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Abstract
This paper introduces a novel method for visualizing high-dimensional Grassmannians through 2D embeddings on the 
Poincaré disk. The proposed approach involves the construction of affinity matrices on each manifold, followed by the 
minimization of KL-divergence between the geodesics affinity. This process enables the identification of an optimal projection 
that effectively preserves the geometry of the original high-dimensional Grassmannian. Our main theoretical contribution lies 
in bounding the embedding loss with respect to two factors: the logarithm of the number of subspaces and a term dependent 
on the distribution of subspaces within the Grassmannian. Notably, this term is smaller when subspaces exhibit well-defined 
clusters, and larger in the absence of any discernible structure. We complement our theoretical analysis with comprehensive 
experiments on both synthetic and real datasets. The experimental results showcase the superiority of our embedding in 
accurately visualizing Grassmannians compared to existing representations.

Keywords Grassmannian · Manifold learning · Poincaré disk · t-SNE · High-dimensional data and dimensionality reduction

Introduction

Subspaces are a cornerstone of data analysis, with appli-
cations ranging from linear regression to principal com-
ponent analysis (PCA) [1–3], low-rank matrix completion 
(LRMC) [4, 5], computer vision [6–9], recommender sys-
tems [10–12], classification [13–15], and more [16]. How-
ever, there exist few tools to visualize the Grassmann mani-
fold �(m, r) of r-dimensional subspaces of ℝm . Perhaps the 

most intuitive of such visualizations is the representation 
of �(3, 1) as the closed half-sphere where each point in the 
hemisphere represents the one-dimensional subspace (line) 
in ℝ3 that crosses that point and the origin (see Fig. 1). While 
intuitive, this visualization bears two major limitations. 
First, this representation wraps around the edge, so geo-
desic distances can be deceiving. For instance, two points 
(subspaces) that may appear diametrically far may in fact 
be arbitrarily close (see Fig. 1). But more importantly, the 
main caveat of this semi-sphere representation is that it is 
unclear how to generalize it to m > 3 or r > 1 , which makes 
it quite restrictive, specially for analysis of modern high-
dimensional data.

In response to the limitations of classical 3D presenta-
tions, we introduce a novel approach, which we call Grass-
Caré, that addresses two crucial aspects of visualizing col-
lections of points (subspaces) in the Grassmannian, namely

• Efficient projection: Our method determines the optimal 
angle for projecting the points onto the Grassmannian. 
This process can be likened to rotating the view until dis-
tances are accurately represented by geodesic distances, 
as depicted in Fig. 1.

• High-dimensional support with preserved geometry: 
We ensure full support for high-dimensional Grass-
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mannian spaces while maintaining the geometry of the 
Riemannian manifold on a low-dimensional plane. This 
preservation is essential to prevent distortion during 
dimension reduction, which could otherwise lead to 
misleading perceptions of the scales of different subar-
eas. This phenomenon is analogous to the challenge of 
representing a sphere perfectly on a 2D plane without 
deformation, as observed in certain world maps, affect-
ing how humans perceive the scale of central and edge 
areas on the Mercator map (resulting, for example, in 
a common misperception of the size of the Greenland 
relative to the rest of the world).

To achieve these objectives, we aim to match two affinity 
matrices-one corresponding to the geodesics on the Grass-
mannian and the other to the distances on the 2D space. We 
minimize the discrepancy (measured by Kullback–Leibler 
(KL) divergence) between these two matrices. In doing so, 
we ensure that points close to each other on the Grassmann-
ian are also close in the new 2D space. In this manner, we 
can obtain a 2D embedding that accurately captures the 
structure of points on the Grassmannian.

To replicate the landscape of the Grassmannian, we uti-
lize the Poincaré disk as the space of the 2D embeddings. 
The Poincaré disk is a 2D hyperbolic geometric model, often 
represented as a unit circle where the geodesic distance 
between two points in the disk is depicted as the circular 
arc orthogonal to the unit circle [17]. This representation 
corresponds to the projection of the hyperbolic arc of their 
geodesic (see Fig. 2 for intuitive understanding). Essentially, 
the Poincaré disk provides a view from the bottom of the 
3D hyperbolic bowl, sharing significant structural similarity 
with the hemisphere in Fig. 1.

Compared to the Euclidean space, which requires defor-
mation to generate embeddings, the Poincaré disk allows 

the embeddings to have a focused area (central area) that is 
resistant to deformation from hyperbolic effects and a back-
ground area (around the edges) where only the global struc-
ture is significant. This characteristic enables us to main-
tain an accurate global representation of the Grassmannian 
within a unit circle while simultaneously preserving local 
structures.

Our main theoretical result shows that the loss of our 
embedding (measured in terms of the KL-divergence with 
respect to (w.r.t.) the Grassmannian geodesics) is bounded 

Fig. 1  Left: Classical 3D Representation of the Grassmannian �(3, 1) . 
Each point represents the subspace �i that connects that point to the 
origin. This representation wraps around the edge. Two points (sub-
spaces) that appear diametrically far w.r.t.  the geodesic distance on 
the hemisphere ( d

ℍ
(𝕌i,𝕌j) ) are in fact close w.r.t.  the geodesic dis-

tance on the Grassmannian ( d
�
(�i,�j) ); see (1)]. An intuitive way to 

see this is to extend the lines to the opposite side of the hemisphere 
and compute their smallest angle. Right: Our method introduces an 
efficient projection technique that determines the optimal angle for 
projecting points onto the Grassmannian. Conceptually, this can be 
likened to skillfully rotating the view until the distances between 
points are accurately represented by geodesic distances

Fig. 2  Geodesics in the Poincaré disk � . The geodesic distance 

d
�
(pi,pj)

 is given by the Euclidean length of the hyperbolic arc between 

p
′
i

 and 
p
′
j

 , and is often depicted in the disk by the arc between 
pi

 and pj 

(and similarly for 
d
�
(pa,pb)

 ). Points closer to the disk’s boundary will 

be projected higher on the hyperbolic space, resulting in larger distances 
[see (2)]. In words, distances near the edge are larger than they appear
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by a log-factor of the number of subspaces, and a term that 
depends on the distribution of the subspaces in the Grass-
mannian. This term will be smaller if the subspaces form 
well-defined clusters, and it will be larger if the subspaces 
have no structure whatsoever. In words, this result shows 
that under reasonable assumptions, our embedding can be 
an accurate representation of the Grassmannian. Equipped 
with this result, we believe that the GrassCaré embedding 
can be a powerful tool for subspace tracking, classification, 
multi-dataset analysis, and any application where there is an 
interest in visualizing subspaces.

Paper Organization In the next section, we discuss sev-
eral applications of our GrassCaré embedding. The subse-
quent section briefly summarizes related work followed by 
which we introduce the main formulation that determines 
our embedding, together with the gradient steps for the opti-
mization. Then our main theorem, bounding the loss of our 
embedding, followed by its proof is presented. Finally, we 
demonstrate the applicability of our GrassCaré embedding 
on real and synthetic data, we compare it to naive alterna-
tives, and we discuss its advantages and limitations in the 
final section.

Applications

Our GrassCaré embedding could be a valuable tool in the 
following applications:

Subspace Clustering involves clustering a collection of 
data points x ∈ ℝ

m that are located near a union of subspaces 
[18]. The primary objective is to estimate such union. This 
technique finds applications in various domains such as 
motion segmentation [19, 20], face clustering [21], data 
mining [22], time series analysis [23], among others.

Our experiments demonstrate that the GrassCaré 
embedding we propose provides valuable insights and 
summaries regarding the characteristics and relationships 
among the clusters. By employing this embedding, we can 
analyze the results of a subspace clustering algorithm in 
a more comprehensive manner, moving beyond simple 
accuracy metrics. Moreover, it serves as a useful tool 
for debugging and gaining a deeper understanding 
of algorithmic performance. In fact, the analysis and 
comprehension of subspace clustering algorithms served as 
the initial motivation behind this research.

Low-Rank Matrix Completion is a fundamental problem 
that tackles the challenge of recovering missing entries 
in a low-rank matrix X [24]. The goal is to unveil the 
underlying structure by identifying the low-dimensional 
row and column spaces of X . This versatile technique finds 

applications in various domains, making it indispensable for 
recommender systems in e-commerce [25], enhancing image 
processing algorithms in computer vision [26], accelerating 
drug discovery processes in pharmaceutical research [27], 
and even enabling effective analysis of electronic health 
records (EHR) [28].

Our novel contribution lies in the utilization of the Grass-
Caré embedding, which emerges as a powerful tool in the 
analysis of LRMC algorithms. Through a series of carefully 
designed experiments, we demonstrate how our approach 
sheds light on the algorithmic behavior and performance 
of LRMC methods. By traversing the Grassmannian, our 
embedding offers valuable insights into crucial aspects 
such as the proximity of the completed matrix to the ground 
truth, convergence behavior, step sizes during optimization, 
and discernible patterns that arise throughout the iterative 
process. This comprehensive analysis not only enriches our 
understanding of LRMC algorithms but also empowers 
researchers and practitioners to fine-tune and enhance the 
performance of these methods in real-world scenarios.

Subspace tracking is a dynamic process that involves 
the continuous estimation of a subspace �t as it evolves 
over time, navigating through the intricate landscape of the 
Grassmannian [3, 29, 30]. This versatile modeling technique 
finds its application in various domains, including signal 
processing [31], low-rank matrix completion [32], and com-
puter vision [29]. For instance, in computer vision, subspace 
tracking enables the estimation of the underlying subspace 
corresponding to the background in a moving video scene.

In this context, our proposed GrassCaré embedding 
emerges as a powerful tool for monitoring the trajectory of 
the subspace as it traverses the Grassmannian. By harnessing 
the capabilities of our embedding, we gain valuable insights 
into the behavior of the evolving subspaces. This encom-
passes the assessment of their movement speed, spatial 
distance covered, and identification of distinctive patterns 
such as zig-zag or cyclic motion. Through the lens of the 
GrassCaré embedding, we can unravel the dynamic nature 
of the subspace path, providing a deeper understanding of 
its evolution and behavior.

Multi-Dataset Analysis is a crucial area of study that 
explores the relationships and interactions between multi-
ple datasets. Principal Component Analysis (PCA) stands 
as the cornerstone of dimensionality reduction techniques 
and finds widespread application in diverse fields. From 
electronic health records (EHR) analysis [28] to genomics 
research [33, 34], and even vehicle detection systems [35, 
36], PCA has proven its versatility and utility. By identifying 
the low-dimensional subspace that best captures the essential 
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structure of high-dimensional datasets, PCA enables effi-
cient data representation.

In contemporary scenarios, multiple datasets often exhibit 
distributional patterns or possess underlying relationships. 
For example, the EHRs of different geographical regions 
might share significant correlations. However, due to chal-
lenges such as privacy concerns, security considerations, 
data size, ownership, and logistical constraints, sharing such 
information becomes daunting, if not impossible. Nonethe-
less, the principal subspaces derived from each dataset can 
be shared more efficiently, mitigating these concerns and 
offering a potential avenue for gaining insightful knowledge. 
Leveraging our GrassCaré embedding, we present a visuali-
zation tool that facilitates the analysis of interrelationships 
between related datasets. By examining the embedding, we 
can unveil similarities, identify clusters, and detect meaning-
ful patterns, unlocking a wealth of valuable insights.

Prior Work

To the best of our knowledge, general visualizations of 
Grassmannians have been studied using Self-Organizing 
Mappings (SOM) [37], which were introduced first for gen-
eral dimensionality reduction [38–41]. The extension of 
SOM to Grassmannians iteratively updates points on a 2D 
index space to find the best arrangement, such that points 
that are neighbors in the Grassmannian are still close in the 
embedding. However, SOM presents several limitations. For 
instance, like most neural networks, they require large data-
sets, which may not always be available in practice. They 
also suffer from large parameter spaces, and are quite difficult 
to analyze, making it hard to derive theoretical guarantees 
about the accuracy of their embeddings. It is worth mention-
ing that there are numerous methods for general high-dimen-
sional data visualization, including UMAP [42], LargeVis 
[43], Laplacian eigenmaps [44, 45], isomap [46], and more 
[47–50]. However, since these embeddings are not compact, 
they are not appropriate to represent the Grassmannian.

Another more suitable alternative are the Grassmannian 
Diffusion Maps (GDMaps) [51] introduced as an extension 
of Diffusion Maps [52]. GDMaps consist of two separate 
stages. The first stage projects the given data point (i.e. vec-
tor, matrix, tensor) onto the Grassmannian using a singular 
value decomposition. The second stage uses diffusion maps 
to identify the subspace structures on the projected Grass-
mannian. Although the embedding can be quickly generated, 
it is unfortunately less accurate than other methods in this 
paper. On the other hand, Stochastic Neighbor Embeddings 
(SNE) were first presented by Hinton and Roweis [53]. It 
formed the basis for t-SNE, which was introduced later by 

Maaten and Hinton  [54]. Both algorithms minimize the KL-
divergence between the distributions representing the prob-
ability of choosing the nearest neighbor on the high and low-
dimensional spaces. These embeddings have become some 
of the most practical tools to visualize high-dimensional 
data on Euclidean space. However, Euclidean distances are 
poor estimators of geodesics of Grassmannians, so a direct 
application of these methods would result in an inaccurate 
representation of subspaces arrangements.

Motivated by these issues we decided to explore the use 
of the Poincaré disk, which has recently received increasing 
attention for high-dimensional embeddings [55, 56]. Intui-
tively, the Poincaré disk is a 2D hyperbolic geometric model, 
usually displayed as a unit circle where the geodesic distance 
between two points in the disk is represented as the circular 
arc orthogonal to the unit circle [17], which corresponds to 
the projection of the hyperbolic arc of their geodesic (see 
Fig. 2 to build some intuition). This unique feature brings 
several advantages for serving as the embedding space for 
Grassmannian. First, since these hyperbolic arcs get larger 
(tending to infinity) as points approach the disk boundary, 
the Poincaré disk is an effective model to accurately repre-
sent the global structure of complex hierarchical data while 
retaining its local structures. Specifically, the Poincaré disk 
can be viewed as a continuous embedding of tree nodes from 
the top of the tree structure, where the root node is at the 
origin, and the leaves are distributed near the boundary. So, 
it is naturally suited to represent hierarchical structures. This 
is suitable to represent structured clusters, where the points 
from the same cluster can be regarded a branch of the tree, 
because they share a similar distance to other clusters. Sec-
ond, the hyperbolic disk has a Riemannian manifold struc-
ture that allows us to perform gradient-based optimization, 
which is crucial to derive convergence guarantees, and for 
parallel training of large-scale dataset models. Finally, our 
main result showing the accuracy of our embedding ena-
bles efficient clustering using the Poincaré low-dimensional 
representation. That is, instead of clustering subspaces on 
the high-dimensional dataset, the clustering method can be 
performed on the mutual distances acquired from the embed-
ding, with the knowledge that the embedding would repre-
sent the high-dimensional subspace accurately enough.

Setup and Formulation

In this section, we present the mathematical formulation of 
our GrassCaré embedding. To this end let us first introduce 
some terminology. Recall that we use �(m, r) to denote the 
Grassmann manifold that contains all the r-dimensional sub-
spaces of ℝm . For any two subspaces �1,�2 ∈ �(m, r) , the 
geodesic distance between them is defined as:
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where Ui,Uj ∈ ℝ
m×r are orthonormal bases of �i,�j , and 

�
�
(⋅) denotes the �th largest singular value. As for the 

embedding space, recall that the Poincaré disk � is the 
Riemannian manifold defined as the open unit ball in ℝ2 
equipped with the following distance function between two 
points pi, pj ∈ �:

Notice from (2) that the geodesic distance in the disk is 
amplified smoothly as pi or pj move away from the origin. 
Intuitively, this means that an arc of the same Euclidean 
length in the disk represents a larger geodesic distance 
(tending to infinity) as it approaches the edge of the disk. 
In other words, distances near the edge of the disk are 
larger than they appear (see Fig. 4 to build some intuition). 
Conversely, distances at the center of the disk are smaller 
than they appear. This allows to plot denser regions of the 
Grassmannian with higher granularity (thus retaining local 
structure) while at the same time keeping an accurate global 
representation of the Grassmannian inside an open circle.

To find our embedding, we will mimic the symmetric 
SNE approach in [54]. That is, we will first compute a 
probability matrix P

�
∈ [0, 1]N×N  whose (i, j)th entry 

represents the probability that �i is chosen as a nearest 
neighbor of �j , which is equal to zero if i = j , and for i ≠ j 
is given by:

where �i is adapted to the data density: smaller values for 
denser regions of the data space. In our experiments, we 
choose it to be the variance of distances from point i to other 
points. Next we create the probability matrix P

�
∈ [0, 1]N×N , 

(1)d
�
(�i,�j) ∶=

(
r∑

�=1

arccos2 �
�
(U�

i
Uj)

) 1

2

,

(2)

d
�
(pi, pj) ∶= arcosh

�
1 + 2

‖pi − pj‖2�
1 − ‖pi‖2

��
1 − ‖pj‖2

�
�
.

(3)

[P
�
]ij ∶=

1

2N

exp
�
−d

�

�
�i,�j

�2
∕2�2

i

�

∑
k≠i exp

�
−d

�

�
�i,�k

�2
∕2�2

i

�

+
1

2N

exp
�
−d

�

�
�j,�i

�2
∕2�2

j

�

∑
k≠j exp

�
−d

�

�
�j,�k

�2
∕2�2

j

� ,

whose (i, j)th entry represents the probability that point pi in 
our embedding � is chosen as a nearest neighbor of point 
pj ∈ � , which is equal to zero if i = j , and for i ≠ j is given 
by:

The tuning parameter � , which is set to be any positive 
real number, serves as a control factor for the scattering of 
the embedding [56]. A higher value of � results in a wider 
spread of the embeddings on the Poincaré disk. To examine 
the influence of various � values on the final output, we 
carried out a series of experiments in the following sections 
(the outcomes are presented in Table 1). Our findings indi-
cate that setting � to an excessively large value, such as 100, 
results in poor embeddings. Generally, to achieve favorable 
results, it is recommended to keep � within the range of 1 to 
2, as also suggested in [56].

Our goal to obtain the embedding is to maximize the simi-
larity between the two distributions P

�
 and P

�
 , which we do 

by minimizing their Kullback–Leibler (KL) divergence:

Since P
�
 is a constant given {Ui} , this is the same as 

minimizing the following loss

To minimize this loss over the Poincaré disk � we will 
use Riemannian Stochastic Gradient Descent [57], which 
updates pt+1

i
 according to:

where 𝜂 > 0 is the step size (set as � = 1 in the implementa-
tion), �iL denotes the Riemannian gradient of L w.r.t. pi , and 
R denotes a retraction1 from the tangent space of pi onto � . 
It is easy to see that

(4)[P
�
]ij ∶=

exp(−d
�
(pi, pj)

2∕�)∑
k≠l exp(−d�(pk, pl)

2∕�)
.

KL(P
�
||P

�
) =

∑
i,j

[P
�
]ij log

[P
�
]ij

[P
�
]ij
.

L = −
∑
i,j

[P
�
]ij log[P�

]ij.

(5)p
t+1
i

← R(pt
i
− ��iL),

Table 1  The embeddings of synthetically generated subspaces with varying � values exhibit distinct characteristics
β 0.001 0.01 0.1 1 10 100

E
m
b
ed

di
ng

As � increases, the embeddings on the Poincaré disk become more widely dispersed

1 A mapping R from the tangent bundle TM to the manifold M such 
that its restriction to the tangent space of M at p

i
 satisfies a local 

rigidity condition which preserves gradients at p
i
 ; see Chapters 3 and 

4 of [58] for a more careful treatment of these definitions.
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where the gradient of d
�
 w.r.t. pi is given by:

Here a = 1 − ‖pi‖2 , b = 1 − ‖pj‖2 , and c = 1 +
2

ab
‖pi − pj‖2 . 

Finally, the retraction step is given by

where

and � is a small constant number; in our experiments we set 
this to 10−5.

In our implementation we use random initialization 
for the points in the embedding. We point out that 

(6)
�iL =

4

�

∑
j

(
[P

�
]ij − [P

�
]ij
)

(
1 + d

�

(
pi, pj

)2)−1

d
�

(
pi, pj

)
�id�

(
pi, pj

)
,

�id�(pi, pj) =
4

b
√
c2 − 1

���pj��2 − 2⟨pi, pj⟩ + 1

a2
pi −

pj

a

�
.

R(pi − ��iL) = proj

�
pi − �

�
1 − ‖pi‖2

�2
4

�iL

�
,

proj(pi) =

�
pi∕

�‖pi‖ + �
�

if ‖pi‖ ≥ 1

pi otherwise,

initialization is crucial for t-SNE. This is because t-SNE 
is generally used to embed points in the Euclidean space, 
which is open. In contrast, the Grassmannian is spherical 
and compact, and hence, we observed that varying 
initialization resulted in similar/equivalent embeddings of 
the Grassmannian, observed from different angles. This is 
further demonstrated in our experiments section (Fig. 6), 
where the average loss of GrassCaré over 100 trials varies 
very little in comparison to all other embeddings, showing 
that besides this point-of-view difference, our results do 
not depend heavily on the initialization.

Implementation with Adam

Our first prototype of GrassCaré [59] employed regular 
gradient descent due to its simplicity and smooth conver-
gence. However, we soon discovered that algorithm 1 in 
[59] became prohibitively slow when dealing with larger 
datasets. To address this issue and enhance the algorithm’s 
speed, we introduced the ADAM optimizer [60]. By incor-
porating ADAM into the process, we were able to achieve 
a significantly faster and more efficient algorithm (orders 
of magnitude faster, capable of handling datasets orders 
of magnitude larger; see Fig. 3). The entire embedding 

Fig. 3  Time cost of GrassCaré with different setups. In the graph, m 
represents ambient dimension, n represents the number of samples, 
and r represents the rank of each sample (subspace). Certain statistics 

of the original method are omitted due to failure in generating results 
within 3600 s
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process is detailed in Algorithm 1. It is important to note 
that whenever (⋅)2 or 

√
⋅ is applied to a vector, it represents 

an element-wise operation. 

Algorithm 1  GrassCaré using ADAM

We conducted tests using synthetic data to compare the 
performance of the original and improved methods. The 
results are summarized in Fig. 3. Our findings indicate 
that the number of samples remains the primary deter-
minant of computing time. Notably, when using 100 
samples, the improved method consistently outperforms 
the original approach in terms of speed. As the number 
of samples increases, the original method fails to con-
verge after 300 points within 3600 s, while the improved 
method effectively solves the problem in a short amount 
of time.

Main Theoretical Results and Proofs

First observe that convergence of our embedding fol-
lows directly by now-standard results in Riemannian 
optimization (see, e.g. Proposition in [61]). In fact, local 

convergence of our embedding follows directly because 
our Riemannian steps are gradient-related [61]. Our main 
theoretical result goes one step further, bounding the loss 

of our embedding by a log-factor of the number of sub-
spaces, and a term that depends on the arrangement of the 
subspaces in the Grassmannian. This term will be smaller 
if the subspaces form well-defined clusters, and larger if 
the subspaces have no structure whatsoever. Intuitively, 
this result shows that under reasonable assumptions, our 
embedding can provide an accurate representation of 
Grassmannians.

Theorem  1 Suppose N > 3 . Define � ∶= mini �i and 
Γ ∶= maxi �i . Let {U1,… ,UK} be a partition of {�1,… ,�N} 
such that |Uk| ≥ nK > 1 ∀ k . Let

� ∶=
1√
2�

max
k

max
�i,�j∈Uk

d
�
(�i,�j),

Δ ∶=
1√
2Γ

min
�i∈Uk ,�j∈U�

∶ k≠�
d
�
(�i,�j).
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Then the optimal loss of GrassCaré is bounded by:

where

In words, Theorem 1 requires that the subspaces can 
be arranged into clusters of size nk > 1 such that the intra-
cluster distances are smaller than 

√
2�� , and the outer-

cluster distances are larger than 
√
2ΔΓ (see Fig. 4). Notice 

that this can always be done as long as N > 3 . However, 
depending on the arrangement, � could be too large or Δ 
too small, resulting in a loose bound. Ideally we want a 
small � and a large Δ , so that the subspaces form well-
defined clusters and e�2−Δ2 is small, resulting in a tighter 
bound.

Proof Theorem 1 follows by a similar strategy as in [62], 
which essentially bounds the optimal loss by that of an arti-
ficial embedding. In our case we will use an embedding that 
maps {U1,… ,UK} to K points uniformly distributed in the 
circle of radius 1/2, i.e., pi = pj for every �i,�j ∈ Uk (see 
Fig. 4). This way, for any subspaces �i,�j in different clus-
ters Uk,U�

 , the geodesic distance of their embeddings on the 
Poincaré disk is upper and lower bounded by

It follows that the (i, j)th entry of P
�
 is bounded by

L
⋆ < logD +

5e𝛿
2−Δ2

𝛽(nK − 1)
,

(7)
D : = N(nK − 1)

+ N(N − nK) ⋅ exp
(

−arcosh2
(

1 +
2 sin(�∕K)

0.752

)

∕�
)

.

2.2 >

(
1 +

2

0.752

)
≥ d

�
(pi, pj)

≥ arcosh

(
1 +

2 sin(𝜋∕K)

0.752

)
=∶ Φ.

where the denominator is precisely D as defined in (7). 
Now, if �i and �j are in the same cluster Uk , the bound 
in (8) simplifies to 1/D. Otherwise, it simplifies to 
exp(−2.22∕�)∕D . Plugging these bounds in the loss, we see 
that:

Next notice that if �i,�j are not in the same cluster,

Plugging this into (9) we obtain the desired result.   ◻

(8)

[P
�
]ij ∶ =

exp
�
−d

�
(pi, pj)

2∕�
�

∑
k≠l exp

�
−d

�
(pk, pl)

2∕�
�

≥
exp

�
−d

�
(pi, pj)

2∕�
�

N(nK − 1) + N(N − nK) exp(−Φ
2∕�)

,

(9)

L
∗ <

∑
i,j in same cluster

[P
�
]ij logD

+
∑

i,j in different clusters

[P
�
]ij
(
2.22∕𝛽 + logD

)

≤ logD +
∑

i,j in different clusters

[P
�
]ij
(
2.22∕𝛽

)
.

[P
�
]ij ∶=

1

2N

exp(−d
�
(�i,�j)

2∕2�2
i
)

∑
k≠i exp(−d�(�i,�k)

2∕2�2
i
)

+
1

2N

exp(−d
�
(�j,�i)

2∕2�2
j
)

∑
k≠j exp(−d�(�j,�k)

2∕2�2
j
)

≤
1

2N

e−Δ
2

∑
k≠i exp(−d�(�i,�k)

2∕2�2
i
)

+
1

2N

e−Δ
2

∑
k≠j exp(−d�(�j,�k)

2∕2�2
j
)

≤
1

N

e−Δ
2

N(nk − 1)e−�
2
.

Fig. 4  Left: Theorem 1 requires 
that the intra-cluster distances 
are smaller than 

√
2�� , and the 

outer-cluster distances are larger 
than 

√
2ΔΓ . Right: Example 

of the artificial embedding 
(with K = 5 ) in the proof of 
Theorem 1, which maps all sub-
spaces in cluster Uk to the same 
point in the circle of radius 1/2
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Experiments

Recall that the main motivation of this paper is to develop a 
novel method to visualize Grassmannians of high ambient 
dimension. Our bound above describes the theoretical 
accuracy of our embedding. We now present a series of 
experiments on real and synthetic datasets to analyze its 
practical performance. In particular, we will test on normal 
simulated data, and one canonical dataset [63]. These 
datasets have moderately high ambient dimension (i.e., 
many features), but low intrinsic dimension (i.e., lie in a low-
dimensional subspace). In other words, these datasets would 
fit in high-dimensional Grassmannians of low-dimensional 
subspaces. We believe that these well-studied datasets are 
a perfect fit for our setting, and convenient for an initial 
exploration and comparison against existing baselines.

Comparison Baseline. To evaluate the effectiveness of 
our method we used t-SNE [54], GDMaps [51], and a naive 
visualization based on the most common dimensionality 
reduction technique: Principal Components Analysis (PCA). 
To this end we first vectorize (stack the columns of) each 
orthonormal basis Ui into a vector ui ∈ ℝ

mr . Next we con-
catenate all vectors ui into a matrix of size mr × N , on which 
we apply PCA. In this naive PCA (nPCA) visualization, the 
subspace �i is represented in the (x, y) plane by vi ∈ ℝ

2 , the 
coefficients of ui w.r.t. the leading principal plane � .

Visualizing Synthetic Subspace Clusters. In our 
synthetic experiments we study our embedding when 
the subspaces are uniformly distributed among K 
clusters. To this end we first generated K  centers in the 
Grassmannian �(m, r) , each defined by a m × r matrix 
Ck with i.i.e. standard normal entries whose columns are 
later orthonormalized. Then for each k we independently 
generate nk subspaces, each spanned by a basis Ui whose 
entries are equal to those of Ck plus i.i.d. normal random 
variables with variance �2 . This will produce K clusters in 
�(m, r) , each with nk subspaces. The smaller � , the closer 
the subspaces in the same cluster will be to one another, 
and vice versa.

In our first experiment we study a controlled setting 
where we can actually visualize the low-dimensional 
Grassmannian �(3, 1) , and compare it with our embed-
ding on the Poincaré disk. We hope that this experiment 
provides a visual intuition of how points are embedded 
in higher dimensional cases. To this end we generated 
nk = 50 subspaces per cluster ( m = 3 , r = 1 ), and we set 
� = 0.1 , which produced visually well-defined cluster 
clouds. Figure 5 shows the results for K = 2, 3, 4, 5 clus-
ters. At first glance it might appear like our GrassCaré 
embedding is not too different from the other approaches, 
especially as t-SNE and nPCA seems to be doing a decent 
job displaying the clusters. However, a more careful look 

reveals that t-SNE clearly agglomerates several pairs of 
clusters, while the GrassCaré can separate them nicely.

In particular, notice that in Fig. 5, both nPCA and even 
the classic 3D representation fail to show the true local 
structure of the Grassmannian that the GrassCaré plot 
reveals. To see this pay special attention to the cyan and 
yellow clusters. Based on the first two rows (classic 3D 
representation and nPCA) these clusters would appear to 
be nearly diametrically apart (in the 3D representation, 
the cyan cluster is in the back side of the hemisphere). 
However, computing their geodesics one can verify that 
the subspaces that they represent are in fact quite close 
in the Grassmannian. An intuitive way to see this is to 
extend the lines to the opposite side of the hemisphere and 
compute their smallest angle, or to remember that in the 
3D representation, the hemisphere wraps around the edge 
(see Fig. 4). In contrast, our GrassCaré plot accurately 
displays the true global structure of the Grassmannian, 
mapping these two clusters close to one another. Also 
notice that the embeddings are plotted with equal scale 
on horizontal and vertical axis. The GrassCaré makes a 
better use of the visual space, spreading all data more 
broadly while at the same time keeping the clusters well-
defined. In contrast, GDMaps has much less range on the 
horizontal axis, which makes it look like a straight line and 
not be able to display the full information.

The previous experiment shows the qualitative 
superiority of the GrassCaré embedding over alternative 
embeddings in the low-dimensional case m = 3 and r = 1 
(where no vectorization is needed for nPCA). In our next 
experiment we will show in a more quantitative way that 
the advantages of GrassCaré are even more evident in 
higher dimensional cases. First notice that the classic 3D 
representation only applies to the case m = 3 , r = 1 , and 
there is no clear way how to extend it to higher dimensions. 
On the other hand, recall that for r > 1 , nPCA requires 
vectorizing the bases Ui , which will naturally interfere 
even more with the structure of the Grassmannian. To see 
this consider:

While both span the same subspace in �(3, 2) , the Euclidean 
distance of their vectorizations is large, which would result 
in distant points in the nPCA embedding. t-SNE and 
GDMaps present similar inaccuracy behavior. To verify this 
we generated subspaces in the exact same way as described 
before (with K = 3 , nk = 17 , and different values of m and r ), 
except this time we measured the quality of the visualization 
in terms of the representation error, which we define as 

U =

⎡⎢⎢⎣

1 0

0 1

0 0

⎤⎥⎥⎦
and U

� =

⎡⎢⎢⎣

0 1

1 0

0 0

⎤⎥⎥⎦
.
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Fig. 5  Alternative visualizations of clusters in �(3, 1) . GrassCaré pro-
duces a more accurate representation of the Grassmannian, e.g., the 
case of K = 4 clusters, where nPCA and even the 3D representation 

display Clusters 1 and 2 (cyan and yellow) nearly diametrically apart. 
In reality they are quite close, as depicted by GrassCaré. See discus-
sion for details
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the Frobenius difference between the (normalized) distance 
matrices produced by the subspaces in the Grassmannian 
and the points in each embedding. In the case of GrassCaré, 
distances in the embedding are measured according to 
the Poincaré geodesics, so the representation error of the 
GrassCaré embedding will be measured as

where Z2
�
=
∑

i,j d
2
�
(�i,�j) and Z2

�
=
∑

i,j d
2
�
(pi, pj) are 

normalization terms. Similarly, since the distance that 
all other embeddings aim to minimize is Euclidean, the 
representation error of the other embeddings will be 
measured as

(10)�2(�) =
∑
i,j

(
d
�
(�i,�j)

Z
�

−
d
�
(pi, pj)

Z
�

)2

,

(11)�2(� ) =
�
i,j

�
d
�
(�i,�j)

Z
�

−
‖vi − vj‖

Z
�

�2

,

where Z2
�

=
∑

i,j ‖vi − vj‖2 is a normalization term. 
The results of 100 trials are summarized in Fig. 6, which 
confirms the superiority of our GrassCaré embedding, and 
the loss of structure of the naive approach. The computation 
time is also summarized in Fig. 3.

Visualizing Subspace Clusters from Real Data. In this 
experiment, we aim to visualize the relationship between 
subspaces formed by groups of images in the MNIST and 
FashionMNIST datasets. To achieve this, we first grouped 
every 70 pictures randomly within each category. Next, we 
applied Singular Value Decomposition to extract the basis 
for these samples. From the decomposition, we selected 
the top 2–3 ranks to serve as the general basis for each 
subclass. Subsequently, we utilized nPCA, GDMaps, t-SNE, 
and GrassCaré (this paper) on the selected basis to further 
analyze the data.

In Fig. 7, we present the visualization results obtained 
through this comprehensive process. An in-depth analysis 
of these results reveals that GrassCaré exhibits a remarkable 

Fig. 6  Representation error of GrassCaré (this paper) and other methods for high-dimensional Grassmannians �(m, r)
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Fig. 7  Subspace visualization using nPCA, GDMaps, t-SNE, and GrassCaré (this paper)
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ability to visualize low-rank subspaces effectively. Notably, 
this method excels in distinctly presenting each subclass as 
a distinguishable cluster, capturing the intrinsic structure 
of the data. In contrast, other commonly used visualization 
techniques, such as GDMaps, show limitations in certain 
scenarios. Specifically, GDMaps may struggle to fully 
separate certain classes, resulting in overlapping or less 
well-defined clusters. Similarly, t-SNE might encounter 
challenges in correctly grouping certain subclasses together, 
potentially leading to less cohesive and less interpretable 
visualizations.

It is important to acknowledge that applying these meth-
ods directly to the raw dataset might yield different out-
comes and potentially showcase superior results for certain 
techniques. However, comparing the results from raw data 
with those from the subclasses derived using GrassCaré 
would be akin to comparing oranges with apples, rendering 
such a comparison meaningless.

Subspace Estimation from Incomplete Data. In our 
next experiment we apply our GrassCaré embedding to 
visualize the path of subspaces produced by the subspace 
estimation algorithm known as GROUSE (Grassmannian 

Rank-One Update Subspace Estimation) [32]. The 
applicability of this algorithm ranges from online video 
analysis (to track the subspace of the background in real 
time) to subspace clustering [18] and low-rank matrix 
completion (LRMC) [32]. In the latter, the algorithm 
receives a subset of the entries of a data matrix X ∈ ℝ

m×n 
whose columns lie in an unknown subspace �⋆ ∈ �(m, r) , 
and the goal is to estimate �⋆ . To this end GROUSE starts 
with a subspace estimate �0 ∈ �(m, r) , and iteratively tilts 
it in the direction of a column of X , producing a sequence 
of subspaces �1,… ,�N.

To emulate this setup we first generate true and initial 
subspaces with bases U⋆,U0 ∈ ℝ

m×r with i.i.d. standard nor-
mal entries. Next we generate a coefficient matrix � ∈ ℝ

r×n 
with i.i.d.  standard normal entries, so that X = U

⋆
� is 

rank-r . Then we run GROUSE using a fraction Ω of the 
entries of X , selected uniformly at random. We store each 
of GROUSE’s steps, and visualize their path �0,�1,… ,�N 

nPCA GDMaps t-SNE GrassCaré

Fig. 8  Visualization of the path generated by GROUSE using nPCA, GDMaps, t-SNE, and GrassCaré (this paper)

Fig. 9  Distance to target (in the Grassmannian and its embeddings) of 
the sequence generated by GROUSE
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Fig. 10  GrassCaré embedding for two motion sequences of the Hop-
kins155 dataset
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(together with the target �⋆ ) using our GrassCaré embed-
ding, nPCA, GDMaps, and t-SNE. Figure 8 shows sample 
plots when m = 200 , r = 5 , Ω = 0.7 (corresponding to 30% 
missing data; both cases share the same initialization), and 
n = N = 50 (corresponding to the case where GROUSE 
only iterates once over each column). Here once again the 
GrassCaré plot shows a richer depiction of the subspaces 
and a better usage of the available visual space. From the 
GrassCaré plot we can clearly visualize each separate path, 
and see that, as expected, the full-data estimate gets much 
closer to the target than the missing-data estimate (and much 
faster). In contrast, the paths in the nPCA plot are hardly 
distinguishable and misleading, showing the opposite of the 
truth: an incomplete-data estimate much closer to the target 
than the full-data estimate. To verify once again (beyond our 
visual interpretation) that the GrassCaré embedding is much 
more representative of the true distribution of subspaces in 
the Grassmannian, we measured the distance of each iterate 
to the target, in the Grassmannian and in each embedding. 
The normalized results are in Fig. 9. They show that the tra-
jectories in the GrassCaré embedding mimic closely those in 
the Grassmannian. In contrast, the nPCA embedding can be 
quite misleading, showing in fact an opposite representation, 
with distances in the embedding growing over iterations, 
while in reality they are decreasing in the Grassmannian.

Motion Segmentation. In our final experiment we use 
our GrassCaré plot to visualize the subspaces describing 
moving objects in videos from the Hopkins 155 dataset 
[63]. This dataset contains the locations over time of 
landmarks of several moving objects (e.g., cars, buses, 
or checkerboards) in 155 video sequences. Recall that the 
stacked landmarks of each rigid object over time approxi-
mately lie in a four-dimensional subspace [64, 65]. So for 
our experiment we split all landmarks of the same object 
in groups of 5 (if at any point there were fewer than 5 land-
marks left, they were discarded), and for each group we 
performed a singular value decomposition to identify its 
four-dimensional principal subspace �i . Figure 10 shows 
the embedding of the subspaces of all groups, color-coded 
by object. Notice that GrassCaré displays the subspaces 
of the same object nearby. This is consistent with theory, 
as they represent slightly noisy versions of the subspace 
describing the object’s trajectory. Notice the higher vari-
ance in the yellow cluster, which is consistent with its 
landmarks, corresponding to several trees, cars, and pave-
ment, as opposed to just one rigid object. But not only 
that. From the GrassCaré embedding we can also analyze 
the trajectories themselves, and their relationships. For 
instance, in the traffic plot we can see that the green and 
red clusters (corresponding to the moving car and van) 
are close to one another, indicating that their trajectories 
resemble each other. In contrast, these clusters are farther 

from the yellow one, which matches our observation that 
the trajectories of the moving car and van are quite differ-
ent from the nearly static background.

Conclusions and Limitations

This paper introduces GrassCaré, a novel method for 
embedding Grassmannian points onto a 2-D disk with 
exceptional precision and a well-distributed visual 
representation. GrassCaré promises to be a potent tool for 
visualizing subspaces extracted from high-dimensional real-
world data, enabling researchers to explore both local and 
global structures, such as paths and clusters, with greater 
ease and clarity.

Through the incorporation of the Adam optimizer in 
our enhanced prototype, we have achieved remarkable 
advancements over the original algorithm, resulting in 
significant speed and efficiency improvements. GrassCaré 
now operates at orders of magnitude faster speeds, 
empowering it to handle datasets of unprecedented scale. 
Furthermore, our main theoretical finding demonstrates that 
GrassCaré boasts a lower bound on representation loss under 
mild assumptions, further reinforcing the reliability and 
robustness of the method. Finally, we provide compelling 
evidence of GrassCaré’s superiority by applying it to real-
world datasets. The results not only showcase its ability 
to optimize space utilization within the unit circle but 
also effectively mitigate the visual distortion arising from 
disparate axis scales, unlike the shortcomings observed in 
GDMaps.

In conclusion, GrassCaré emerges as a promising and 
indispensable tool for data visualization, empowering 
researchers to glean meaningful insights from complex 
high-dimensional data while preserving fidelity and clarity 
in the representation. As we continue to explore and refine 
this method, we anticipate its widespread adoption in 
various domains, making a lasting impact on the field of 
data analysis and visualization.
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