
Vol.:(0123456789)

SN Computer Science (2024) 5:131
https://doi.org/10.1007/s42979-023-02442-4

SN Computer Science

ORIGINAL RESEARCH

Time Series Manufacturing Data Edge Monitoring and Visualization
to Support Industrial Maintenance Teams

Ander Garcia1 · Xabier Oregui1 · Javier Franco1 · Unai Arrieta1 · Jon Ferreres2 · Jose Andres Valencia2

Received: 16 April 2023 / Accepted: 19 October 2023
© The Author(s) 2023

Abstract
Traditional manufacturing control systems such as Manufacturing Execution Systems (MES) or SCADA (Supervisory Control
And Data Acquisition) were not designed for Industry 4.0 paradigm. Industry 4.0 implies that more data variables must be
automatically monitored and data must be captured at a higher frequency: from one value of a few key variables to values
of several variables captured at frequencies of seconds. Thus, new architectures and tools are required to merge Informa-
tion Technology (IT) and Operation Technology (OT) fields and to meet Industry 4.0 requirements. This paper proposes
a lightweight architecture based on micro-services and time series data requirements to connect to manufacturing process
controllers, and to capture, store, monitor and visualize relevant data about the process. Moreover, a reference implementa-
tion based on Open Source tools is presented. This implementation has been validated by members of the maintenance team
of a factory from Lecta, a paper manufacturer. The implementation has proven to be a new valuable tool providing further
insights and customized alarms of the manufacturing process.

Keywords Cyber physical system · Industry 4.0 · Time series · Edge computing

Introduction

Pushed by the Industry 4.0 paradigm, the volume of data
being captured from manufacturing lines is continuously
increasing. To get a deeper insight of manufacturing pro-
cesses, more data variables are being monitored and data is
captured at a higher frequency: from one value of a few key
variables for a whole batch, to time series of several vari-
ables captured at frequencies of seconds. Traditional Manu-
facturing Execution Systems (MES) were not designed for
this scenario. Even traditional SCADA (Supervisory Control
And Data Acquisition) systems, that control the manufactur-
ing process and capture and visualize data at frequencies of

seconds, have limited functionalities to store, analyze, and
visualize data. Most SCADA systems allow operators and
maintenance teams to set basic alarms to check if certain
variables are out of range, but configuration and alarm rule
and notification systems are usually complex to manage and
offer limited functionalities. Moreover, data captured by tra-
ditional SCADA systems are complex to be exported and
analyzed out of the SCADA itself.

Thus, new architectures are required to integrate Infor-
mation Technology (IT) and Operations Technology (OT)
fields. This implies a myriad of IT and OT technologies,
standards and specifications related to Industry 4.0.

The complexity of this integration generates a knowledge
barrier as these IT technologies follow a completely different
philosophy from the regular tools used by OT engineers and
maintenance teams. Thus, small- and medium-sized enter-
prises (SMEs), which generally lack multidisciplinary teams
with the required IT and OT knowledge and experience, face
big difficulties to capture, monitor, and visualize data from
manufacturing processes.

Standard reference architectures such as RAMI 4.0 sup-
port advanced Industry 4.0 use cases, adding additional
technological complexity, which does not add value for

This article is part of the topical collection “Innovative Intelligent
Industrial Production and Logistics 2022” guest edited by Alexander
Smirnov, Kurosh Madani, Hervé Panetto and Georg Weichhart.

 * Ander Garcia
 agarcia@vicomtech.org

1 Vicomtech Foundation, Basque Research
and Technology Alliance (BRTA), Mikeletegi 57,
20009 Donostia-San Sebastián, Spain

2 TorrasPapel-Lecta Group, C/Elbarren, s/n, 31880 Leitza,
Spain

http://orcid.org/0000-0001-5596-2838
http://orcid.org/0000-0002-2443-3367
http://orcid.org/0000-0002-9588-6857
http://orcid.org/0000-0003-0710-8148
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02442-4&domain=pdf

 SN Computer Science (2024) 5:131 131 Page 2 of 10

SN Computer Science

most SMEs starting to monitor time series data from their
processes.

Existing market solutions rely on external cloud servers
to perform these tasks, adding a dependency on servers out
of the control of manufacturing companies, which is not
compatible with privacy and confidentiality requirements
of several manufacturing companies.

This paper tackles this complexity by proposing a con-
tainerized micro-service-based edge architecture to moni-
tor and visualize manufacturing processes. The architec-
ture connects to manufacturing controllers to acquire time
series data about the processes, and then stores it on a
time series database to be monitored and visualized. Fur-
thermore, a reference implementation of the architecture
based on Open-Source tools is presented and validated
with a simulated process. After a first successful valida-
tion of the architecture with a basic boiler simulation [5],
this paper focuses on the deployment and validation of the
architecture on a real industrial scenario.

This paper presents a real implementation deployed and
validated at the paper factory from Lecta in Leitza. This
factory specializes in carbonless, thermal, metallized, cast-
coated papers, and has a production capacity of 118,000
tons per year. The implementation has been led by the
maintenance team of Lecta. Currently, they have a WinCC
SCADA system controlling ovens and pipes injecting hot
air into the paper manufacturing line. This SCADA gener-
ates some synoptic dashboards with real-time data into a
screen. However, this screen is located in a room close to
the ovens but far away from the maintenance team office.
Thus, as the SCADA requires someone to be in front of
the screen to monitor the production process, dashboards
are rarely used. Moreover, configuring alarms within the
SCADA is a complex task. Current alarms were configured
several years ago, when the heating system was installed.
These alarms monitor key variables values that are within
a predefined range, targeting potentially dangerous situa-
tions that may cause equipment to malfunction. However,
daily too many alarms are fired. As nearly all of them do
not harm the manufacturing line, they are ignored by the
maintenance team. Finally, the SCADA has an internal
database with a limited usability system to query and visu-
alize historical data from the last month. As this system
requires too much effort to analyze data, it is rarely used.

The maintenance team has validated the implementa-
tion as a new tool to enhance their daily tasks with new
functionalities. The new tool has been deployed at a Linux
server of their Intranet. An Ethernet link between this
server and the PLC has been enabled by the IT department
of Lecta to allow communications. These functionalities
have concentrated the main daily use of the tool:

• Customizable dashboards accessible from any equipment
of the factory

• Customizable and flexible alarms. The team has already
detected some situations where several variables are
involved that do not cause manufacturing problems but
produce inefficiencies, such as ovens heating air directed
to closed pipelines. Moreover, they want alarms to be
filtered according to their severity level.

• Customizable visualizations combining variables and
personalized time-ranges to analyze past states of the
manufacturing process.

The structure of the paper is as follows: “Related work”
reviews the related work. “Architecture” presents the pro-
posed architecture, while “Reference implementation” intro-
duces the reference implementation. “Implementation and
validation” focuses on the implementation and validation
at Lecta. Finally, “Conclusions” presents main conclusions
and future work.

Related Work

The German government presented the Industry 4.0 term
in 2011. The objective of the fourth industrial revolution
is to work with a higher level of operational productivity
and efficiency, connecting the physical to the virtual world.
Industry 4.0, also known as Industrial Internet of Things
(IIoT), is related to several technologies, such as Internet of
Things (IoT), Industrial Automation, Cybersecurity, Intel-
ligent Robotics, or Augmented Reality [2].

The term cyber-physical systems (CPS) was coined in the
USA in 2006 and has received several definitions [4]. CPS
is the merger of “cyber” as electric and electronic systems
with “physical” things. The “cyber component” allows the
“physical component” (such as mechanical systems) to inter-
act with the physical world by creating a virtual copy of it.
This virtual copy will include the “physical component” of
the CPS (i.e., a cyber-representation) through the digitaliza-
tion of data and information [2].

In general, a CPS consists of two main functional compo-
nents: (1) the advanced connectivity that ensures real-time
data acquisition from the physical world and information
feedback from the cyber space; and (2) intelligent data man-
agement, analytics and computational capability that con-
structs the cyber space [6].

First attempts to integrate advanced services from Indus-
try 4.0 on manufacturing environments were based on cloud
computing. Cloud computing paradigm relies on remote
servers with a storage and computing power magnitudes
beyond local servers. However, cloud computing presents

SN Computer Science (2024) 5:131 Page 3 of 10 131

SN Computer Science

four main disadvantages for manufacturing scenarios:
latency, security, privacy, and cost.

Edge computing is a paradigm where data are analyzed
and stored close to the devices generating and consum-
ing them, facing previous disadvantages and making them
attractive for manufacturing scenarios [1, 9].

The main objective of edge computing is to exploit
computational resources of interconnected devices to
increase their independence and to get data analysis and
exploitation closer to where data is generated. This para-
digm optimizes cloud computing paradigms moving data
processing task (or part of them), to the edge of the net-
work. This philosophy is especially relevant for manufac-
turing scenarios.

Edge computing devices have increasingly power-
ful computation functionalities. This, combines with
advanced connectivity technologies such as 5G, which
offers a fast, robust, and massive connectivity, is paving
the way for a new type of intelligent devices and services
based on Artificial Intelligence.

Recently, various attempts have been made to transform
manufacturing systems into interoperable, connected, and
digitalized elements. However, the main challenges of the
Industry 4.0, including cybersecurity, and standardized
data interchange between devices, machines and services,
are still opened [7]. In [9], a review of the application of
edge computing paradigm into manufacturing scenarios
is provided, identifying architectures, advances, and open
challenges.

Existing international reference architectures for manu-
facturing scenarios, such as RAMI 4.0 or IIRA, propose
reference models difficult to implement [10]. Moreover,
architectures proposed by other authors target a lot of com-
plex functionalities related to the Industry 4.0 [3, 8, 11].

Thus, their implementation is time- and cost-consum-
ing, out of the reach of small and medium manufactur-
ing companies. The architecture proposed solves previ-
ous drawbacks to ease its deployment and targets mainly
SMEs lacking IT and OT integration knowledge. The main
characteristics of the proposed architecture are:

• Support time series data, to cope with the requirements
of data captured from manufacturing processes.

• Edge deployment, to solve security, privacy, and latency
disadvantages of cloud architectures.

• Micro-service and container-based, to decrease the
knowledge barrier required to deploy the architecture.

• No-code tools reference implementation to decrease the
knowledge barrier required to configure the architecture
and to visualize and analyze data.

The architecture is focused on a specific case: monitor
and visualize time series data from manufacturing processes.
However, the architecture is flexible enough to be extended
with new future services (for example to integrate Artificial
Intelligence services), increase its performance, or integrate
new communication and security mechanisms.

Architecture

This section presents a containerized micro-service-based
edge architecture to lower the knowledge barrier required to
integrate IT-OT fields and to capture, analyze, and visualize
industrial data without requiring the use of cloud services.
This section starts with a general description of the archi-
tecture and then presents a reference implementation based
on Open Source tools.

The architecture is composed of the following compo-
nents: client, message queue, writer, time series database,
visualizer, and monitor (Fig. 1). The manufacturing equip-
ment is the asset being monitored. Data from the equipment
is captured from the manufacturing controller, which pub-
lishes it using standard communication specifications such
as OPC-UA or MQTT.

The Open Platform Communications Unified Architec-
ture (OPC-UA) has become the interoperability standard for
the secure and reliable exchange of data in the industrial
domain, easing the tasks of capturing and exporting data.
In the most common OPC UA communication paradigm,
the manufacturing equipment has an OPC UA server that
allows to read/write variables values and to invoke custom
methods. Clients connect to the server to read/write values
of the variables, to call remote methods, and to subscribe to
receive changes on their values.

MQTT is a robust and trustworthy protocol, with imple-
mentations with very low computation requirements and

Fig. 1 General architecture

 SN Computer Science (2024) 5:131 131 Page 4 of 10

SN Computer Science

available for most of the current hardware and software plat-
forms. MQTT is based on a queue manager (broker), where
different clients send messages (publish). Each message is
sent with a certain subject (topic) and may contain data (pay-
load). Other clients can show their interest in certain topics
to the que manager (subscribe). When the queue manager
receives a message with some of these topics, it sends the
message to the subscribed clients.

This communication paradigm based on publishing mes-
sages and subscribing to topics to receive them, has proved
to be a robust, efficient, and low latency technology. Cur-
rently, it is one of the most used protocols for Internet of
Things domain.

Although the proposed architecture does not impose the
use of a communication protocol, authors recommend the
use of OPC-UA or MQTT. Most modern Programable Logic
Controllers (PLCs) already include OPC-UA or MQTT
functionalities, and there are several specialized gateways
on the market translating other industrial protocols to OPC-
UA or MQTT.

However, if this option is not available for some manu-
facturing scenario, it would be always possible to develop a
custom communication module inside the client to get data
from the manufacturing controller.

The first element of the architecture is the client. Its main
task is to integrate and translate IT and OT technologies
and protocols. It connects to the manufacturing equipment
using OT protocols to obtain the values of the manufactur-
ing process and send these values using IT protocols to be
stored, analyzed, and visualized. The client has to perform
data cleaning and validation tasks to ensure the quality of the
data, including the check of the timestamps. Moreover, when
required, data has to be transformed to a proper format to
be stored, for example to update numeric values to labels or
Booleans, or to generate synthetic data from variables. Once
data is ready, it is sent to the writer using a message queue.

The message queue decouples the client from the writer.
It could be based on any technology, such as MQTT, as long
as it satisfies the load requirements of each scenario.

The main task of the writer is to receive data from the
message queue and to transform it into a proper format to be
sent directly to the time series database to be stored.

The time series database manages data storage and
retrieval operations. This database should have advanced
functionalities to ease querying time series, and to aggregate
data to optimize disk space utilization.

The visualizer is responsible to generate dashboards of
the manufacturing processes, and to allow final users (opera-
tors, engineers…) to visualize and manually analyze data.

The last element, the monitor, is focused on the generation
of alarms and notifications when data of the manufacturing
process is out of its regular range, or some conditions are
fulfilled.

The architecture is based on decoupled micro-services
designed to be deployed as containers. The objective is (i) to
ease the deployment at the edge, and (ii) to allow individual
changes or upgrades of each micro-service without having
to update and validate the rest of the micro-services.

Reference Implementation

This section presents a reference implementation of the
previous general architecture based on Open-Source tools.
Each micro-service has been designed as a Docker container,
and the architecture has been orchestrated with the docker
compose tool.

The client has been implemented as a Python micro-
service. OPC-UA and MQTT support has been based on
the FreeOpcUa library and the MQTT Paho library from
the Eclipse Foundation. The client sends values of the vari-
ables to the message queue with a JSON payload with and
object format. Each element of the object has three element:
timestamp of the value, identifier of the equipment, and an
object of data with variables name and value pairs. Thus,
each message can include value for one or more variables.

The message queue has been implemented with Rab-
bitMQ, a lightweight and widely deployed Open-Source
message broker. Although it requires more computing
resources than MQTT, RabbitMQ supports several messag-
ing protocols and paradigms, and has better security and
reliability features. Moreover, RabbitMQ includes internal
buffers to avoid losing messages if the writer is temporarily
overloaded and mechanisms to easily integrate new writer
containers if several clients are sending data to the queue.

The writer has been implemented as a Python micro-ser-
vice. It receives messages from the queue, and transforms
data into INSERT queries for the database. This insert que-
ries have to be formatted to fulfill the format expected by the
SQL dialect of the database.

TimescaleDB has been selected as the time series data-
base engine over other alternatives such as InfluxDB due to
its advanced functionalities, SQL language compatibility,
and the rich PostgreSQL-based tooling ecosystem. Time-
scaleDB is an Open-Source database designed to make SQL
scalable for time series data. It is engineered up from Post-
greSQL and packaged as a PostgreSQL extension.

SN Computer Science (2024) 5:131 Page 5 of 10 131

SN Computer Science

Traditional relational databases, such as MySQL or SQL
Server, are not suited for the storage of time series data, as
their performance decrease greatly as the data volume of the
time series increases. NoSQL databases, such as MongoDB,
have recently include support for time series data, but the
functionalities they offer to work with time series data is
still not comparable to the ones offered by TimescaleDB or
InfluxDB.

Finally, both the visualizer and the monitor components
have been deployed based on Grafana. Grafana is a popu-
lar multi-platform Open Source analytics and interactive
visualization web application. Grafana is agnostic of the
underlying database and has an intuitive user interface both
to customize charts and dashboards, and to generate alerts
and notifications based on advanced rules and notification
channels.

All the micro-services have been deployed as docker con-
tainers within the same docker network. The Web access port
from Grafana has been exposed within the client host to be
accessible from a Web Client. Port 5432 from TimescaleDB
has also been exposed to allow the use of PostgreSQL desk-
top tools such as pgadmin from the host machine. Informa-
tion to automatically connect micro-services and to manage
data persistence of each container has been included inside
the docker compose definition.

The main customization of the reference implementation
to be deployed in a new scenario is related to OPC UA or
MQTT, and the structure of the data and the database. For
example, different OPC UA servers may send data either as
an object, or as a several individual variables. Regarding
MQTT, each controller may use different topic and payload
definition to send data.

The design of the database is also specific of each sce-
nario. In a general scenario, a table with these columns
would be enough to store data:

• Time: to store the timestamp of the value
• Id: to store the identifier of the equipment
• Variable: To store the name of the variable
• Value: To store the value of the variable. It should be a

string to allow storing different data types

However, this design may present performance draw-
backs to retrieve data from the database, and to visualize
and monitor it, as each value has to be parsed. Thus, it is
recommended that each scenario designs its database table
to store time series data.

For OPC-UA servers, a config file with the URL, and
optionally the username and password, has to be updated.
Moreover, a list of the identifier of each OPC UA node vari-
able has to be filled, including the name and type of each

variable. For MQTT, server connection data (URL, user-
name and password) and the topic name have to be defined.
Moreover, as MQTT payload is not standardized, code
changes may be required on the client to read variable names
and values from the MQTT messages.

Implementation and Validation

This section is focused on the implementation and valida-
tion of the reference implementation of the architecture
in the RTO (Regenerative Thermal Oxidizer) system of
the Leitza factory of Lecta. RTOs are one of the most
widely accepted air pollution control technologies across
industries. RTOs use a ceramic bed which is heated from
a previous oxidation cycle to preheat the input gasses to
partially oxidize them. The preheated gasses enter a com-
bustion chamber that is heated by an external fuel source
to reach the target oxidation temperature which is in the
range between 760 and 820 °C. Thus, it is very impor-
tant to recover the energy contained in the clean gasses to
reduce the energy necessary for the treatment. To recover
this energy, the thermoreactor uses ceramic beds that act
as heat accumulators, capturing the heat of the exhaust
gasses to transfer it, later, to the gasses to be treated. The
RTO consists of three towers filled with ceramic elements,
communicated at the top by the oxidation chamber.

The RTO SCADA system monitors 123 variables from
a Siemens 1200 PLC, which controls the process. These
variables include set and real values of temperatures, pres-
sures, air flows and state of air pumps (Fig. 2).

The reference implementation (Fig. 3) has been custom-
ized to communicate with the Siemens 1200 PLC. This
PLC does not provide OPC UA or MQTT functionali-
ties, it communicates using the custom Siemens protocol
S7. Thus, instead of including a gateway or a translation
module from S7 to OPC UA or MQTT, a new S7 client
has been developed in Python. This client is based on the
Python-snap7 library, a wrapper to Snap7, a multi-plat-
form Ethernet communication suite for interfacing natively
with Siemens S7 PLCs. This client loads a CSV file with
the name, type, maximum allowed value (optional), mini-
mum allowed value (optional), and memory position of
each of the 123 variables and periodically (2 s) reads their
value. Instead of generating 123 queries to the PLC, vari-
ables are grouped according to the data block of the PLC
they belong to. This way only 12 queries are sent per 2 s.

Once data of each variable has been read, the client
send it to a RabbitMQ queue named “rto”. The next code
shows an example partial payload of the message sent by
the client:

 SN Computer Science (2024) 5:131 131 Page 6 of 10

SN Computer Science

the client:
{

"data": {
"depuration": 31,

“plant_state”:4,
“Kv201a_opt”: 5330,
“kv203c_opt”:878,
….
}
},

},
"time": "2023-03-12T10:15:18.784Z",
"id": "rto"

}

 The writer receives these updates and sends them to
the TimescaleDB database. Based on the previous CSV,
a table has been created for the RTO with the following
columns:

• Time: to store the timestamp of the value
• Id: to store the identifier of the RTO. As there is only one

RTO, its value is always the same.
• One column for each of the 123 variables of the PLC

The writer receives each message and generates the fol-
lowing SQL query to insert data. The database receives the
query and stores data on the table (Fig. 4).

Fig. 2 Dashboard from the RTO
SCADA

Fig. 3 Deployed implementa-
tion

SN Computer Science (2024) 5:131 Page 7 of 10 131

SN Computer Science

INSERT INTO rto("time", “depuration”, “plant_state”, “kv201_a”,
“kv201a_opt”,….,"id") VALUES ('2023-04-12T12:18:03.779Z', 30, 4,
1,5325,…,'rto’);

Fig. 4 Screenshot of a partial select query of the data

Fig. 5 Dashboard for pew272
variable

Fig. 6 Query builder from
Grafana

 SN Computer Science (2024) 5:131 131 Page 8 of 10

SN Computer Science

The visualizer has been deployed as the latest version
of Grafana. After configuring the data source to connect to
the Timescaledb database, the previous CSV has been used
to automatically generate one dashboard for each variable
(Fig. 5).

Definition of each graph is easily customized using the
available query builder (Fig. 6). Using the GUI a general
SQL query is generated, and it is also possible to insert
manual SQL queries to directly integrate advanced func-
tions from TimescaleDB such as time buckets. Time buckets
allow to get uniformly distributed data points within a range,
for example one value with the average of the values from
the database every 10 min.

The maintenance team has been trained to easily generate
new dashboards that visualize and combine several variables
without requiring support from IT staff. Moreover, as each
dashboard is linked to a unique URL that can be shared and
is accessible from any browser within the factory, the main-
tenance team can generate custom visualization for certain
users: operators, managers…

The notifier has also been integrated with Grafana. Based
on the previous CSV, one alarm has been configured to fire
for each of the variables with a maximum and minimum
value. These alarms check the value of the variable is out of

the predefined range. The name of each alarm is the name
of the variable, and all of them have been assigned the same
priority level. If some alarm is fired for a certain time, and
email is sent to the maintenance team. The maintenance
team can customize the priority level, contact points and
notification policies of each alarm.

Moreover, three new alarms have been configured to
monitor certain situations that led to breakdowns or effi-
ciency losses.

• Emergency variable. The first alarm is focused on the
emergency variable. This is the most basic alarm, as it
only checks the value of this variable is below 0.1

• Air losses. These alarms focus on situations where air
pumps are closed but airflow is detected. This airflow
is caused by a pump malfunction that leads to hot air
losses, and thus is wasting energy. These alarms com-
bine the value of the detected air flow and the state of
the air pumps. If there is a considerable air flow and the
air pumps are supposed to be closed, an alarm is fired to
notify an efficiency loss.

• Boiler fill time. From time to time, the boiler must be
filled to avoid breakdowns. An excess of the filling time
is a sign that a maintenance operation is required to avoid

Fig. 7 Example of a complex
rule generation

SN Computer Science (2024) 5:131 Page 9 of 10 131

SN Computer Science

further problems. This alarm analyzes the filling time
after the minimum level has been reached and fires it is
exceeded an stablished threshold.

The alarms are easily configured using the Grafana GUI
(Fig. 7). For each alert rule, after selecting the data source
and the related table and column, several conditions can be
applied to decide whether an alert should be raised.

Grafana has a powerful alert customization and notifica-
tion mechanism able to suit most of the regular requirements
to monitor manufacturing equipment. Once rules have been
defined, labels can be attached to them to ease their manage-
ment. Then, a notification policy is applied where several
filters regarding time, labels, severities… allow to decide
whether the alert has to be redirected to any of the available
notification channels. There are several notification channels
(email, slack, PagerDuty…) available, and custom ones can
also be defined.

The whole system has been defined as docker contain-
ers orchestrated within a docker compose file. This docker
compose file can be used as a template to be deployed in
new scenarios, after updating the points mentioned in the
previous section. The deployment is running on a server of
the intranet from Lecta running a Ubuntu 22.04.1 LTS on a
8 GB RAM and 4 CPU virtual machine inside an Intel(R)
Xeon(R) CPU E5-2440 0 @ 2.40 GHz server.

The maintenance team from Lecta has successfully vali-
dated the system to perform three main tasks:

• Generate customized dashboards
• Generate customized and flexible alarms.
• Generate customized visualizations

Furthermore, the system has confirmed with data that
efficiency loss situations detected by the experience of the
operators were actually happening. Thus, these situations
can be detected and measures to avoid them can be planned.

Conclusions

Industry 4.0 requires data to get insights of the manufac-
turing processes. Thus, requirements to capture more data
variables and at a higher frequency arise: from one value of
a few key variables for a whole batch, to time series of sev-
eral variables captured at frequencies of seconds. Traditional
Manufacturing Execution Systems (MES) were not designed
for this scenario composed by a high volume of time series
data of manufacturing processes. Even traditional SCADA
(Supervisory Control And Data Acquisition) systems, that
control the manufacturing process and capture and visualize

data at frequencies of seconds, have limited functionalities
to store, analyze, and visualize data.

Thus, new architectures are required to integrate Infor-
mation Technology (IT) and Operations Technology (OT)
fields. This implies a myriad of IT and OT technologies,
standards and specifications related to Industry 4.0, with a
high complexity level. SMEs are not ready to cope with this
complexity level.

This paper tackles this complexity by proposing a con-
tainerized micro-service-based edge architecture to moni-
tor and visualize manufacturing processes. The architecture
connects to manufacturing controllers to acquire time series
data about the processes, and then store it on a time series
database to be monitored and visualized. A reference imple-
mentation of the architecture based on Open-Source tools
has been presented. Moreover, the implementation has been
deployed and validated at the Leitza paper factory of Lecta
to monitor the RTO system.

The architecture is based on decoupled containers to be
easily deployed at the edge. It has four main elements. The
client is the component integrating OT and IT domains: it
connects to the manufacturing equipment using OT tech-
nologies to obtain the values of the manufacturing process.
Once data is ready, it is sent to the writer using a message
queue, already within the IT domain.

The main task of the writer is to receive data from the
message queue and to transform it into a proper format to
be sent directly to the time series database to be stored. The
time series database manages data storage and retrieval
operations.

The visualizer is responsible to generate dashboards of
the manufacturing processes, and to allow final users (opera-
tors, engineers…) to visualize and manually analyze data.
The last element, the monitor, is focused on the generation
of alarms and notifications when data of the manufacturing
process is out of its regular range, or some conditions are
fulfilled.

A reference implementation based on the following Open
Source components has also been provided:

• Custom Python scripts for the client and the writer
• RabbitMQ message queue to connect the client and the

writer
• TimescaleDB to store time series data
• Grafana to deploy and customize the visualizer and the

monitor

This implementation has been validated monitoring the
RTO system of the factory. Data from the RTO has been
captured from the Siemens 1200 PLC controlling the pro-
cess. Communication with the PLC is based on Siemens S7

 SN Computer Science (2024) 5:131 131 Page 10 of 10

SN Computer Science

protocol. Using S7, 12 queries per 2 s are generated to read
the value of 123 variables of the process. Information of the
variables has been defined at a CSV. This CSV has been used
to automate the generation of the client reading the values
of the variables, the generation of the table of the database,
and basic Grafana dashboards and alarms of the variables.

The proposed architecture greatly decreases the techno-
logical barrier required to monitor and visualize data from
manufacturing processes. Moreover, as data is already prop-
erly stored at the database, it serves as a foundation for future
services, for example integrating Artificial Intelligence algo-
rithms to provide predictive maintenance functionalities.

The maintenance team from Lecta has been provided with
new data-based tools that support them to fire customized
alarms, detect anomalies, and confirm some problems were
actually happening. Furthermore, the new tool is a solid
starting foundation to deploy new data and AI-based ser-
vices on the future.

Future work starts with further validation at Lecta for a
relevant period of time to test the resilience and scalability
of the implementation. One of the main purposes of this
validation will be to estimate the disk space required by the
system. With the current query period of 2 s, the system
generates more than 40,000 rows per day. However, the time
granularity can be decreased to generate views with less fre-
quently updated data (for example one data per minute for
not recent data) to save disk space. This validation will help
to set adequate aggregation and retention policies.

Another open work line focuses on quantifying efficiently
losses caused by detected situations, to measure their eco-
nomic impact and to decide if related equipment should be
upgraded.

One last point to further decrease the technological bar-
rier consists of the integration of no-code tools, such as
node-red. Node-red is a popular graphical tool where non-
expert users interact with simple blocks to customize the
functionalities of a system using an interactive interface.

Funding This work has been partially founded by the Basque Govern-
ment (SPRI) through the following Elkartek project: KK-2021/00111
ERTZEAN.

Declarations

Conflict of interest All authors declare they did not have conflict of
interests.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Alam M, Rufino J, Ferreira J, Ahmed SH, Shah N, Chen Y.
Orchestration of microservices for IoT using docker and edge
computing. IEEE Commun Mag. 2018;56(9):118–23. https:// doi.
org/ 10. 1109/ MCOM. 2018. 17012 33.

 2. Alcácer V, Cruz-Machado V. Scanning the Industry 4.0: a lit-
erature review on technologies for manufacturing systems. Eng
Sci Technol Int J. 2019;22(3):899–919. https:// doi. org/ 10. 1016/j.
jestch. 2019. 01. 006.

 3. Azarmipour M, Elfaham H, Gries C, Kleinert T, Epple U (2020)
A service-based architecture for the interaction of control and
MES systems in industry 4.0 environment. In: IEEE international
conference on industrial informatics (INDIN), 2020-July, pp. 217–
222. https:// doi. org/ 10. 1109/ INDIN 45582. 2020. 94420 83.

 4. Fei X, Shah N, Verba N, Chao KM, Sanchez-Anguix V, Lewan-
dowski J, James A, Usman Z. CPS data streams analytics based on
machine learning for cloud and fog computing: a survey. Future
Gener Comput Syst. 2019;90:435–50. https:// doi. org/ 10. 1016/j.
future. 2018. 06. 042.

 5. Garcia A, Oregui X, Franco J, Arrieta U (2022) Edge contain-
erized architecture for manufacturing process time series data
monitoring and visualization. In: 3rd International conference on
innovative intelligent industrial production and logistics (IN4PL
2022), pp. 145–152

 6. Lee J, Bagheri B, Kao HA. A cyber-physical systems architec-
ture for Industry 4.0-based manufacturing systems. Manuf Lett.
2015;3:18–23. https:// doi. org/ 10. 1016/j. mfglet. 2014. 12. 001.

 7. Lu Y. Industry 4.0: A survey on technologies, applications and
open research issues. J Ind Inf Integr. 2017;6:1–10. https:// doi.
org/ 10. 1016/j. jii. 2017. 04. 005.

 8. Omar A, Imen B, M’Hammed S, Bouziane B, David B (2019)
Deployment of fog computing platform for cyber physical produc-
tion system based on docker technology. In: Proceedings—2019
3rd international conference on applied automation and industrial
diagnostics, ICAAID 2019, 1(September), pp. 1–6. https:// doi. org/
10. 1109/ ICAAID. 2019. 89349 49.

 9. Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO. Edge
computing in industrial internet of things: architecture, advances
and challenges. IEEE Commun Surv Tutor. 2020;22(4):2462–88.
https:// doi. org/ 10. 1109/ COMST. 2020. 30091 03.

 10. Szántó N, Pedone G, Monek G, Háy B, Jósvai J. Transformation
of traditional assembly lines into interoperable CPPS for MES:
an OPC UA enabled scenario. Procedia Manuf. 2021;54:118–23.
https:// doi. org/ 10. 1016/j. promfg. 2021. 07. 019.

 11. Yang C, Lan S, Shen W, Wang L, Huang GQ. Software-defined
cloud manufacturing with edge computing for Industry 4.0. 2020
international wireless communications and mobile computing.
IWCMC. 2020;2020:1618–23. https:// doi. org/ 10. 1109/ IWCMC
48107. 2020. 91484 67.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1016/j.jestch.2019.01.006
https://doi.org/10.1016/j.jestch.2019.01.006
https://doi.org/10.1109/INDIN45582.2020.9442083
https://doi.org/10.1016/j.future.2018.06.042
https://doi.org/10.1016/j.future.2018.06.042
https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1016/j.jii.2017.04.005
https://doi.org/10.1016/j.jii.2017.04.005
https://doi.org/10.1109/ICAAID.2019.8934949
https://doi.org/10.1109/ICAAID.2019.8934949
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1016/j.promfg.2021.07.019
https://doi.org/10.1109/IWCMC48107.2020.9148467
https://doi.org/10.1109/IWCMC48107.2020.9148467

	Time Series Manufacturing Data Edge Monitoring and Visualization to Support Industrial Maintenance Teams
	Abstract
	Introduction
	Related Work
	Architecture
	Reference Implementation
	Implementation and Validation
	Conclusions
	References

