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Abstract
Traditional manufacturing control systems such as Manufacturing Execution Systems (MES) or SCADA (Supervisory Control 
And Data Acquisition) were not designed for Industry 4.0 paradigm. Industry 4.0 implies that more data variables must be 
automatically monitored and data must be captured at a higher frequency: from one value of a few key variables to values 
of several variables captured at frequencies of seconds. Thus, new architectures and tools are required to merge Informa-
tion Technology (IT) and Operation Technology (OT) fields and to meet Industry 4.0 requirements. This paper proposes 
a lightweight architecture based on micro-services and time series data requirements to connect to manufacturing process 
controllers, and to capture, store, monitor and visualize relevant data about the process. Moreover, a reference implementa-
tion based on Open Source tools is presented. This implementation has been validated by members of the maintenance team 
of a factory from Lecta, a paper manufacturer. The implementation has proven to be a new valuable tool providing further 
insights and customized alarms of the manufacturing process.

Keywords Cyber physical system · Industry 4.0 · Time series · Edge computing

Introduction

Pushed by the Industry 4.0 paradigm, the volume of data 
being captured from manufacturing lines is continuously 
increasing. To get a deeper insight of manufacturing pro-
cesses, more data variables are being monitored and data is 
captured at a higher frequency: from one value of a few key 
variables for a whole batch, to time series of several vari-
ables captured at frequencies of seconds. Traditional Manu-
facturing Execution Systems (MES) were not designed for 
this scenario. Even traditional SCADA (Supervisory Control 
And Data Acquisition) systems, that control the manufactur-
ing process and capture and visualize data at frequencies of 

seconds, have limited functionalities to store, analyze, and 
visualize data. Most SCADA systems allow operators and 
maintenance teams to set basic alarms to check if certain 
variables are out of range, but configuration and alarm rule 
and notification systems are usually complex to manage and 
offer limited functionalities. Moreover, data captured by tra-
ditional SCADA systems are complex to be exported and 
analyzed out of the SCADA itself.

Thus, new architectures are required to integrate Infor-
mation Technology (IT) and Operations Technology (OT) 
fields. This implies a myriad of IT and OT technologies, 
standards and specifications related to Industry 4.0.

The complexity of this integration generates a knowledge 
barrier as these IT technologies follow a completely different 
philosophy from the regular tools used by OT engineers and 
maintenance teams. Thus, small- and medium-sized enter-
prises (SMEs), which generally lack multidisciplinary teams 
with the required IT and OT knowledge and experience, face 
big difficulties to capture, monitor, and visualize data from 
manufacturing processes.

Standard reference architectures such as RAMI 4.0 sup-
port advanced Industry 4.0 use cases, adding additional 
technological complexity, which does not add value for 
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most SMEs starting to monitor time series data from their 
processes.

Existing market solutions rely on external cloud servers 
to perform these tasks, adding a dependency on servers out 
of the control of manufacturing companies, which is not 
compatible with privacy and confidentiality requirements 
of several manufacturing companies.

This paper tackles this complexity by proposing a con-
tainerized micro-service-based edge architecture to moni-
tor and visualize manufacturing processes. The architec-
ture connects to manufacturing controllers to acquire time 
series data about the processes, and then stores it on a 
time series database to be monitored and visualized. Fur-
thermore, a reference implementation of the architecture 
based on Open-Source tools is presented and validated 
with a simulated process. After a first successful valida-
tion of the architecture with a basic boiler simulation [5], 
this paper focuses on the deployment and validation of the 
architecture on a real industrial scenario.

This paper presents a real implementation deployed and 
validated at the paper factory from Lecta in Leitza. This 
factory specializes in carbonless, thermal, metallized, cast-
coated papers, and has a production capacity of 118,000 
tons per year. The implementation has been led by the 
maintenance team of Lecta. Currently, they have a WinCC 
SCADA system controlling ovens and pipes injecting hot 
air into the paper manufacturing line. This SCADA gener-
ates some synoptic dashboards with real-time data into a 
screen. However, this screen is located in a room close to 
the ovens but far away from the maintenance team office. 
Thus, as the SCADA requires someone to be in front of 
the screen to monitor the production process, dashboards 
are rarely used. Moreover, configuring alarms within the 
SCADA is a complex task. Current alarms were configured 
several years ago, when the heating system was installed. 
These alarms monitor key variables values that are within 
a predefined range, targeting potentially dangerous situa-
tions that may cause equipment to malfunction. However, 
daily too many alarms are fired. As nearly all of them do 
not harm the manufacturing line, they are ignored by the 
maintenance team. Finally, the SCADA has an internal 
database with a limited usability system to query and visu-
alize historical data from the last month. As this system 
requires too much effort to analyze data, it is rarely used.

The maintenance team has validated the implementa-
tion as a new tool to enhance their daily tasks with new 
functionalities. The new tool has been deployed at a Linux 
server of their Intranet. An Ethernet link between this 
server and the PLC has been enabled by the IT department 
of Lecta to allow communications. These functionalities 
have concentrated the main daily use of the tool:

• Customizable dashboards accessible from any equipment 
of the factory

• Customizable and flexible alarms. The team has already 
detected some situations where several variables are 
involved that do not cause manufacturing problems but 
produce inefficiencies, such as ovens heating air directed 
to closed pipelines. Moreover, they want alarms to be 
filtered according to their severity level.

• Customizable visualizations combining variables and 
personalized time-ranges to analyze past states of the 
manufacturing process.

The structure of the paper is as follows: “Related work” 
reviews the related work. “Architecture” presents the pro-
posed architecture, while “Reference implementation” intro-
duces the reference implementation. “Implementation and 
validation” focuses on the implementation and validation 
at Lecta. Finally, “Conclusions” presents main conclusions 
and future work.

Related Work

The German government presented the Industry 4.0 term 
in 2011. The objective of the fourth industrial revolution 
is to work with a higher level of operational productivity 
and efficiency, connecting the physical to the virtual world. 
Industry 4.0, also known as Industrial Internet of Things 
(IIoT), is related to several technologies, such as Internet of 
Things (IoT), Industrial Automation, Cybersecurity, Intel-
ligent Robotics, or Augmented Reality [2].

The term cyber-physical systems (CPS) was coined in the 
USA in 2006 and has received several definitions [4]. CPS 
is the merger of “cyber” as electric and electronic systems 
with “physical” things. The “cyber component” allows the 
“physical component” (such as mechanical systems) to inter-
act with the physical world by creating a virtual copy of it. 
This virtual copy will include the “physical component” of 
the CPS (i.e., a cyber-representation) through the digitaliza-
tion of data and information [2].

In general, a CPS consists of two main functional compo-
nents: (1) the advanced connectivity that ensures real-time 
data acquisition from the physical world and information 
feedback from the cyber space; and (2) intelligent data man-
agement, analytics and computational capability that con-
structs the cyber space [6].

First attempts to integrate advanced services from Indus-
try 4.0 on manufacturing environments were based on cloud 
computing. Cloud computing paradigm relies on remote 
servers with a storage and computing power magnitudes 
beyond local servers. However, cloud computing presents 
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four main disadvantages for manufacturing scenarios: 
latency, security, privacy, and cost.

Edge computing is a paradigm where data are analyzed 
and stored close to the devices generating and consum-
ing them, facing previous disadvantages and making them 
attractive for manufacturing scenarios [1, 9].

The main objective of edge computing is to exploit 
computational resources of interconnected devices to 
increase their independence and to get data analysis and 
exploitation closer to where data is generated. This para-
digm optimizes cloud computing paradigms moving data 
processing task (or part of them), to the edge of the net-
work. This philosophy is especially relevant for manufac-
turing scenarios.

Edge computing devices have increasingly power-
ful computation functionalities. This, combines with 
advanced connectivity technologies such as 5G, which 
offers a fast, robust, and massive connectivity, is paving 
the way for a new type of intelligent devices and services 
based on Artificial Intelligence.

Recently, various attempts have been made to transform 
manufacturing systems into interoperable, connected, and 
digitalized elements. However, the main challenges of the 
Industry 4.0, including cybersecurity, and standardized 
data interchange between devices, machines and services, 
are still opened [7]. In [9], a review of the application of 
edge computing paradigm into manufacturing scenarios 
is provided, identifying architectures, advances, and open 
challenges.

Existing international reference architectures for manu-
facturing scenarios, such as RAMI 4.0 or IIRA, propose 
reference models difficult to implement [10]. Moreover, 
architectures proposed by other authors target a lot of com-
plex functionalities related to the Industry 4.0 [3, 8, 11].

Thus, their implementation is time- and cost-consum-
ing, out of the reach of small and medium manufactur-
ing companies. The architecture proposed solves previ-
ous drawbacks to ease its deployment and targets mainly 
SMEs lacking IT and OT integration knowledge. The main 
characteristics of the proposed architecture are:

• Support time series data, to cope with the requirements 
of data captured from manufacturing processes.

• Edge deployment, to solve security, privacy, and latency 
disadvantages of cloud architectures.

• Micro-service and container-based, to decrease the 
knowledge barrier required to deploy the architecture.

• No-code tools reference implementation to decrease the 
knowledge barrier required to configure the architecture 
and to visualize and analyze data.

The architecture is focused on a specific case: monitor 
and visualize time series data from manufacturing processes. 
However, the architecture is flexible enough to be extended 
with new future services (for example to integrate Artificial 
Intelligence services), increase its performance, or integrate 
new communication and security mechanisms.

Architecture

This section presents a containerized micro-service-based 
edge architecture to lower the knowledge barrier required to 
integrate IT-OT fields and to capture, analyze, and visualize 
industrial data without requiring the use of cloud services. 
This section starts with a general description of the archi-
tecture and then presents a reference implementation based 
on Open Source tools.

The architecture is composed of the following compo-
nents: client, message queue, writer, time series database, 
visualizer, and monitor (Fig. 1). The manufacturing equip-
ment is the asset being monitored. Data from the equipment 
is captured from the manufacturing controller, which pub-
lishes it using standard communication specifications such 
as OPC-UA or MQTT.

The Open Platform Communications Unified Architec-
ture (OPC-UA) has become the interoperability standard for 
the secure and reliable exchange of data in the industrial 
domain, easing the tasks of capturing and exporting data. 
In the most common OPC UA communication paradigm, 
the manufacturing equipment has an OPC UA server that 
allows to read/write variables values and to invoke custom 
methods. Clients connect to the server to read/write values 
of the variables, to call remote methods, and to subscribe to 
receive changes on their values.

MQTT is a robust and trustworthy protocol, with imple-
mentations with very low computation requirements and 

Fig. 1  General architecture
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available for most of the current hardware and software plat-
forms. MQTT is based on a queue manager (broker), where 
different clients send messages (publish). Each message is 
sent with a certain subject (topic) and may contain data (pay-
load). Other clients can show their interest in certain topics 
to the que manager (subscribe). When the queue manager 
receives a message with some of these topics, it sends the 
message to the subscribed clients.

This communication paradigm based on publishing mes-
sages and subscribing to topics to receive them, has proved 
to be a robust, efficient, and low latency technology. Cur-
rently, it is one of the most used protocols for Internet of 
Things domain.

Although the proposed architecture does not impose the 
use of a communication protocol, authors recommend the 
use of OPC-UA or MQTT. Most modern Programable Logic 
Controllers (PLCs) already include OPC-UA or MQTT 
functionalities, and there are several specialized gateways 
on the market translating other industrial protocols to OPC-
UA or MQTT.

However, if this option is not available for some manu-
facturing scenario, it would be always possible to develop a 
custom communication module inside the client to get data 
from the manufacturing controller.

The first element of the architecture is the client. Its main 
task is to integrate and translate IT and OT technologies 
and protocols. It connects to the manufacturing equipment 
using OT protocols to obtain the values of the manufactur-
ing process and send these values using IT protocols to be 
stored, analyzed, and visualized. The client has to perform 
data cleaning and validation tasks to ensure the quality of the 
data, including the check of the timestamps. Moreover, when 
required, data has to be transformed to a proper format to 
be stored, for example to update numeric values to labels or 
Booleans, or to generate synthetic data from variables. Once 
data is ready, it is sent to the writer using a message queue.

The message queue decouples the client from the writer. 
It could be based on any technology, such as MQTT, as long 
as it satisfies the load requirements of each scenario.

The main task of the writer is to receive data from the 
message queue and to transform it into a proper format to be 
sent directly to the time series database to be stored.

The time series database manages data storage and 
retrieval operations. This database should have advanced 
functionalities to ease querying time series, and to aggregate 
data to optimize disk space utilization.

The visualizer is responsible to generate dashboards of 
the manufacturing processes, and to allow final users (opera-
tors, engineers…) to visualize and manually analyze data. 

The last element, the monitor, is focused on the generation 
of alarms and notifications when data of the manufacturing 
process is out of its regular range, or some conditions are 
fulfilled.

The architecture is based on decoupled micro-services 
designed to be deployed as containers. The objective is (i) to 
ease the deployment at the edge, and (ii) to allow individual 
changes or upgrades of each micro-service without having 
to update and validate the rest of the micro-services.

Reference Implementation

This section presents a reference implementation of the 
previous general architecture based on Open-Source tools. 
Each micro-service has been designed as a Docker container, 
and the architecture has been orchestrated with the docker 
compose tool.

The client has been implemented as a Python micro-
service. OPC-UA and MQTT support has been based on 
the FreeOpcUa library and the MQTT Paho library from 
the Eclipse Foundation. The client sends values of the vari-
ables to the message queue with a JSON payload with and 
object format. Each element of the object has three element: 
timestamp of the value, identifier of the equipment, and an 
object of data with variables name and value pairs. Thus, 
each message can include value for one or more variables.

The message queue has been implemented with Rab-
bitMQ, a lightweight and widely deployed Open-Source 
message broker. Although it requires more computing 
resources than MQTT, RabbitMQ supports several messag-
ing protocols and paradigms, and has better security and 
reliability features. Moreover, RabbitMQ includes internal 
buffers to avoid losing messages if the writer is temporarily 
overloaded and mechanisms to easily integrate new writer 
containers if several clients are sending data to the queue.

The writer has been implemented as a Python micro-ser-
vice. It receives messages from the queue, and transforms 
data into INSERT queries for the database. This insert que-
ries have to be formatted to fulfill the format expected by the 
SQL dialect of the database.

TimescaleDB has been selected as the time series data-
base engine over other alternatives such as InfluxDB due to 
its advanced functionalities, SQL language compatibility, 
and the rich PostgreSQL-based tooling ecosystem. Time-
scaleDB is an Open-Source database designed to make SQL 
scalable for time series data. It is engineered up from Post-
greSQL and packaged as a PostgreSQL extension.
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Traditional relational databases, such as MySQL or SQL 
Server, are not suited for the storage of time series data, as 
their performance decrease greatly as the data volume of the 
time series increases. NoSQL databases, such as MongoDB, 
have recently include support for time series data, but the 
functionalities they offer to work with time series data is 
still not comparable to the ones offered by TimescaleDB or 
InfluxDB.

Finally, both the visualizer and the monitor components 
have been deployed based on Grafana. Grafana is a popu-
lar multi-platform Open Source analytics and interactive 
visualization web application. Grafana is agnostic of the 
underlying database and has an intuitive user interface both 
to customize charts and dashboards, and to generate alerts 
and notifications based on advanced rules and notification 
channels.

All the micro-services have been deployed as docker con-
tainers within the same docker network. The Web access port 
from Grafana has been exposed within the client host to be 
accessible from a Web Client. Port 5432 from TimescaleDB 
has also been exposed to allow the use of PostgreSQL desk-
top tools such as pgadmin from the host machine. Informa-
tion to automatically connect micro-services and to manage 
data persistence of each container has been included inside 
the docker compose definition.

The main customization of the reference implementation 
to be deployed in a new scenario is related to OPC UA or 
MQTT, and the structure of the data and the database. For 
example, different OPC UA servers may send data either as 
an object, or as a several individual variables. Regarding 
MQTT, each controller may use different topic and payload 
definition to send data.

The design of the database is also specific of each sce-
nario. In a general scenario, a table with these columns 
would be enough to store data:

• Time: to store the timestamp of the value
• Id: to store the identifier of the equipment
• Variable: To store the name of the variable
• Value: To store the value of the variable. It should be a 

string to allow storing different data types

However, this design may present performance draw-
backs to retrieve data from the database, and to visualize 
and monitor it, as each value has to be parsed. Thus, it is 
recommended that each scenario designs its database table 
to store time series data.

For OPC-UA servers, a config file with the URL, and 
optionally the username and password, has to be updated. 
Moreover, a list of the identifier of each OPC UA node vari-
able has to be filled, including the name and type of each 

variable. For MQTT, server connection data (URL, user-
name and password) and the topic name have to be defined. 
Moreover, as MQTT payload is not standardized, code 
changes may be required on the client to read variable names 
and values from the MQTT messages.

Implementation and Validation

This section is focused on the implementation and valida-
tion of the reference implementation of the architecture 
in the RTO (Regenerative Thermal Oxidizer) system of 
the Leitza factory of Lecta. RTOs are one of the most 
widely accepted air pollution control technologies across 
industries. RTOs use a ceramic bed which is heated from 
a previous oxidation cycle to preheat the input gasses to 
partially oxidize them. The preheated gasses enter a com-
bustion chamber that is heated by an external fuel source 
to reach the target oxidation temperature which is in the 
range between 760 and 820 °C. Thus, it is very impor-
tant to recover the energy contained in the clean gasses to 
reduce the energy necessary for the treatment. To recover 
this energy, the thermoreactor uses ceramic beds that act 
as heat accumulators, capturing the heat of the exhaust 
gasses to transfer it, later, to the gasses to be treated. The 
RTO consists of three towers filled with ceramic elements, 
communicated at the top by the oxidation chamber.

The RTO SCADA system monitors 123 variables from 
a Siemens 1200 PLC, which controls the process. These 
variables include set and real values of temperatures, pres-
sures, air flows and state of air pumps (Fig. 2).

The reference implementation (Fig. 3) has been custom-
ized to communicate with the Siemens 1200 PLC. This 
PLC does not provide OPC UA or MQTT functionali-
ties, it communicates using the custom Siemens protocol 
S7. Thus, instead of including a gateway or a translation 
module from S7 to OPC UA or MQTT, a new S7 client 
has been developed in Python. This client is based on the 
Python-snap7 library, a wrapper to Snap7, a multi-plat-
form Ethernet communication suite for interfacing natively 
with Siemens S7 PLCs. This client loads a CSV file with 
the name, type, maximum allowed value (optional), mini-
mum allowed value (optional), and memory position of 
each of the 123 variables and periodically (2 s) reads their 
value. Instead of generating 123 queries to the PLC, vari-
ables are grouped according to the data block of the PLC 
they belong to. This way only 12 queries are sent per 2 s.

Once data of each variable has been read, the client 
send it to a RabbitMQ queue named “rto”. The next code 
shows an example partial payload of the message sent by 
the client:
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the client:
{

"data": {
"depuration": 31,

“plant_state”:4,
“Kv201a_opt”: 5330,
“kv203c_opt”:878,
….
}
},

},
"time": "2023-03-12T10:15:18.784Z",
"id": "rto"

}

 The writer receives these updates and sends them to 
the TimescaleDB database. Based on the previous CSV, 
a table has been created for the RTO with the following 
columns:

• Time: to store the timestamp of the value
• Id: to store the identifier of the RTO. As there is only one 

RTO, its value is always the same.
• One column for each of the 123 variables of the PLC

The writer receives each message and generates the fol-
lowing SQL query to insert data. The database receives the 
query and stores data on the table (Fig. 4).

Fig. 2  Dashboard from the RTO 
SCADA

Fig. 3  Deployed implementa-
tion
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INSERT INTO rto("time", “depuration”, “plant_state”, “kv201_a”, 
“kv201a_opt”,….,"id") VALUES ('2023-04-12T12:18:03.779Z', 30, 4,
1,5325,…,'rto’);

Fig. 4  Screenshot of a partial select query of the data

Fig. 5  Dashboard for pew272 
variable

Fig. 6  Query builder from 
Grafana



 SN Computer Science           (2024) 5:131   131  Page 8 of 10

SN Computer Science

The visualizer has been deployed as the latest version 
of Grafana. After configuring the data source to connect to 
the Timescaledb database, the previous CSV has been used 
to automatically generate one dashboard for each variable 
(Fig. 5).

Definition of each graph is easily customized using the 
available query builder (Fig. 6). Using the GUI a general 
SQL query is generated, and it is also possible to insert 
manual SQL queries to directly integrate advanced func-
tions from TimescaleDB such as time buckets. Time buckets 
allow to get uniformly distributed data points within a range, 
for example one value with the average of the values from 
the database every 10 min.

The maintenance team has been trained to easily generate 
new dashboards that visualize and combine several variables 
without requiring support from IT staff. Moreover, as each 
dashboard is linked to a unique URL that can be shared and 
is accessible from any browser within the factory, the main-
tenance team can generate custom visualization for certain 
users: operators, managers…

The notifier has also been integrated with Grafana. Based 
on the previous CSV, one alarm has been configured to fire 
for each of the variables with a maximum and minimum 
value. These alarms check the value of the variable is out of 

the predefined range. The name of each alarm is the name 
of the variable, and all of them have been assigned the same 
priority level. If some alarm is fired for a certain time, and 
email is sent to the maintenance team. The maintenance 
team can customize the priority level, contact points and 
notification policies of each alarm.

Moreover, three new alarms have been configured to 
monitor certain situations that led to breakdowns or effi-
ciency losses.

• Emergency variable. The first alarm is focused on the 
emergency variable. This is the most basic alarm, as it 
only checks the value of this variable is below 0.1

• Air losses. These alarms focus on situations where air 
pumps are closed but airflow is detected. This airflow 
is caused by a pump malfunction that leads to hot air 
losses, and thus is wasting energy. These alarms com-
bine the value of the detected air flow and the state of 
the air pumps. If there is a considerable air flow and the 
air pumps are supposed to be closed, an alarm is fired to 
notify an efficiency loss.

• Boiler fill time. From time to time, the boiler must be 
filled to avoid breakdowns. An excess of the filling time 
is a sign that a maintenance operation is required to avoid 

Fig. 7  Example of a complex 
rule generation
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further problems. This alarm analyzes the filling time 
after the minimum level has been reached and fires it is 
exceeded an stablished threshold.

The alarms are easily configured using the Grafana GUI 
(Fig. 7). For each alert rule, after selecting the data source 
and the related table and column, several conditions can be 
applied to decide whether an alert should be raised.

Grafana has a powerful alert customization and notifica-
tion mechanism able to suit most of the regular requirements 
to monitor manufacturing equipment. Once rules have been 
defined, labels can be attached to them to ease their manage-
ment. Then, a notification policy is applied where several 
filters regarding time, labels, severities… allow to decide 
whether the alert has to be redirected to any of the available 
notification channels. There are several notification channels 
(email, slack, PagerDuty…) available, and custom ones can 
also be defined.

The whole system has been defined as docker contain-
ers orchestrated within a docker compose file. This docker 
compose file can be used as a template to be deployed in 
new scenarios, after updating the points mentioned in the 
previous section. The deployment is running on a server of 
the intranet from Lecta running a Ubuntu 22.04.1 LTS on a 
8 GB RAM and 4 CPU virtual machine inside an Intel(R) 
Xeon(R) CPU E5-2440 0 @ 2.40 GHz server.

The maintenance team from Lecta has successfully vali-
dated the system to perform three main tasks:

• Generate customized dashboards
• Generate customized and flexible alarms.
• Generate customized visualizations

Furthermore, the system has confirmed with data that 
efficiency loss situations detected by the experience of the 
operators were actually happening. Thus, these situations 
can be detected and measures to avoid them can be planned.

Conclusions

Industry 4.0 requires data to get insights of the manufac-
turing processes. Thus, requirements to capture more data 
variables and at a higher frequency arise: from one value of 
a few key variables for a whole batch, to time series of sev-
eral variables captured at frequencies of seconds. Traditional 
Manufacturing Execution Systems (MES) were not designed 
for this scenario composed by a high volume of time series 
data of manufacturing processes. Even traditional SCADA 
(Supervisory Control And Data Acquisition) systems, that 
control the manufacturing process and capture and visualize 

data at frequencies of seconds, have limited functionalities 
to store, analyze, and visualize data.

Thus, new architectures are required to integrate Infor-
mation Technology (IT) and Operations Technology (OT) 
fields. This implies a myriad of IT and OT technologies, 
standards and specifications related to Industry 4.0, with a 
high complexity level. SMEs are not ready to cope with this 
complexity level.

This paper tackles this complexity by proposing a con-
tainerized micro-service-based edge architecture to moni-
tor and visualize manufacturing processes. The architecture 
connects to manufacturing controllers to acquire time series 
data about the processes, and then store it on a time series 
database to be monitored and visualized. A reference imple-
mentation of the architecture based on Open-Source tools 
has been presented. Moreover, the implementation has been 
deployed and validated at the Leitza paper factory of Lecta 
to monitor the RTO system.

The architecture is based on decoupled containers to be 
easily deployed at the edge. It has four main elements. The 
client is the component integrating OT and IT domains: it 
connects to the manufacturing equipment using OT tech-
nologies to obtain the values of the manufacturing process. 
Once data is ready, it is sent to the writer using a message 
queue, already within the IT domain.

The main task of the writer is to receive data from the 
message queue and to transform it into a proper format to 
be sent directly to the time series database to be stored. The 
time series database manages data storage and retrieval 
operations.

The visualizer is responsible to generate dashboards of 
the manufacturing processes, and to allow final users (opera-
tors, engineers…) to visualize and manually analyze data. 
The last element, the monitor, is focused on the generation 
of alarms and notifications when data of the manufacturing 
process is out of its regular range, or some conditions are 
fulfilled.

A reference implementation based on the following Open 
Source components has also been provided:

• Custom Python scripts for the client and the writer
• RabbitMQ message queue to connect the client and the 

writer
• TimescaleDB to store time series data
• Grafana to deploy and customize the visualizer and the 

monitor

This implementation has been validated monitoring the 
RTO system of the factory. Data from the RTO has been 
captured from the Siemens 1200 PLC controlling the pro-
cess. Communication with the PLC is based on Siemens S7 
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protocol. Using S7, 12 queries per 2 s are generated to read 
the value of 123 variables of the process. Information of the 
variables has been defined at a CSV. This CSV has been used 
to automate the generation of the client reading the values 
of the variables, the generation of the table of the database, 
and basic Grafana dashboards and alarms of the variables.

The proposed architecture greatly decreases the techno-
logical barrier required to monitor and visualize data from 
manufacturing processes. Moreover, as data is already prop-
erly stored at the database, it serves as a foundation for future 
services, for example integrating Artificial Intelligence algo-
rithms to provide predictive maintenance functionalities.

The maintenance team from Lecta has been provided with 
new data-based tools that support them to fire customized 
alarms, detect anomalies, and confirm some problems were 
actually happening. Furthermore, the new tool is a solid 
starting foundation to deploy new data and AI-based ser-
vices on the future.

Future work starts with further validation at Lecta for a 
relevant period of time to test the resilience and scalability 
of the implementation. One of the main purposes of this 
validation will be to estimate the disk space required by the 
system. With the current query period of 2 s, the system 
generates more than 40,000 rows per day. However, the time 
granularity can be decreased to generate views with less fre-
quently updated data (for example one data per minute for 
not recent data) to save disk space. This validation will help 
to set adequate aggregation and retention policies.

Another open work line focuses on quantifying efficiently 
losses caused by detected situations, to measure their eco-
nomic impact and to decide if related equipment should be 
upgraded.

One last point to further decrease the technological bar-
rier consists of the integration of no-code tools, such as 
node-red. Node-red is a popular graphical tool where non-
expert users interact with simple blocks to customize the 
functionalities of a system using an interactive interface.
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