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Abstract
Decision support systems (DSS) are used daily to make complex and hard decisions. Developing a DSS is not an easy task 
and may require combining different approaches to reach accurate and timely responses. In this paper, we present a DSS 
based on a micro-service architecture that we developed to handle a variant of the vehicle routing problem. The DSS has been 
implemented for a service company operating in the field of pharmaceutical distribution, and it helps decision-makers define 
the routes that different types of vehicles need to perform during the day to serve the customers’ demands. The underlying 
optimization problem assumes that a vehicle can perform multiple routes daily and is constrained to operate within a given 
time horizon. Customers are characterized by hard time windows on the delivery times. The proposed DSS first handles 
geo-referencing and distance calculation tasks. Then, it invokes a two-step optimization approach in which vehicle routes 
are generated and combined to reduce the number of vehicles used. For the latter task, we propose and evaluate four solu-
tion methods: two greedy heuristics, a metaheuristic, and a mathematical model. All the methods are applied to solve real 
and randomly generated instances, showing that the metaheuristic algorithm is superior to the others in terms of solution 
quality and computing time. The company had a very positive feedback on the proposed DSS and is now using it to support 
its daily operations.

Keywords  Decision support system · Micro-service, Multi-trip vehicle routing problem · Iterated local search · 
Mathematical optimization problem

Introduction

The vehicle routing problem (VRP) is a difficult 
combinatorial optimization problem that has gained 
considerable attention from researchers, given its practical 
applications in different fields such as logistics and 

transportation. The main objective of the VRP is to find a 
set of routes for a fleet of vehicles that minimizes the total 
cost required to serve the demands of a set of geographically 
dispersed customers. Due to its NP-hard nature, advanced 
heuristic and metaheuristic algorithms have been proposed 
to find approximate but good-quality solutions of large-size 
VRP instances within limited computing times [1–3].

This paper addresses a variant of the VRP known as 
the multi-trip vehicle routing problem with time windows 
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(MTVRPTW), which arises from a real-world application at 
Coopservice Soc.coop.p.A., an Italian large service provider 
company. In this problem, the routes to be determined 
must respect time window constraints, which impose each 
vehicle to serve a customer within specified time intervals. 
Besides that, vehicles with different capacities can depart 
from different depots, and each vehicle can perform multiple 
routes. Each route must start and end at the same depot. 
The objective is to minimize the number of vehicles used to 
fulfill the customers’ demands.

To tackle the MTVRPTW, we propose a decision support 
system (DSS) designed to assist the company in its operations. 
The DSS is a web application composed of different micro-
services. The micro-service architecture guarantees scalability 
with respect to the PC workload (i.e., new instances of the 
micro-services can be added to cope with traffic surges) and 
ensures interoperability with other systems that can be eas-
ily interfaced with the DSS. The orchestration of the micro-
services has a single entry point where the user can enter the 
addresses of depots and customers. The addresses are then geo-
referenced, and the distance between each couple of addresses 
is computed. Next, the DSS generates a set of feasible routes 
using the metaheuristic approach defined in [4]. However, 
since the vehicles can perform more than one route daily, the 
routes generated by the metaheuristic need to be aggregated to 
minimize the fleet size. To this end, we consider two scenarios 
in accordance with the company. In the first scenario, the start-
ing time of each route is fixed, and we propose a greedy algo-
rithm that sorts routes based on their departure time, assigning 
them to vehicles while respecting the total driving time. In 
the second, more flexible scenario, the starting time of each 
route can be moved between the earliest and latest possible 
starting times imposed by the time windows of the customers 
visited in the route. In this case, we extend the greedy algo-
rithm to assign routes to vehicles as early as possible, and we 
propose an iterated local search (ILS) metaheuristic. The ILS 
tries to improve the greedy solution by applying a perturbation 
step followed by a local search based on swap and insertion 
movements. Additionally, we propose a mixed integer linear 
programming (MILP) model. All these algorithms have been 
evaluated on real instances provided by the industrial partner, 
and the ILS obtained the best overall results.

To the best of our knowledge, the DSS represents a signifi-
cant innovation for the reference case study provided by the 
industrial partner and for many other similar applications. The 
micro-service-based architecture is a state-of-the-art technol-
ogy in the area of DSS, offering benefits in terms of scalability 
and interoperability. Furthermore, using multiple algorithms, 
which can be flexibly combined, guarantees the support for 
evaluating approaches suitable for different scenarios. Finally, 
the open architecture based on micro-services simplifies the 
extension of the core framework so that new algorithms suit-
able for other specific scenarios can be easily added.

A preliminary version of the present research has been 
published in [5]. This paper is a clear step ahead, providing 
more algorithms added to the framework and outlining a 
broader performance evaluation based on several real and 
randomly-created data sets.

The remainder of this paper is structured as follows. The 
next section provides an overview of the existing literature 
in routing problems and related decision science. The sub-
sequent section outlines the DSS architecture followed by 
which a formal description of the optimization problem 
is provided. Then the algorithms developed to solve the 
MTVRPTW are detailed. The penultimate section provides 
a computational evaluation of the DSS concerning different 
case studies. Finally, concluding remarks are given.

Literature Review

This section discusses the existing literature concerning 
the VRP and its variants, with a specific emphasis on the 
MTVRPTW. Additionally, it explores the domain of DSSs 
and their relevance within the research context.

The VRP may consider additional characteristics and con-
straints, called attributes, resulting in multi-attribute VRPs. 
In their survey, [6] reviewed more than sixty heuristic and 
metaheuristic algorithms, identifying the core components of 
each one and examining fifteen notable problems. When mul-
tiple attributes are combined together, we obtain the so-called 
rich VRPs. A recent survey for rich variants was proposed by 
[7], who presented a literature review on hybrid methods and 
problems found, e.g., in food and newspaper distributions. The 
authors emphasized the importance of cooperative methods 
that combine exact and approximate algorithms and the pro-
posal of benchmark problems, including real-life instances. 
For a recent, concise review of VRP and its variants, we refer 
to [8], while [9] reviewed the variants with profits, split deliv-
eries, multiple commodities over time, and integrated VRPs, 
like location-routing problems, multi-echelon routing prob-
lems, and the routing problems with loading constraints.

The VRPTW, an extension of the classical VRP, intro-
duces temporal constraints on customer service. Each cus-
tomer must be visited within a predefined time window. 
This additional constraint adds complexity to the problem, 
making it even more challenging. Over time, starting from 
[10], researchers have proposed various exact and heuristic 
methods to tackle the VRPTW [11, 12]. The applications of 
the VRPTW span across various domains, including food 
delivery [13], electric vehicle recharging [14], and pharma-
ceutical product delivery [4]. In addition, [15] addressed 
a combined problem involving VRPTW and scheduling of 
trucks and drivers, whereas [16] solved a school bus routing 
problem using an ILS and a MILP model.
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Another well-established VRP variant is the MTVRPTW, 
where vehicles can undertake multiple routes in a single day, 
with each route starting and ending at the depot. This flex-
ibility enables better adherence to customer time windows 
and can lead to more efficient solutions. The MTVRPTW 
has been an area of significant research interest, and vari-
ous algorithms have been recently proposed to address 
it effectively [9, 17]. Many solutions and methods for the 
MTVRPTW can be found in the literature. [18] solved a vari-
ant related to the dial-a-ride problem, proposing hybrid bee 
colony algorithms and an adaptive large neighborhood search 
(ALNS). The algorithms were tested on new instances, and 
the hybrid algorithms obtained the best results. [19] solved 
an MTVRPTW variant arising in the meal delivery logistics, 
proposing a MILP model and two heuristics, namely an ILS 
and an ALNS. [20] handled the multi-trip time-dependent 
vehicle routing problem with time windows by proposing a 
MILP model and a hybrid ALNS. The proposed heuristics 
obtained good results on a set of new instances proposed 
by the authors. Recently, [21] solved a multi-trip multi-dis-
tribution center VRP with lower-bound capacity constraints 
to minimize the number of used vehicles and maximize the 
number of served customers. The authors considered greedy 
algorithms based on savings, insertions, and sweeps to handle 
the lower-bound capacity constraints. An ALNS improves the 
solutions obtained with the greedy algorithms.

For what concerns DSSs, their application spans from 
business and finance to healthcare and up to education. Sev-
eral criteria can be used to categorize DSSs based on their 
scope or the provided functionalities. A possible classifica-
tion proposed in [22] divides DSSs into communications-
driven, data-driven, document-driven, knowledge-driven, 
and model-driven. The proposed approach in this paper can 
be seen as a model-driven DSS as it focuses on capturing 
a business process that is described as the composition of 
multiple basic functions.

The literature on DSSs presents a large corpus investi-
gating whether micro-service or cloud-based architectures 
are viable options for managing services. For example, [23] 
proposed a DSS to evaluate whether an application is suit-
able for cloud deployment. Similarly, [24] focus on micro-
service-based deployments, proposing a tool to evaluate 
the benefits of architectural re-design following the micro-
service paradigm. With respect to this topic, our study 
embraces the vision of a highly dynamic description of the 
business process, where data is not a critical asset but rather 
a commodity. Within this context, the choice of a micro-
service architecture for deploying the DSS is motivated, as 
our application fits the critical parameters that make micro-
services appealing, as described by [25].

Finally, we notice that our approach also fits the area of 
spatial-based DSS, which has been explored by [26]. The 
proposed DSS fits the classic DSS area with optimization 

based on geo-referenced data. However, even if the core 
problem is classic, creating an agile, flexible, and scalable 
system takes advantage of the most recent advances in dis-
tributed systems and cloud computing.

Decision Support System Architecture

We can define a DSS as an information system based on 
computers supporting decision-making. In this section, we 
outline the business process used in the proposed DSS and 
discuss how to implement it.

Business Process Overview

To better explain the characteristics of the proposed DSS, 
we start with a short description of the main tasks required 
to solve an MTVRPTW.

Figure 1 shows the main tasks of the considered business 
process according to a business process modeling (BPM) 
notation. The input (i.e., the white circle in the figure) is a 
list of points of interests (customers and depots) in the form 
of geo-referenced addresses (as shown in the leftmost box 
in the graph). The list of coordinates is further processed to 
create a distance matrix where each matrix element is the 
distance between two points (the distance can be expressed 
in terms of time or as a physical distance (i.e., km), depend-
ing on the metric considered for the problem). The matrix 
is then used as an input for the MTVRPTW, which is solved 
using a two-step approach. The set of optimized routes is 
given as output (i.e., the black circle in the figure).

The two tasks of geo-referencing and distance calculation 
require complex operations and rely on external services 
(such as APIs provided by third-party micro-services). For 
example, ArcGIS provides an API with Python bindings 
for most of its operations, as documented in [27]. However, 
external services typically limit the number of invocations 
per unit of time.

Fig. 1   BPM description of the business process
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This constraint requires a suitable architectural solution, 
as shown in Fig. 2. Considering geo-referencing the way-
points or computing distances, the requests are inserted in a 
queue of requests handled by Celery.1 Each Celery Task ID 
identifies a list of requests. The Task ID can be used to track 
the state of a Task (i.e., how many requests have already 
been completed). A further element is inserted between Cel-
ery and the external APIs, a cache implemented through 
Redis.2 Redis stores resolutions of requests and can be used 
to improve the system’s scalability by reducing the time to 
interrogate external servers and avoiding wait time due to 
the invocation rate limitations.

Service Definition

Focusing on the services for the vehicle routing application, 
the services are described using the OpenAPI specification 
v2.0. For space reasons, we provide only a summary of the 
services.

The first service, which is geo-referencing a list 
of addresses, can be described as the following set of 
micro-services:

•	 Submission of a list of addresses for geo-referencing: for 
the sake of interoperability with other tasks of the com-
pany, the list of supported input formats also includes 
.xls files. The output of the input is a handle that 

includes the ID of the geo-referencing task that runs 
asynchronously concerning the end of the submission.

•	 Status of a task: the input is the handle with the task ID 
provided by the previous service, and the output is the 
number of resolved addresses up to now. The user inter-
face (UI) can invoke this service to provide feedback to 
the user on the progress of a task.

•	 Download of coordinates lists: this service returns data 
only after the task is completed; otherwise, an error code 
is returned. The data can be returned as JSON and as 
an .xls file. The first type of output is used to display 
a map with the results of the geo-referencing (using a 
mash-application that is based on Open Street Maps 
APIs), while the .xls file is used as the input of the 
subsequent task of computing a distance matrix between 
every couple of points.

The API for the second task of the business process 
described in Fig. 1 is similar to the previous task. The main 
difference is that the main input is a .xls file with the 
coordinates of the geo-referenced point previously obtained, 
while the output is another .xls file containing the distance 
matrix. Like the previous task, the execution is asynchro-
nous with a submission micro-service that returns a handle 
used to check the progress of the computation.

Finally, the last task shown in Fig. 1 is the resolution of 
the optimization problem. The solution is a two-step process, 
but the main API implementation masks this double step 
under two separate APIs:

•	 Problem submission: the API is used to submit a problem 
definition consisting of a distance matrix and an expected 
workload. The output is a handle to access the results of 
the algorithm invocation.

•	 Solution download: the handle provided in the problem 
submission API is used to access the data containing the 
problem solution. The output can be either a JSON data 
structure or a .xls file. The first is used for data visuali-
zation on a web UI, while the latter can be downloaded 
for interaction with the other tasks of the company.

Technologies

As the goal is to provide support in logistic optimization 
tasks that must be carried out by people who are not experts 
in using computer systems, the proposed algorithms are 
integrated into an intuitive and user-friendly web-based UI. 
The UI leverages the modular architecture of the software 
provided as a micro-services suite.

The micro-service approach to software development pre-
scribes that software should be split into several independ-
ent building blocks that are loosely coupled. This approach 
made software development extremely agile, with each 

Fig. 2   Address geo-referencing and distance computation

1  https://​docs.​celer​yq.​dev/.
2  https://​redis.​io/.

https://docs.celeryq.dev/
https://redis.io/
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service choosing its own technologies, scalability policies, 
and life cycle. This is a clear step ahead over monolithic 
architectures regarding scalability, maintainability, and fault 
tolerance [28].

The global DSS architecture comprises two main parts: 
a backend and a frontend. The backend handles HTTPS 
requests, performs computations, and stores data, providing 
the previously described micro-service interfaces to the sys-
tem. The backend is developed using a model-view-control-
ler paradigm [29] provided by the web framework Django. 
The frontend runs on the user web browser, is written in 

Javascript, and is based on the React framework to provide 
a simple interface for the end-user.

A key technology selected for the deployment of the DSS 
backend is the container management engine Docker,3 which 
is also used in the testing and development phases of the 
micro-services. Each task and the related micro-services 
are implemented as isolated images (containers) that can 
be created, replicated, and destroyed using a simple set of 
command line tools.

3  https://​docs.​docker.​com/.

Fig. 3   Web interface 
architecture

https://docs.docker.com/
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The backend deployment scheme consists of several con-
tainers outlined by green boxes in Fig. 3:

•	 Route Aggregation contains the optimization algorithms, 
with the two parts of the solution approach (described 
in "Proposed methodology") implemented in C++ and 
Python;

•	 OSRM4 is a C++ routing service designed to interrogate 
Open Street Map APIs;

•	 Celery is an asynchronous task queue manager used to 
automate multiple requests to different endpoints without 
the risk of overloading the external services;

•	 Redis Cache is a service that manages the sending, 
receiving, and queuing of messages with Celery;

•	 Django manages the API endpoints and provides the 
micro-service APIs.

The logical components of the software are also detailed 
in Fig. 3. These components can be detailed as follows:

•	 Geo-reference: this module is responsible for the first 
task of the BPM model shown in Fig. 1, that is to retrieve 
the coordinates of a list of addresses;

•	 Travel matrix generation: this module is in charge of the 
second step in Fig. 1, that is to create a distance and time 
matrix from the list of coordinates;

•	 MTVRPTW solver: this module is in charge of the 
problem solution. The problem is detailed in "Formal 

MTVRPTW description", while the solution approach 
used to solve it is described in "Proposed methodology".

As an example of the web UI we also provide a screen-
shot in Fig. 4. We observe a graphical representation of the 
computation output (in the form of a map with waypoints 
and routes) and a tabular representation of the solver output 
(with schedules and travel distances) that can be downloaded 
as an .xls file. Several buttons are used to upload the prob-
lem definition, start the solver execution, plot results, or 
download them.

Formal MTVRPTW Description

We define the MTVRPTW on a directed graph 
G = (N,A) with a set of nodes N and a set of arcs 
A = {(i, j) ∶ i, j ∈ N, i ≠ j} . The set of nodes N is divided 
into depots (D) and customers (C). Each arc (i, j) ∈ A is asso-
ciated with a traveling time tij . Additionally, each node i ∈ N 
is associated with a specific time window [ ei , li ], where ei 
represents the earliest arrival time and li represents the latest 
arrival time. If a vehicle arrives before ei , it must wait. In 
addition, a vehicle cannot arrive after li.

Multiple-day deliveries may be required for each cus-
tomer. Let P denote the days in which the planning is 
required. Each customer i ∈ C is characterized by a demand 
qip on the day p ∈ P and a service time si . The vehicle fleet, 
represented by the set V, is heterogeneous and is divided into 
different types. Vehicles of the same type are defined by Kv , 
and all vehicles k ∈ Kv are identical in loading capacity and 

Fig. 4   A screenshot of the MTVRPTW module

4  https://​proje​ct-​osrm.​org/.

https://project-osrm.org/
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permissible routes (e.g., mountainous arcs can be traveled 
only by the smallest vehicles).

A feasible solution for the problem must satisfy the fol-
lowing constraints: each route is associated with a unique 
depot and respects the vehicle capacity; a vehicle can per-
form multiple routes in a day, and each route needs to start 
and end at the same depot; each customer is assigned to 
exactly one route, and the total demand must be accom-
plished during a single visit within the time window. Addi-
tionally, the sum of the durations of the routes assigned to 
each vehicle cannot exceed T = 480 minutes per day. Fur-
thermore, before starting another route, the vehicle requires 
a fixed loading time of Δ = 30 minutes, which is included 
in the overall time limit T.

The objective of the problem is to find a set of routes that 
satisfy the aforementioned constraints while minimizing the 
number of used vehicles. All vehicles can operate on any 
day in set P. The problem is solved separately for each day 
p ∈ P , and the solution for one day does not depend on the 
solutions for other days.

Proposed Methodology

In this section, we present the two-phase decomposition 
approach that we implemented to solve the MTVRPTW. 
According to [30], this kind of strategy has allowed us to 
obtain high-quality results for VRPs with multiple trips. 
In the first phase of our approach, we solve an instance of 
the VRPTW. The objective is to obtain a set R of routes 
satisfying the customers’ demands and other operational 
constraints. The set R is then used as input for the second 
phase. The objective in this phase is to minimize the number 
of vehicles when solving an instance of the MTVRPTW. In 
other words, "Solving the VRPTW" presents the first phase, 
while "Solving the MTVRPTW" discusses the algorithms 
that we have proposed for the second phase.

Solving the VRPTW

To solve the VRPTW, we use the algorithm proposed by [4]. 
They solved a real-world distribution case study in Coops-
ervice, considering multiple depots, a heterogeneous fleet of 
vehicles, flexible time windows, periodic demands, incompat-
ibilities between vehicles and customers, a maximum duration 
for the routes, and a maximum number of customers per route. 
The authors proposed a multi-start ILS using several neigh-
borhood operators. The first step in the multi-start ILS is to 
obtain an initial solution from a constructive heuristic. The 
constructive heuristic creates routes by adding customers to 
the closest depot by inserting customers one at a time in the 
route that generates the lowest cost. This heuristic allows time 
window violations, but they are penalized when calculating 

the objective function. The next step is to improve the initial 
solution using local search. It comprises a randomized variable 
neighborhood descent and contains neighborhoods based on 
inter- and intra-route movements. Besides that, perturbation 
procedures are applied to the solution to escape from local 
optima. They modify the routes using random swap move-
ments and customer relocations.

We use this algorithm to obtain a set R of routes used as 
input for the second phase. Since our goal is to find the mini-
mum number of used vehicles, we aim to combine the routes 
of R. In other words, depending on the customers’ time win-
dows, a vehicle can return to the depot and perform another 
route, reducing the number of vehicles needed. Therefore, we 
propose four algorithms, explained in the next section, to attain 
this objective.

Solving the MTVRPTW

The algorithms we develop aim at merging the routes in R to 
generate giant routes (i.e., routes with multiple trips). Next, 
we assign these giant routes to appropriate vehicles, aiming 
to minimize the number of used vehicles. The first approach 
assumes the initial routes have a fixed starting time. Further 
elaboration regarding this algorithm is provided in "Fixed 
starting time Greedy Algorithm (FSTG)".

Considering that the customers’ time windows are large 
enough, our next approaches optimize the starting time of each 
route in R while still respecting the time windows. The objec-
tive is to determine the best starting time for each route. In this 
context, for each vehicle type v ∈ V , each depot d ∈ D , and 
each day p ∈ P , we can aggregate the routes on the same day 
from the same depot and the same vehicle type.

We calculate the starting time of each route with the for-
ward-time slack procedure introduced by [31]. Let r ∈ R be a 
route, and Nr denote the sequence of nodes visited by the route 
r. For every node i ∈ Nr , we define STi as the earliest feasible 
starting time, WTi as the cumulative idle time, and FTi as the 
partial forward slack time. For the starting time of route r, 
the initial values are set as follows: ST1 = e1 , WT1 = 0 , and 
FT1 = l1 − e1 . For successive nodes i ∈ Nr , the calculations 
are carried out as follows:

In addition, we also compute the latest starting time LTi for 
each node i ∈ Nr . The calculation starts from the last node 
n ∈ Nr , initializing LTn = ln , and then proceeds in reverse 
order towards the first node of the route, as outlined below:

(1)STi = max(STi−1 + ti−1,i + si; ei + si),

(2)WTi = WTi−1 + (STi − STi−1 − ti−1,i − si−1),

(3)FTi = min(FTi−1; li − STi +WTi).
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After all, the earliest and latest starting times for route r are 
determined by the following expressions:

We generalize the fixed starting time greedy algorithm by 
incorporating the earliest and latest starting times for the 
routes in R, as elaborated in "Bounded starting time Greedy 
Algorithm (BSTG)". We also take advantage of that by 
implementing an ILS, outlined in "Iterated local search 
(ILS)". Furthermore, these improvements are also consid-
ered in a MILP problem presented in "Mathematical model".

Fixed Starting Time Greedy Algorithm (FSTG)

To solve the problem variant where the starting time of each 
route is fixed, we have developed the greedy algorithm out-
lined in Algorithm 1. The input is the set R of routes result-
ing from the previous step. Each route r ∈ R is assigned to 

(4)LTi−1 = min(LTi − ti−1,i − si; li−1).

(5)ēr = e1 +min(FTn; WTn),

(6)l̄r = LT1.

a day pr ∈ P , to a depot dr ∈ D , and to a vehicle of type 
kr ∈ Kv ⊆ V  . The objective is to assign every day the routes 
in R to the minimum number of vehicles.

The algorithm starts with an empty set � , representing 
the set of used vehicles associated with a specific day p, a 
depot d, and a vehicle of type k (i.e., �pdk ). Let us denote by 
Rpdk ⊆ R the subset of routes for which pr = p , dr = d , and 
kr = k . Set Rpdk is created in line 6, and then the routes it 
contains are sorted according to non-decreasing starting time 
(breaking ties by non-increasing duration) in line 7. This 
approach ensures that routes with similar starting times but 
longer duration are prioritized. Following this order, each 
route is assigned to an available vehicle belonging to �pdk 
in line 10. The assignment is feasible if the vehicle v exists 
and can perform the route concerning its starting time and 
duration, besides respecting the overall driving time T in day 
p and the time window of each customer. Otherwise, a new 
vehicle of type k is initialized to perform the route r ∈ Rpdk . 
The algorithm ends when all routes in R are assigned to a 
vehicle v (line 16).

Algorithm 1   Greedy Algorithm

1: procedure Greedy(R)
2: σ ← ∅
3: for each day p ∈ P do
4: for each depot d ∈ D do
5: for each vehicle type k ∈ Kv : Kv ⊆ V do
6: Let Rpdk ⊆ R be the set of routes having pr = p, dr = d, kr = k
7: Sort the routes in Rpdk by non-decreasing starting time
8: for each r ∈ Rpdk do
9: if there exists a vehicle of type k to serve r then

10: σpdk ← r
11: else
12: Initialize a new vehicle of type k to serve r and include r in σpdk
13: end if
14: end for
15: if all routes in R have been assigned then
16: return σ
17: end if
18: end for
19: end for
20: end for
21: end procedure
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The advantage of using the fixed starting times is that 
the resulting subproblem is easy, and, indeed, Algorithm 1 
can solve it to proven optimality (i.e., it finds the minimum 
number of vehicles). The proof derives from the interval 
coloring problem, which is known to be polynomially 
solvable by the greedy algorithm (see, e.g., [32]). In 
our case, intervals are the fixed starting time routes, and 
the colors are the vehicles. The disadvantage is that we 
lose flexibility in the way routes can be merged and thus 
drastically reduce the solution space. In the next section, 
we overcome this drawback by allowing the route starting 
times to be modified.

Bounded Starting Time Greedy Algorithm (BSTG)

This section introduces an enhancement to Algorithm 1 
that considers a bounded starting time for each route in 
R. In contrast to the fixed starting time strategy, this new 
version incorporates flexibility by moving the starting time 
within an interval defined by the earliest and the latest 
starting time. These bounds are computed using equations 
(5) and (6). In this way, the BSTG can optimize the merg-
ing of the routes by adjusting their starting times accord-
ing to the defined earliest-to-latest interval.

Formally, for each day p ∈ P and for each route r ∈ R , we 
compute ēr and l̄r using equations (5) and (6), respectively. 
Then, in Algorithm 1, line 7 is changed to have the routes in 
Rpdk ⊆ R sorted in a non-decreasing order based on ēr . Con-
sequently, routes are scheduled to begin as early as possible, 
respecting the defined earliest-to-latest interval.

Iterated Local Search (ILS)

The ILS is a metaheuristic optimization approach 
that integrates local search techniques with iterative 
improvement strategies. It aims to refine a given initial 
solution by iteratively applying perturbation and local search 
algorithms. The perturbation phase introduces randomness 
into the current solution to escape from local optima and 

expand the exploration of the solution space using local 
search algorithms [33].

Algorithm 2 presents the ILS we implemented. It consists 
of different phases: initialization, perturbation, local explo-
ration, and acceptance. All these phases contribute to the 
iterative improvement process of the algorithm, allowing it 
to escape from local optima solutions and converge to bet-
ter solutions. The algorithm receives in input � , the maxi-
mum number of iterations without improvements. The initial 
solution is generated by the bounded starting time greedy 
algorithm described in "Bounded starting time Greedy Algo-
rithm (BSTG)". Then, the solution is improved through the 
local search procedure described in Algorithm 3. The main 
loop in lines 6-16 of Algorithm 2 continues until � is eventu-
ally reached. The loop begins by applying the perturbation 
procedure, detailed in Algorithm 4, followed by the local 
search procedure. After that, if the cost of the new solution 
(i.e., the number of vehicles used) improves the incumbent 
solution value, the incumbent solution is updated and the 
loop restarts from scratch (because we reached an improve-
ment). In line 15, the current solution is updated with the 
new one if the new one uses fewer vehicles.

Algorithm 2   Iterated Local Search Algorithm

1: procedure ILS(ω)
2: i ← 0
3: x0 ← ConstructiveHeuristic
4: xcurrent ← LocalSearch(x0)
5: xbest ← xcurrent

6: while i < ω do
7: x′ ← Perturbation(xcurrent)
8: x′′ ← LocalSearch(x′)
9: if cost(x′′) < cost(xbest) then

10: xbest ← x′′

11: i ← 0
12: else
13: i ← i+ 1
14: end if
15: xcurrent ← Acceptance(xcurrent, x

′′)
16: end while
17: return xbest

18: end procedure

Table 1   Model decision 
variables

Variable Description

xrkv Binary variable: 1 if route r ∈ R is assigned to vehicle k ∈ Kv of type v ∈ V  , 0 otherwise
ykv Binary variable: 1 if vehicle k ∈ Kv of type v ∈ V  is used, 0 otherwise
zrskv Binary variable: 1 if route r ∈ R precedes route s ∈ R , both assigned to vehicle k ∈ Kv of 

type v ∈ V  , 0 otherwise
�kv Continuous variable: starting time of vehicle k ∈ Kv of type v ∈ V

�kv Continuous variable: ending time of vehicle k ∈ Kv of type v ∈ V

trkv Continuous variable: starting time of route r ∈ R assigned to vehicle k ∈ Kv of type v ∈ V
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Algorithm 3   Local Search Procedure

1: procedure LocalSearch(x)
2: for each pair of routes r1 and r2 in x do
3: xnew ← swap routes r1 and r2
4: if cost(xnew) < cost(x) then
5: x ← xnew

6: end if
7: end for
8: for each pair of routes r1 and r2 in x do
9: xnew ← insert route r1 before route r2

10: if cost(xnew) < cost(x) then
11: x ← xnew

12: end if
13: end for
14: return x
15: end procedure

In the local search (Algorithm 3), we start by applying 
swap movements and, next, insertion movements. The swap 
procedure involves exchanging pairs of routes, while the 
insertion procedure involves selecting and inserting a route 
before another route. We apply these movements on all com-
binations of two routes. As soon as an improvement is found, 
if any, the solution is updated, and the search continues. On 
the other hand, the perturbation function (Algorithm 4) is 
used to change (drastically) a given solution by inserting a 
random subset of routes in random positions of the solu-
tion. It starts by selecting k, i.e., the number of subsets of 
perturbed routes. Next, each subset is defined randomly in 
lines 4-6 and inserted in a random solution position in line 7. 
These steps are repeated k − 1 times.

Algorithm 4   Perturbation Procedure

Mathematical Model

We also propose a MILP model to combine the routes r ∈ R 
to minimize the daily number of used vehicles. The model 
has three sets of binary decision variables and three sets of 
continuous decision variables, as described in Table 1. The 
parameter Tr represents the total duration of route r ∈ R . 
Let Nr be the sequence of nodes visited by the route r, we 
obtain Tr as the sum of the traveling times to visit the nodes 
in Nr , and the service time at each node in Nr . In addition, 
we need to sum the fixed loading time Δ to Tr . Let M be a 
large number.

The resultant model is presented in (7)–(22) below. It is 
executed independently for each day p ∈ P , and so it only 
considers the routes Rp ⊆ R of day p.

1: procedure Perturbation(x)
2: k ← random integer number in [1, |x|)
3: for i ← 2 to k + 1 do
4: start ← random integer number in the range of |x| − i
5: end ← start+ i
6: subset routes ← x[start : end]
7: Insert subset routes into x at a random position
8: end for
9: return x

10: end procedure
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Fig. 5   Coopservice data of the Sardinia region

Fig. 6   Coopservice data of the 
Emilia Romagna region

Fig. 7   Computing times of executing the geo-location services
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(7)min Zp =
∑

v∈V

∑

k∈Kv

ykv

(8)xrkv ≤ ykv, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(9)
∑

v∈V

∑

k∈Kv

xrkv = 1, ∀r ∈ Rp

(10)
zrskv + zsrkv ≥ xrkv + xskv − 1, ∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(11)
zrskv + zsrkv ≤ 1, ∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(12)
trkv + (Tr + Δ) ≤ tskv +M(1 − zrskv),

∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(13)ēr ≤ trkv ≤ l̄r, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(14)�kv ≤ trkv +M(1 − xrkv), ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(15)
�kv ≥ trkv + (Tr + Δ) −M(1 − xrkv), ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(16)�kv − �kv ≤ T + Δ, ∀v ∈ V ,∀k ∈ Kv

(17)
∑

r∈Rp

(Tr + Δ)xrkv ≤ T + Δ, ∀v ∈ V ,∀k ∈ Kv

(18)xrkv ∈ {0, 1}, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(19)ykv ∈ {0, 1}, ∀v ∈ V ,∀k ∈ Kv

The objective function (7) asks to minimize the number of 
used vehicles on the day p. Constraints (8) impose that each 
route r is assigned to a given vehicle k if and only if k per-
forms that route. Constraints (9) ensure that all routes are 
served by a vehicle. Constraints (10) and (11) impose the 
precedence between routes performed by the same vehicle. 
In (10), if two routes are performed by the same vehicle, 
one must precede the other. Instead, in (11), the first route 
precedes the second, or the second route precedes the first 
one. Constraints (12) impose that a route starts after the end-
ing of another route if both are served by the same vehicle, 
respecting the total duration Tr and the fixed loading time Δ . 
Constraints (13) ensure that the starting time of each route 
is between the earliest and latest starting time, computed 
using equations (5) and (6), respectively. Constraints (14), 
(15), and (16) guarantee that the multiple routes a vehicle 
performs are executed within the maximum vehicle working 
time T. Note that in constraints (16), we add an additional 
fixed loading time Δ because it is not considered in the first 
route. That is why in constraints (15), we assume that all 
routes (including the first one performed by the vehicle) have 
a fixed loading time. In addition, constraint (17) are valid 
inequalities to ensure that the total duration of all the routes 
performed by each vehicle respects the maximum vehicle 
working time. Lastly, constraints (18)-(22) define the vari-
ables domain.

(20)zrskv ∈ {0, 1}, ∀r, s ∈ Rp ∶ r ≠ s,∀v ∈ V ,∀k ∈ Kv

(21)trkv ≥ 0, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(22)�kv ≥ 0, �kv ≥ 0, ∀v ∈ V ,∀k ∈ Kv

Fig. 8   Computing times of executing the distance-computation 
services

Fig. 9   Computing times of executing the routing services
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Computational Results

To evaluate the performance of the considered system, we 
deployed the DSS on a virtual machine (VM) in a private 
cloud environment. The VM has 16GB of RAM and 16 
virtual cores. The underlying virtualization environment is 
based on XCP-NG (Xen-based) 8.2 and runs on a four Intel 
Xeon Gold 6252N CPU with a clock of 2.30 GHz. The guest 
is a VM running Microsoft Windows 11 Home 64-bits.

The algorithms in "Solving the VRPTW" were coded 
in C++, and those in "Solving the MTVRPTW" in Python 
3.10. Model (7)–(22) was solved with the help of Coin-OR,5 
version 2.10.3. A time limit of 600 s was imposed on the 
model to solve each instance. For the ILS, the maximum 
number � of iterations without improvements was set to 10 
after the outcome of preliminary experiments.

The instances have been obtained from the operations 
planned by Coopservice, in compliance with data privacy 
regulations, in the Sardinia and Emilia Romagna regions 
in Italy. The Sardinia region is divided into two areas, as 
illustrated in Fig. 5: North Sardinia, with 152 customers, 
3 depots, and 2 vehicle types; and South Sardinia, with 
154 customers, 1 depot, and 2 vehicle types. The Emilia 
Romagna region, instead, is divided into three areas, as 
illustrated in Fig.  6: West Emilia Romagna, with 206 

customers, 1 depot, and 1 vehicle type; Central Emilia 
Romagna, with 210 customers, 2 depots, and 1 vehicle type; 
and East Emilia Romagna, with 201 customers, 1 depot, and 
1 vehicle type. In the figures, the blue points represent the 
customers, while the red ones represent the depots.

In the following, we first perform scalability analyses, 
considering instances obtained from subsets with different 
numbers of nodes in N (i.e., customers and depots) from the 
Emilia Romagna region. Next, we present the computational 
results obtained with the proposed algorithms on the given 
instances.

Scalability Analysis of the Micro‑services

To evaluate the impact of the problem size on the speed of 
the different micro-services, we consider the several steps 
carried out by the DSS, from geo-referencing the points to 
solving the routing problem, as described in "Decision sup-
port system architecture". To this aim, we generate random 
instances by selecting subsets of nodes from the real-world 
data representing the Emilia Romagna region. Each result-
ing instance is solved five times, and the average computing 
times in seconds are reported to estimate the increase in the 
computational effort.

In the first experiment, shown in Fig. 7, we evaluate the 
execution time of geo-referencing points of interest varying 
the instance size. We first generate three sets: Set #1 (East 

Table 2   Computational results 
on the 20 groups (120 random 
instances)

 Instance |D| |C| Kramer FSTG BSTG ILS Model
∑

�Rp�
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)

Group-01 1 30 18 18 0.013 16 0.013 16 0.730 16 0.198
Group-02 1 60 23 23 0.013 23 0.013 23 1.358 23 0.273
Group-03 1 90 38 38 0.018 35 0.017 35 3.661 35 0.737
Group-04 1 120 45 45 0.017 42 0.017 42 6.049 42 1.103
Group-05 1 150 49 49 0.017 49 0.017 49 6.932 49 1.285
Group-06 2 30 13 13 0.016 13 0.015 13 0.142 13 0.173
Group-07 2 60 28 28 0.023 27 0.023 27 0.735 27 0.477
Group-08 2 90 31 31 0.020 29 0.019 29 1.183 29 0.564
Group-09 2 120 42 42 0.024 39 0.024 38 2.111 38 1.163
Group-10 2 150 49 49 0.025 46 0.026 46 3.145 46 1.592
Group-11 3 30 15 15 0.019 14 0.019 14 0.050 14 0.236
Group-12 3 60 29 29 0.029 27 0.028 27 0.464 27 0.771
Group-13 3 90 32 32 0.030 30 0.030 30 0.459 30 0.828
Group-14 3 120 39 39 0.029 36 0.029 36 1.150 36 1.274
Group-15 3 150 49 49 0.034 46 0.033 46 1.689 46 2.006
Group-16 1 30 18 18 0.013 16 0.012 16 0.823 16 0.184
Group-17 1 60 29 29 0.014 25 0.013 25 2.371 25 0.380
Group-18 1 90 39 39 0.015 38 0.014 38 4.702 38 0.748
Group-19 1 120 43 43 0.018 41 0.017 41 4.610 41 0.903
Group-20 1 150 55 55 0.019 50 0.018 50 8.148 50 2.357
Average 34 34 0.020 32 0.020 32 2.526 32 0.863

5  https://​www.​coin-​or.​org/​docum​entat​ion.​html.

https://www.coin-or.org/documentation.html
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Emilia Romagna) contains 41 instances with number |N| of 
nodes in the range [1, 201]; Set #2 (Central Emilia Romagna) 
contains 43 instances with |N| in the range [1, 211]; and Set 
#3 (West Emilia Romagna) contains 14 instances with |N| in 
the range [1, 196]. We can observe a quasi-linear increase 
in the running time as the size of the instance grows. The 
performance here is impacted by the running time of the 
external ArcGIS service used for geo-referencing. Due to 
the nature of the service, where a single key is used to access 
the external service, multi-threaded and parallel execution of 
the service do not provide a significant gain (the invocation 
rate for a given key is limited).

The second experiment concerns the performance and 
scalability of the distance matrix computation. To this aim, 
we consider the output of the previous step, and we feed 

the geo-referenced points into the distance computation 
micro-service. For each problem size, we record the 
average computing time required to obtain the distance 
matrix. Figure 8 shows the micro-service computing time 
(in seconds) as a function of the number of points. The 
distance matrix contains a value for each couple of points. 
This explains the quadratic shape of the running time curve 
as a function of the instance size. Due to the frequency 
of external service invocations, we also observe that the 
distance computation matrix can require a time in the order 
of tens of minutes. This observation confirms the validity of 
our design choice to return a job ID for subsequent polling 
rather than returning directly the distance at the end of the 
computation: the TCP protocol (used to interact with the 
micro-service instance) would return a timeout error before 

Table 3   Computational results 
on the 28 real instances

 Instance p Kramer FSTG BSTG ILS Model

|Rp| Zp t(s) Zp t(s) Zp t(s) Zp t(s)

North Sardinia 1 9 9 0.005 7 0.005 7 0.911 7 0.344
North Sardinia 2 9 9 0.007 9 0.007 9 0.476 9 0.319
North Sardinia 3 8 8 0.007 8 0.006 8 0.328 8 0.269
North Sardinia 4 9 9 0.006 9 0.006 9 0.610 9 0.331
North Sardinia 5 10 10 0.007 9 0.006 9 0.664 9 0.473
North Sardinia 6 3 3 0.004 3 0.004 3 0.002 3 0.038
Total 48 48 0.036 45 0.034 45 2.991 45 1.774
South Sardinia 1 10 10 0.003 9 0.003 9 1.359 9 0.337
South Sardinia 2 11 11 0.003 11 0.003 11 1.781 11 0.404
South Sardinia 3 11 11 0.003 8 0.003 8 1.771 8 0.440
South Sardinia 4 11 11 0.004 9 0.004 9 1.772 9 0.428
South Sardinia 5 10 10 0.003 10 0.003 10 1.347 10 0.315
South Sardinia 6 5 5 0.003 5 0.003 5 0.382 5 0.070
Total 58 58 0.019 52 0.019 52 8.412 52 1.994
West Emilia Romagna 1 22 22 0.003 21 0.003 21 23.808 21 TL
West Emilia Romagna 2 22 21 0.003 19 0.003 17 23.933 17 TL
West Emilia Romagna 3 22 21 0.003 21 0.003 21 23.897 21 TL
West Emilia Romagna 4 26 24 0.003 23 0.003 23 35.838 - TL
West Emilia Romagna 5 24 21 0.003 19 0.003 18 30.266 19 TL
West Emilia Romagna 6 3 3 0.002 3 0.002 3 0.199 3 0.071
Total 119 112 0.017 106 0.017 103 137.941 - 3000.071
Central Emilia Romagna 1 58 58 0.007 20 0.006 20 143.140 - TL
Central Emilia Romagna 2 10 10 0.004 5 0.004 4 2.192 4 1.158
Central Emilia Romagna 3 58 58 0.007 20 0.006 20 129.670 - TL
Central Emilia Romagna 4 10 10 0.003 4 0.003 4 2.178 4 0.815
Central Emilia Romagna 5 58 58 0.007 21 0.006 20 131.501 - TL
Total 194 194 0.028 70 0.025 68 408.681 - 1801.973
East Emilia Romagna 1 54 54 0.005 24 0.005 23 245.443 29 TL
East Emilia Romagna 2 7 7 0.002 4 0.002 4 1.577 4 0.311
East Emilia Romagna 3 54 54 0.005 24 0.005 23 244.933 32 TL
East Emilia Romagna 4 7 7 0.002 4 0.002 4 1.575 4 0.560
East Emilia Romagna 5 55 55 0.005 23 0.005 23 252.420 29 TL
Total 177 177 0.019 79 0.019 77 745.948 98 1800.871



SN Computer Science           (2024) 5:225 	 Page 15 of 18    225 

SN Computer Science

completing the service whenever the execution time of the 
micro-service exceeds 120 s. A second observation from this 
experiment is the critical impact of caching on performance: 
whenever a distance is already available in the cache, there 
is no need to contact the external service.

The third experiment concerns the computing time 
required to solve the VRPTW with the algorithm proposed 
by [4], as discussed in "Solving the VRPTW". We 
evaluate the scalability of the micro-service as a function 
of the instance size. The results are given in Fig. 9, where 
we observe a non-linear increase in the running time 
as a function of the number of points to visit, which is 
compatible with the NP-hard nature of the vehicle routing 
problem. However, the limited size of the considered 
problem instances makes it feasible to provide a heuristic 
solution in a reasonable time. The computational effort of 
the algorithms in "Solving the MTVRPTW" is reported in 
the next section.

Computational Results of the MTVRPTW Algorithms

With the algor ithms proposed in "Solving the 
MTVRPTW", we aim to minimize the number of vehicles 
used to generate a weekly schedule to serve the custom-
ers. The activities planned in the areas of North Sardinia, 
South Sardinia, and West Emilia Romagna span over six 
working days, whereas those planned in Central Emilia 
Romagna and East Emilia Romagna last five working days. 
Consequently, we have a total of 28 real instances, one per 
day and area. To obtain a very extensive validation of the 
algorithms, we have also created 120 random instances 

that contain subsets of customers from the 120 working 
days (grouped in 20 working weeks of 6 days each) in the 
Sardinia region. Each instance is solved five times, and we 
report, in the next tables, the best solution found among 
these runs and the average computing time.

The 120 random instances are divided into two classes:

•	 Class 1 is obtained from the North Sardinia area, 
considering a number of depots randomly selected in 
the set {1, 2, 3} , and a number of customers randomly 
selected in the set {30, 60, 90, 120, 150} . Customers 
are randomly selected from the original set in the real 
instance. Two types of vehicles are available. The 
instances of this class correspond to Group-01 until 
Group-15.

•	 Class 2 is generated similarly to Class 1, but it refers to 
the South Sardinia area and is characterized by a single 
depot. The instances of this class correspond to Group-16 
until Group-20.

In Table 2, we present the results obtained with the proposed 
algorithms on the 120 randomly generated instances, organ-
ized in 20 groups. Columns |D| and |C| report the number of 
depots and total customers in the group (week), respectively. 
Column |Rp| represents the number of routes generated by 
solving the VRPTW with the algorithm of [4]. Columns Zp 
and t(s) contain the number of used vehicles per day and 
the average computing times in seconds over the five runs, 
obtained from solving the MTVRPTW with the proposed 
algorithms: FSTG, BSTG, ILS, and mathematical model. 
The results comprise the entire week (i.e., a group having 
six days, where the best solution for each day is considered). 
Each line then shows the total values as the sum of the best 
solutions per day over the five runs.

By analyzing the results in Table 2, we can notice that no 
improvement is obtained in three cases: Group-02, Group-
05, and Group-06, all related to North Sardinia. In contrast, 
for all other cases, the proposed algorithms, except the 
FSTG, obtain a reduction in the number of vehicles used. 
Notably, the BSTG achieves an average reduction of 6.14% 
in the number of used vehicles compared to the solution 
obtained with the algorithm of [4], while the ILS and the 
mathematical model reach an average reduction of 6.29%.

From Table 2, we observe that the ILS and the math-
ematical model have the same solutions. To evaluate how 
competitive they are, we now present the results for the 28 
real instances, which are harder to solve. These results are 
reported in Table 3 for each day p and each area. For some 
instances, the imposed time limit has been reached (TL), 
and the mathematical model found no feasible solution 
(entry ‘-’). In the last line of each table, we summarize 
the total values comprising the entire week for each area.

Fig. 10   Illustrative example of a solution found for the West Emilia 
Romagna area
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Table 3 shows that the ILS obtains the best overall 
results, especially when the mathematical model cannot 
find a solution within the given time limit. It means that 
the model does not scale well as the size of instances 
grows. For example, the ILS returns 77 vehicles for the 
East Emilia Romagna, while the mathematical model 
gives 98 vehicles. In the West and Central Emilia 
Romagna, the mathematical model cannot find any fea-
sible solution on days p = 4 and p = 1, 3, 5 , respectively, 
while the ILS achieves the best total number of vehicles, 
followed by the BSTG with 3 and 2 vehicles more, respec-
tively. The BSTG obtains the same results concerning the 
ILS for the North and South Sardinia. On the other hand, 
the FSTG always returns the same number of vehicles as 
obtained with the algorithm of [4], except for the West 
Emilia Romagna.

The ILS can reduce by 6.25%, 10.34%, 13.45%, 
64.95%, and 56.50% the number of vehicles concerning 
the algorithm of [4] for North Sardinia, South Sardinia, 
West Emilia Romagna, Central Emilia Romagna, and 
East Emilia Romagna, respectively, considering the entire 
week. It is important to consider that, in Italy, the cost 
of a large vehicle (120 tons or more) can easily exceed 
50,000 euros. Therefore, even if the number of route 
reductions may appear small in some instances, they rep-
resent significant cost savings for Coopservice. Concern-
ing the computing times, they are negligible for FSTG 
and BSTG. The ILS requires more time (260.80 s, on 
average per week), but generally, it is much faster than the 
mathematical model (1321.34 s, on average, per week).

Besides that, the proposed DSS allows the decision-
maker to visualize the generated routes on a map. 
Figure 10 illustrates an example of the solutions found 
in the West Emilia Romagna. The simplified UI allows 
the decision-makers to easily check the solution and its 
feasibility in daily planning.

Conclusions and Future Works

This paper presents the development of a model-driven 
decision support system (DSS) designed to help decision-
makers tackle complex logistic decisions. The proposed 
DSS encompasses specialized modules to address the 
multi-trip vehicle routing problem with time windows (i.e., 
MTVRPTW). It considers a set of agile micro-services 
capable of geo-referencing points and performing distance 
calculations. The data produced is then used as input to 
the vehicle routing problem, which in turn is solved by 
a two-phase approach. In the first stage, we use a solu-
tion method proposed in the literature to find a solution 
to the vehicle routing problem with time windows. Next, 
four proposed methods are used to obtain a solution to the 

MTVRPTW: two greedy heuristics, an ILS metaheuristic, 
and a MILP model. The overall DSS architecture has the 
flexibility to allow changing the micro-services already 
implemented as well as to add new services and even solu-
tion methods.

The DSS is validated on real and randomly generated 
instances, considering different numbers of depots, cus-
tomers, and vehicle types. Results indicate the superior 
performance of the ILS, which can outperform on the real 
instances the algorithm of [4] by 30.30%, the fixed starting 
time greedy algorithm by 29.22%, the bounded starting 
time greedy algorithm by 1.64%, and the mathematical 
model by 4.50%, on average. All these improvements sig-
nificantly benefit the company that is using the DSS in 
terms of operational costs. Besides that, the computing 
times of the ILS are compatible with daily use.

Concerning future works, it would be interesting to 
add new micro-services in the DSS to, e.g., handle other 
logistic problems faced by the company in activities such 
as pick-up and delivery and car patrolling (see, e.g., [34]). 
Another interesting direction would be to investigate the 
impact of new constraints on the problem, e.g., labor 
constraints or maximum CO2 emissions. In this regard, 
exploring the adoption of electric vehicles instead of fuel 
vehicles, so as to minimize emissions while meeting addi-
tional operational constraints (see, e.g., [35]), offers a very 
interesting perspective for future research. It would also 
be interesting to apply the proposed DSS to handle prob-
lems related to reverse logistics. To this aim, one could 
try to adapt the current algorithms, especially the ILS, by 
including new perturbation procedures and local search 
operators.
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