolution is needed. The value of
interpretability-oriented = 0.5, integrity-oriented
= 0.5 and target-resolution = 90% has been used.
Table 4 shows the results using this configuration.

Table 4: Algorithm results using interpretabil-
ity_oriented = 0.5, integrity_oriented = 0.5 and
target_resolution = 90%

Metrics Values
Dataset 1
Problem type Regression
Initial nb. of features 5
Nb. of rows 500
MLP Accuracy (Selection) 0.961
MLP Accuracy (Extraction) 0.941
Interpretability score 0.481
Integrity score 0.471
Chosen method SELECTION
Number of selected features/PCs
to obtain target resolution 4
Resolution (target) 90.0%
Resolution (actual) 96.4%

In this scenario, the parameter interpretability-
oriented has an equal value to the integrity-oriented
value. When (6) and (7) are calculated, the inter-
pretability score is higher than the integrity score
because of the higher score of the MLP accuracy.
To reach 90% of the resolution, we must use the
best 4 of the five features. It reaches a resolution of
96.4%. Fig. 5 shows the result of the dimensionality
reduction after the feature selection process.

Figure 5: Result of the reduction of dimensionality
for case 1.

The X-axis contains the features, and the Y-axis is
the feature importance level. Features are placed in
descending order. The Red line shows the division
where the features are kept (left side) and dropped
(right side).
The conclusion is that if the interpretability and
integrity parameters are equal, the decision will be
taken as the result of the MLP accuracy based on
the data. In other words, if the data scientist does

7

not have a preference, then the algorithm will go
for a better match in the data.

Case 2: Simple extraction
Relying on dataset 2, this scenario addresses a
classification problem. The value of interpretability-
oriented = 0.4, integrity-oriented = 0.6 and
target-resolution = 75% has been used. Table 5
shows the results with this configuration.

Table 5: Algorithm results using interpretabil-
ity_oriented = 0.4, integrity_oriented = 0.6 and
target_resolution = 75%

Metrics Values
Dataset 2
Problem type Classification
Initial nb. of features 5
Nb. of rows 500
MLP Accuracy (Selection) 0.936
MLP Accuracy (Extraction) 0.934
Interpretability score 0.374
Integrity score 0.560
Chosen method EXTRACTION
Number of selected features/PCs
to obtain target resolution 4
Resolution (target) 75.0%
Resolution (actual) 87.3%

Fig. 6 presents the result of the dimensionality re-
duction for this second case.

Figure 6: Result of the reduction of dimensionality
for case 2.

In this scenario, the parameter interpretability-
oriented has a slightly lower value than the integrity-
oriented value. Calculating (6) and (7), the inter-
pretability score is lower than the integrity score, so
the feature extraction process is preferred. To reach
75% of the resolution, we must reduce it to 4 fea-

tures, and it reaches a resolution of 87.3%.
Hence, if the accuracy results are about the same for
both selection and extraction, the interpretability
and integrity parameters will be the tiebreaker.

Case 3: 25 features, no predetermined reso-
lution parameter
This scenario addresses a regression problem. The
number of features (25) is higher than in the two
first scenarios (5). The parameters orient the
results toward integrity, and the parameters do
not give the resolution of the feature. The value
of interpretability-oriented = 0.8, and integrity-
oriented = 0.2 has been used. Table 6 displays the
results with this configuration.

Table 6: Algorithm results using interpretabil-
ity_oriented = 0.8, integrity_oriented = 0.2 and
target_resolution = N.A.

Metrics Values
Dataset 3
Problem type Regression
Initial nb. of features 25
Nb. of rows 500
MLP Accuracy (Selection) 0.963
MLP Accuracy (Extraction) 0.912
Interpretability score 0.777
Integrity score 0.183
Chosen method SELECTION
Number of selected features/PCs
to obtain target resolution 6
Resolution (actual) 82%

The result of the feature selection is presented in
Fig. 7.

Figure 7: Result of the reduction of dimensionality
for case 3.

The feature selection is chosen without surprise since

8

the interpretability parameter value is significantly
higher than the integrity parameter. The main point
for this case is that, for 25 parameters, the algorithm
has chosen a reasonable resolution of its own, accord-
ing to the equations presented in 2.7.
We can conclude that the feature selection has been
made correctly and automatically.

Case 4: 25 features, no parameters at all
Using dataset 4, this case addresses a classification
problem. The number of features is still 25, as in the
last scenario. In this case, no parameter are passed
to the algorithm so the default values are used. The
default value of interpretability-oriented is 0.5, and
integrity-oriented is 0.5. The target-resolution is
automatically calculated to fit the equations in 2.7.
Table 7 shows the results with this configuration.

Table 7: Algorithm results using no parameter

Metrics Values
Dataset 4
Problem type Classification
Initial nb. of features 25
Nb. of rows 500
MLP Accuracy (Selection) 0.946
MLP Accuracy (Extraction) 0.946
Interpretability score 0.473
Integrity score 0.473
Chosen method SELECTION
Number of selected features/PCs
to obtain target resolution 1
Resolution (actual) 83%

The result of the feature selection is presented in
Fig. 8.

Figure 8: Result of the reduction of dimensionality
for case 4.

In this scenario, the data scientist’s preference is

unknown since no parameter is passed to the algo-
rithm. The MLP accuracy is the same for feature
selection and feature extraction. In this rare case,
interpretability is preferred because the feature’s la-
bels are kept. There is no specified parameter for
the data resolution, so the algorithm calculates it.
Only one feature was required, and a resolution of
83% was reached.
The algorithm can deal without any parameter if
the data scientist does not want to interfere. Also,
only one feature can be selected if it has enough
importance.

Case 5: 8 features, 1,000 000 rows and no
predetermined resolution parameter
A classification problem is executed using this
dataset 5. The model’s scalability is tested with
only eight features but 1,000 000 rows. There
is more weight to the integrity (0.6) rather than
interpretability (0.4). No resolution parameter is
specified. Table 8 shows the results.

Table 8: Algorithm results using interpretabil-
ity_oriented = 0.4, integrity_oriented = 0.6 and
target_resolution = None

Metrics Values
Dataset 5
Problem type Regression
Initial nb. of features 8
Nb. of rows 1000000
MLP Accuracy (Selection) 0.980
MLP Accuracy (Extraction) 0.993
Interpretability score 0.392
Integrity score 0.600
Chosen method EXTRACTION
Number of selected features/PCs
to obtain target resolution 7
Resolution (actual) 98%

The result of the feature selec-
tion is presented in Fig. 9.

9

Figure 9: Result of the reduction of dimensionality
for case 5.
This scenario aims to prove that the algorithm still
can perform using more data. There are a million
rows in this dataset. Note that to reach the calcu-
lated 98% of the resolution, we must extract seven
features of the eight original features.
The conclusion is that the method is still working,
with a million data. The scalability aspect of this
method will be discussed in 3.3.
Case 6: 100 features, 10 000 rows and no
predetermined resolution parameter
Using dataset 6, this scenario addresses a classifi-
cation problem. The number of features is high to
100 but has fewer rows (10 000) than in the last
scenario. The parameters orient the results toward
interpretability (0.8). Table 9 displays the results
with this configuration.

Table 9: Algorithm results using interpretabil-
ity_oriented = 0.8, integrity_oriented = 0.2 and
target_resolution = None

Metrics Values
Dataset 6
Problem type Classification
Initial nb. of features 100
Nb. of rows 10000
MLP Accuracy (Selection) 0.875
MLP Accuracy (Extraction) 0.988
Interpretability score 0.700
Integrity score 0.198
Chosen method SELECTION
Number of selected features/PCs
to obtain target resolution 1
Resolution (actual) 57%

At the opposite of the other cases, no figure is
presented for this case since the 100 features make
the graphic unreadable.

This method is still efficient, having 100 features. In
this case, only one feature represents 57% of the res-
olution. Therefore, the selection was made on only
one feature. This case aims to prove the scalability
of the method. It will be discussed later in 3.3.

3.3 Scalability
The proposed algorithm was tested on a server
with the following configuration: 11th Gen Intel(R)
Core(TM) i9-11900K @ 3.50GHz with 64Gb of RAM
and an operating system Windows 11 64 bits. Hav-
ing the execution time for each case, this part shows
the algorithm’s scalability according to the number
of features and the number of data (rows in the
dataset).
Fig. 10 and 11 help to validate the scalability of
the proposed method. They show the training time
with two different large-scaled configurations. X axe
represents the number of data trained, and Y rep-
resents the required time to train this data. Blue
points are the mean of the evaluation points, and
the blued area is the range of the evaluation points.
First, let us examine case number 5. In this scenario,
a million rows were used to train the model. Fig.10
shows the execution time for each evolution of train-
ing data through training time using eight features
in an MLP after a feature extraction process.

Figure 10: Scalability after feature extraction (case
5) using a MLP

According to the nature of the reduced data, the
line is not perfectly linear, but a trend can be seen.
We can conclude that the method does not take too
much time, even when processing a million of data
and eight features. At least, we can see that the
growth is not exponential.

Let us examine case number 6, where only 10000

10

rows are used to train the model, but with 100 fea-
tures. Fig.11 shows the training time using 100 fea-
tures in an MLP after a feature selection process.

Figure 11: Scalability after feature selection (case 6)
using MLP

This line is quite linear, too, showing that there
is no scalability problem with using 100 features.
No exponential growth is observed.

In Fig. 12 and Fig.13, 11 new datasets has been
generated using the same methodology as described
in 2.1. Both graphics show the total execution time
of the whole methodology (including the evaluation
of the features, the feature selection, the feature ex-
traction, the MLP, and the decision process)

In Fig.12 the processing time is according to the
number of features shown.

Figure 12: Running time for different number of fea-
tures

We can see that the line is almost perfectly
linear, meaning that the method is scalable up to
100 features. Case 5 shows that the results are

correct. Fig. 13 shows the processing time
according to the number of data (rows).

Figure 13: Running time for different number of
rows

Here again, the line is almost linear. It means
that this method is scalable to a million rows. Case
6 shows the correctness of the results.

3.4 Method validation

This last part validates the method. 250 realis-
tic random cases have been generated to verify the
classification of each point by the algorithm. The
simulation chooses a random accuracy (between 0.6
and 0.99) for feature selection and feature extrac-
tion. The feature extraction and selection cor-
relate in a +/- 0.2 range. The interpretability-
oriented parameter is also randomly selected, and
the integrity-oriented parameter is defined using 1 -
(the interpretability-oriented value). Using 6 and 7,
the decision is taken whether the point is classified in
interpretability (feature selection) or integrity (fea-
ture extraction). Fig. 14 shows the classification of
the points. Red points will use a feature extraction
process (for better integrity), and the blue points
will use a feature selection process (for better inter-
pretability). A black line divides the interpretability
and integrity domains.

11

Figure 14: Classification of the interpretability
scores and integrity scores.

Note that the points will never have a high
value on both axes. The interpretability importance
parameter is the inverse of the integrity importance
parameter (α and 1 − α). The algorithm never
misclassifies the point since it uses a threshold to
do the classification. This part of the method is
straightforward, but it is a better way to make the
best decision having all the data gathered in the
previous parts of the whole algorithm.

4 Discussions
This new method can be compared to a method
called "DPDRC, Decision Process for Dimensionality
Reduction before Clustering" [10]. Both have a simi-
lar utility, although having a critical difference. DP-
DRC is proposed in an unsupervised learning con-
text (namely, the clustering process), and DPDR is
proposed in a supervised learning context (for regres-
sion and classification). Both methods aim for the
same goal: To assist a data scientist in the decision
process of reduction of dimensionality. An essential
addition of DPDR is that it can determine its degree
of resolution according to its equation. DPDRC uses
the FRSD [23] algorithm to evaluate the feature im-
portance in an unsupervised context, generating a
silhouette index for cluster consistency metric. It
also ends by generating some clusters using the k-
means algorithm. Since dimensionality reduction is
also helpful in a supervised learning context, the pro-
posed DPDR method replaces the FRSD algorithm
with the RF algorithm. The label is already included
in the datasets, so there is no need to generate new
ones as FRSD does in DPDRC. At the end of the
process, the clustering is replaced by regression or

classification, depending on the dataset type. Both
are complementary and have their utility, according
to the supervised or the unsupervised context.

Results of the compared methods are shown in
10. Cases come from both Case 1 of the respective
study. The number from each case cannot be
compared directly since they use two different
datasets. DPDRC is an unsupervised clustering
problem, and DPDR is a supervised regression
problem. Although, the table shows some typical
results and magnifies the differences between these
two approaches.

Table 10: Comparison between DPDRC and DPDR
metrics

Metrics DPDRC DPDR
Context Unsupervised Supervised
Problem type Clustering Regression
Best FS silhouette index 0.390 N.A.
Best FE silhouette index 0.353 N.A.
Best FS MLP accuracy N.A. 0.961
Best FE MLP accuracy N.A. 0.941
Interpretability score 0.351 0.481
Integrity score 0.035 0.471
Chosen method Selection Selection
Number of selected features
to obtain target resolution 7 4
Resolution 88.3% 94.4%
Best number of clusters (k) 3 N.A.
This table shows that DPDR follows the same

DPDRC concept but in a supervised learning con-
text. Those methods complement the typical feature
selection and feature extraction processes.

Comparing those two methods (DPDR and DP-
DRC) with RF (for a feature selection) and PCA (for
feature extraction), we note that those last methods
do not take any decision regarding the best point to
cut. On the opposite, DPDR and DPDRC are built
to orient the process toward RF or PCA and keep
the right number of features according to a prede-
termined or calculated target resolution.

This method can help in many circumstances.
There are several situations where choosing a good
reduction of dimensionality technique is not clear,
and this method is helpful. Also, this method helps
to know how many features (representing how much
resolution) to extract or select.

Example 1: There are many situations where re-
ducing dimensionality can help visualize the data.
Data are especially easy to visualize in 2D or 3D,
but the dataset could have higher cardinality (6, for
instance). In this case, there is a need to downsize
the number of features to better visualize the data.

12

The same can apply with an even higher cardinal-
ity (let’s say 30). By reducing the cardinality of the
dataset to 6, it would then be possible to present the
data with a radar graphic. What would be the best
method to reduce dimensionality in that situation?
There is no clear answer to that. Data can be more
interpretable if every original feature label is kept.
But it is also good to have data with better integrity,
even if the labels are as abstract as "PC1", "PC2",
etc. So both are good choices, and the data scien-
tist just has to enter his preferences in the algorithm
parameters.

Example 2: The dimensionality reduction can
help reduce the overfitting problem. Dimensionality
reduction finds a lower number of variables or re-
moves the least important features from a dataset.
The model complexity is reduced, and often some
noise vanishes in this process, reducing the risk of
overfitting. Both feature selection and feature ex-
traction are helping to do so. The works of Richard
Bellman [5] explain all the disadvantages of having
too much dimension in a dataset. Bellman calls it
"The curse of dimensionality".

Other examples: There are several other situa-
tions where the decision is not obvious, though it
is required to downsize the dataset. This Bellman’s
"Curse of dimensionality" has other disadvantages.
The dimensionality reduction reduces the execution
time for training and testing the model. It simpli-
fies the model and improves its accuracy. This new
method not only helps make a good decision about
the method of reduction of dimensionality, but it
also helps to find how many features or PCs to keep
and discard.

The main contribution of this paper is to define a
new complete method in a supervised learning con-
text that makes the right choice of dimensionality
reduction. It also helps to choose how many features
to remove to downsize to the needed data resolution.
This process is done according to the data scientist’s
preferences.

Two algorithms were needed to evaluate the fea-
ture’s importance: RF and PCA. The first evaluates
the feature importance for feature selection and the
second for feature extraction. RF returns the impor-
tance of the feature according to the feature’s utility
to find the target feature or its class, and PCA gives
the importance of the features according to the co-
variance with other features. Both explain the im-
portance of the features in the dataset, using their
definition of "importance".

The decision process uses two basic equations,
(6) and (7), based on the data scientist’s preferences
concerning interpretability and integrity. If not spec-

ified, the resolution to keep is specified by (5). The
process ends by performing regression or classifica-
tion according to the nature of the dataset. The
performance is evaluated, and the result of this MLP
neural network is returned to the data scientist, sup-
plying a full solution using the correctly reduced-
sized dataset.

Fig. 10, 11, 12 and 13 are showing, for the tested
values, that there are no scalability problem. Re-
garding the scalability, we can conclude that there is
no problem using up to a million data (rows) and 100
features. The figure shows certain linearity between
the quantity of data (rows and features) and the ex-
ecution time. No exponential curve is observed.

The validation of the method is shown in Fig. 14.
It shows that the algorithm makes a good decision
of feature selection or extraction using 250 generated
data and parameters.

5 Conclusion
In a supervised learning context, this paper
proposed a novel method to select the correct di-
mensionality reduction technique between a feature
selection and a feature extraction and calculate
the correct number of features or PCs. It finally
executes a regression or a classification to end
resolving the problem using the downsized dataset.

In the future, this method can be improved by
optimizing the parameters of each algorithm needed
(RF, PCA, and MLP). There are many ways to
do some regressions and some classifications. Dif-
ferent other types of neural networks can be tried,
having different parameters. Some other algorithms
like support vector machines (SVM) can be tested.
There are many possible configurations of parame-
ters that can be tried to execute the RF algorithm
and the PCA algorithm. It would also be possible
to test the scalability on a higher volume of data. It
can be on over a million rows and over a hundred
features. Furthermore, new data presentations can
be added to improve this method.

6 Acknowledgement
This work has been supported by the "Cellule
d’expertise en robotique et intelligence artificielle"
of the Cégep de Trois-Rivières.

References
[1] sklearn.datasets.make_classification.

13

[2] sklearn.datasets.make_regression.

[3] Li-Minn Ang, Kah Phooi Seng, Adamu Mur-
tala Zungeru, and Gerald K. Ijemaru. Big sen-
sor data systems for smart cities. Conference
Name: IEEE Internet of Things Journal.

[4] Julian Avila and Trent Hauck. scikit-learn
Cookbook: Over 80 recipes for machine learn-
ing in Python with scikit-learn. Packt Publish-
ing Ltd. Google-Books-ID: kkFPDwAAQBAJ.

[5] R. Bellman, R.E. Bellman, and Rand Corpo-
ration. Dynamic Programming. Rand Corpora-
tion research study. Princeton University Press.

[6] Gérard Biau and Erwan Scornet. A random
forest guided tour. Test, 25(2):197–227, 2016.

[7] Bounds, Lloyd, Mathew, and Waddell. A mul-
tilayer perceptron network for the diagnosis of
low back pain. In IEEE 1988 International
Conference on Neural Networks, pages 481–489
vol.2.

[8] Yaping Chang, Wei Li, and Zhongming Yang.
Network intrusion detection based on ran-
dom forest and support vector machine. In
2017 IEEE International Conference on Com-
putational Science and Engineering (CSE) and
IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), volume 1,
pages 635–638.

[9] Cai-ping Chen, Yong-jian Ding, and Shi-yin
Liu. City economical function and industrial
development: Case study along the railway line
in north xinjiang in china. 134(4):153–158. 153.

[10] Jean-Sébastien Dessureault and Daniel Mas-
sicotte. DPDRC, a novel machine learning
method about the decision process for dimen-
sionality reduction before clustering. 3(1):1–21.
Number: 1 Publisher: Multidisciplinary Digital
Publishing Institute.

[11] Toma Gulea. How not to use random forest.

[12] Joesph Holt and Scott Sievert. Training ma-
chine learning models faster with dask. In SciPy
Conferences, 2021.

[13] N. Keshava and J.F. Mustard. Spectral unmix-
ing | IEEE journals & magazine | IEEE xplore.

[14] Oliver Kramer. Scikit-learn. In Oliver Kramer,
editor, Machine Learning for Evolution Strate-
gies, Studies in Big Data, pages 45–53. Springer
International Publishing.

[15] Kinam Kwon, Dongchan Kim, and Hyun-
Wook Park. A parallel MR imag-
ing method using multilayer percep-
tron. 44(12):6209–6224. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mp.12600.

[16] Guillaume Lemaıtre, Fernando Nogueira, and
Christos K Aridas. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced
datasets in machine learning. Journal of Ma-
chine Learning Research, 18(17):1–5, 2017.

[17] Maria-Lluïsa Marsal-Llacuna, Joan Colomer-
Llinàs, and Joaquim Meléndez-Frigola. Lessons
in urban monitoring taken from sustainable and
livable cities to better address the smart cities
initiative. 90:611–622.

[18] Y. S. Park and S. Lek. Chapter 7 - artificial
neural networks: Multilayer perceptron for eco-
logical modeling. In Sven Erik Jørgensen, edi-
tor, Developments in Environmental Modelling,
volume 28 of Ecological Model Types, pages 123–
140. Elsevier.

[19] Angshuman Paul, Dipti Prasad Mukher-
jee, Prasun Das, Abhinandan Gangopadhyay,
Appa Rao Chintha, and Saurabh Kundu.
Improved random forest for classification.
27(8):4012–4024. Conference Name: IEEE
Transactions on Image Processing.

[20] Stacey Ronaghan. The mathematics of decision
trees, random forest and feature importance in
scikit-learn and spark.

[21] F. Rosenblatt. The perceptron: A probabilistic
model for information storage and organization
in the brain. 65(6):386–408. Place: US Pub-
lisher: American Psychological Association.

[22] H. Taud and J.F. Mas. Multilayer perceptron
(MLP). In María Teresa Camacho Olmedo,
Martin Paegelow, Jean-François Mas, and Fran-
cisco Escobar, editors, Geomatic Approaches
for Modeling Land Change Scenarios, Lec-
ture Notes in Geoinformation and Cartography,
pages 451–455. Springer International Publish-
ing.

[23] Jaehong Yu, Hua Zhong, and Seoung Bum
Kim. An ensemble feature ranking algorithm
for clustering analysis. 37(2):462–489. Com-
pany: Springer Distributor: Springer Institu-
tion: Springer Label: Springer Number: 2 Pub-
lisher: Springer US.

14

	1 Introduction
	2 Methodology
	2.1 Datasets and features
	2.2 Proposed model design
	2.3 Evaluation of features using Random Forest
	2.4 Feature selection using Random Forest
	2.5 Evaluation of features using PCA
	2.6 Feature extraction using PCA
	2.7 Determining target resolution
	2.8 Regression and classification using neural network
	2.9 Choice between feature extraction and feature selection

	3 Results
	3.1 MLP accuracy before reduction of dimensionality
	3.2 Cases using different parameters
	3.3 Scalability
	3.4 Method validation

	4 Discussions
	5 Conclusion
	6 Acknowledgement

