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Abstract
The advancements in virtualization technologies and distributed computing infrastructures have sparked the development 
of cloud-native applications. This is grounded in the breakdown of a monolithic application into smaller, loosely connected 
components, often referred to as microservices, enabling enhancements in the application’s performance, flexibility, and 
resilience, along with better resource utilization. When optimizing the performance of cloud-native applications, specific 
demands arise in terms of application latency and communication delays between microservices that are not taken into 
consideration by generic orchestration algorithms. In this work, we propose mechanisms for automating the allocation of 
computing resources to optimize the service delivery of cloud-native applications over the edge-cloud continuum. We ini-
tially introduce the problem’s Mixed Integer Linear Programming (MILP) formulation. Given the potentially overwhelming 
execution time for real-sized problems, we propose a greedy algorithm, which allocates resources sequentially in a best-fit 
manner. To further improve the performance, we introduce a multi-agent rollout mechanism that evaluates the immediate 
effect of decisions but also leverages the underlying greedy heuristic to simulate the decisions anticipated from other agents, 
encapsulating this in a Reinforcement Learning framework. This approach allows us to effectively manage the performance–
execution time trade-off and enhance performance by controlling the exploration of the Rollout mechanism. This flexibility 
ensures that the system remains adaptive to varied scenarios, making the most of the available computational resources while 
still ensuring high-quality decisions.

Keywords  Cloud native applications · Cloud edge continuum · Resource allocation · Multi-agent rollout · Reinforcement 
learning

Introduction

Monolithic application design centers on a single, uni-
fied, and inseparable entity [1]. Historically, this paradigm 
was exceptionally efficient during times when applications 
encompassed a client-side user interface, a server-side logic, 
and an associated database. However, as the landscape of 
Information and Communication Technologies evolved 
[2–4]—with the advent of innovations like virtualization, 
optical networks, and the transitions to 5 G and 6 G—the 
complexity of the underlying application design increased. 
This created the constant need for refinements and optimiza-
tions to meet the ever-increasing Quality of Service (QoS) 
demands. In such a competitive and volatile environment, 
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the monolithic approach stands inadequate, leading to the 
emergence of the cloud-native application model.

In response to this evolving landscape, the principle of 
cloud-native application design has gained significant trac-
tion. Its cornerstone lies in the effective decomposition 
into microservices. These are discrete, loosely coupled 
components, each encapsulating its own logic, executing 
independently, and fulfilling a distinct function. Typically, 
microservices are executed within isolated virtual comput-
ing frameworks, such as containers [5]. These containers 
allocate the necessary computing, networking, and storage 
capacities directly from the host operating system. The cloud 
computing model seems to be a favorable candidate for ena-
bling the scalable and dynamic operation of cloud-native 
applications. Through this, the microservices of an applica-
tion can be deployed and scaled independently [6].

Today, a myriad of emerging applications, services, 
and digitized assets generate vast volumes of data at the 
network’s edge, necessitating ultra-low processing delays. 
This encompasses innovative domains such as autonomous 
vehicles, smart cities, virtual/augmented reality, and bio-
medical care, which all harness a plethora of sensors and 
data-generating mechanisms. In these settings, relaying the 
generated data to distant cloud data centers can increase 
network congestion. Moreover, this approach cannot satisfy 
the stringent latency requirements of certain applications. 
In response, the paradigm of edge computing has emerged 
[7]. Edge computing decentralizes resources, situating them 
proximate to the data origins. This ensures immediate access 
to computing, networking, and storage capabilities. While 
these edge units might not match the capacity of compre-
hensive cloud infrastructures, they significantly augment the 
performance of cloud-native applications by handling time-
sensitive tasks. Hence, cloud resources need to be utilized 
in combination with the edge, e.g., serving latency-tolerant 
workloads, creating a powerful edge-cloud continuum. Soft-
ware-wise, lightweight containers are the ideal technology to 
enable the seamless execution of cloud-native applications, 
or parts of them, on the edge [8], especially when compared 
to other virtualization approaches like virtual machines.

The proliferation of applications and their requirements 
necessitates the development of innovative mechanisms. 
These mechanisms must consider application-related char-
acteristics, such as resource availability and latency when 
placing microservices. They should also account for the 
broader infrastructure’s available resources. The challenge 
to optimize resource utilization across both edge and cloud 
infrastructures is a complex task. From a resource alloca-
tion standpoint, this involves operations like the placement 
of tasks, load balancing, and data management distributed 
across diverse computing landscapes. These challenges 
intensify given the volatile nature of multi-technology envi-
ronments in edge and cloud computing and the unpredictable 

workloads nature, fluctuating resource availability, and 
potential infrastructure or application failures. The use of 
a global scheduler to dictate the operation of the different 
domains in a centralized manner is not applicable due to this 
high complexity which results in unaffordable slow execu-
tion time. In this direction, multi-agent algorithms are par-
ticularly well-suited as they can advantageously provision 
resources to applications’ workload in a distributed manner 
speeding up the process, while also incorporating real-time 
monitoring and historical telemetry data, and even pricing 
information.

The present work focuses on developing a multi-agent 
rollout mechanism for allocating the available computing 
and storage resources in the various layers of an edge-cloud 
infrastructure to fulfill the diverse computing, storage, and 
latency constraints of the incoming workloads from cloud-
native applications. The proposed mechanisms, offline in 
nature, can seamlessly leverage infrastructure telemetry 
mechanisms to enable a periodic reevaluation and adjust-
ment of resource allocation strategies in anticipation of the 
expected workloads. By integrating this dynamic data, our 
algorithms can adapt to changing application needs in a 
reinforcement learning manner to ensure efficient resource 
utilization even in evolving operational contexts. We aim 
to jointly optimize a weighted combination of the average 
delay (per application) and the average cost of service while 
ensuring that the delay between dependent microservices 
and the available resources on the infrastructure nodes meets 
the requirements specified by the applications.

We first provide the Mixed Integer Linear Program-
ming (MILP) model of the problem that is able to track the 
optimal solution. Recognizing the potentially prohibitive 
execution time for real-sized scenarios, we then introduce a 
greedy best-fit heuristic that achieves a considerably lower 
execution time. A multi-agent rollout mechanism is also 
proposed to exploit further the trade-off between execution 
time and performance. This reinforcement learning mecha-
nism assesses the cost of immediate and future decisions 
during the resource allocation process in order to decide 
for a given allocation. The estimation of the future cost is 
based on the greedy heuristic, and it simulates the decisions 
that will be made by the agents. Our evaluation, conducted 
through extensive simulations leveraging publically avail-
able traces of cloud providers, across a variety of scenarios, 
showcases the effectiveness of the proposed solutions in 
delivering timely decisions, adeptly balancing execution 
time and performance.

The remainder of this work is organized as follows: In 
Sect. “Related Work”, we report on the related work. In 
Sect. “Resource Allocation Mechanisms”, we present the 
considered edge-cloud infrastructure model and the cloud-
native applications workload. Next, we present the MILP 
problem formulation, the heuristic, and the multi-agent 
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rollout algorithm. In Sect. “Simulation Experiments”, we 
present the simulation results and finally, in Sect. “Conclu-
sions”, we conclude our work.

Related Work

The resource allocation problem in virtualized environments 
is a multi-dimensional research area that has attracted the 
interest of the research community. The modeling of the 
problem among the different works varies according to the 
considered topology and the adopted technologies, while the 
proposed solutions employ techniques from the wider realms 
of mathematics and computer science.

In [9], the study addresses the placement of Virtual 
Machines (VMs) on physical systems in cloud data cent-
ers for IoT big-data analytics. Using a graph model with 
nodes as VMs and links representing network communica-
tion, the goal is to evenly distribute link utilization, thus 
averting congestion. A greedy heuristic is employed to place 
closely interacting VMs on the same system, reducing com-
munication costs. Meanwhile, [10] introduces the VNFPRA 
problem, which aims for optimal Virtual Network Function 
(VNF) placement in SDN-NFV-enabled multi-access edge 
computing (MEC) nodes, targeting minimal deployment 
and resource costs. The infrastructure is depicted using a 
weighted graph with nodes representing MEC capacities and 
links signifying network capacities. Formulated as a MILP 
problem, the total service cost encompasses placement, 
resource usage, and link costs, with a genetic-based heuristic 
proposed for efficiency. Authors of [11] employ a Gaussian 
Process Regression-based algorithm to predict traffic, focus-
ing on timely request servicing. A hierarchical infrastructure 
is leveraged to prioritize time-sensitive demands. Lastly, the 
work in [12] tackles the problem of resource allocation for 
IoT machine learning applications over the edge-cloud con-
tinuum. The authors consider the continuous movement of 
sensors’ data to computing machines for the efficient training 
of machine learning models. A balance between cost, execu-
tion and communication delay, and accuracy is explored. A 
Mixed Integer Linear Programming formulation is presented 
to optimally solve the problem, while a heuristic followed by 
a simulated annealing is developed to provide a faster, albeit 
sub-optimal, solution.

In [13], a decentralized approach is emphasized for 
selecting an appropriate edge-fog node to orchestrate 
IoT workloads. Their heuristic evaluates both application 
requirements and fog node conditions to identify the most 
suitable Fog Orchestrator Node (FON). [14] tackles the 
mapping challenge between end devices and edge gate-
ways, aiming to reduce communication costs and maintain 
load balance. They introduce a particle swarm optimiza-
tion metaheuristic where initial solutions adopt exploration 

or exploitation tactics. The method’s efficacy is validated 
through simulations. In [15], a QoE-aware placement pol-
icy for IoT applications in fog environments is proposed. 
Employing two fuzzy logic models, they evaluate appli-
cation expectations and fog node performance and feed a 
linear optimization mechanism to perform the placement.

Reinforcement learning has been pivotal in resource 
allocation within edge-cloud domains. In [16], a state-
action-reward-state-action-based deep reinforcement 
learning method addresses task off-loading in MEC. By 
modeling user requests as sub-tasks and considering 
execution options (nearest edge, adjacent edge, or central 
cloud), authors aim for reduced service delays and energy 
use. Authors in [4] confront a microservice coordination 
mechanism in mobile edge computing. With mobile users 
like autonomous vehicles offloading computation, the 
challenge is to mitigate both delay and migration costs. 
An optimal offline algorithm is presented, complemented 
by a Q-learning approach that offers near-real-time, near-
optimal solutions. Further, [17] details a deep reinforce-
ment learning strategy for microservice deployment across 
heterogeneous edge-cloud terrains. Viewing microservices 
as ordered service chains, they aim to optimize the Aver-
age Waiting Time (AWT) of these services. Finally, Yang 
et  al. [18] approach the problem of partial-offloading 
of end-user applications by employing a tandem-queue 
system comprising edge and cloud processing. Request 
arrivals, service times and computation resources are 
considered to be stochastic parameters. A DRL agent is 
exploited to make the decisions of the computational speed 
of each queue by appropriately allocating computational 
resources, with an objective of avoiding resource wast-
age while minimizing the probability of delay-constraints 
violation.

In distributed infrastructures, timely communication 
between microservices is paramount to prevent computa-
tional inconsistencies. Interactions, either sequential or par-
allel, are pivotal. To address this, Directed Acyclic Graph 
(DAG)-based methods have been proposed for resource 
allocation. In [19], the authors target the minimization of 
resources and virtual machine instance hours for DAG-based 
and deadline-constrained applications in the cloud. They 
developed the MSMD (minimal slack time and minimal 
distance) algorithm, aiming to optimize the number of VM 
instances while meeting application deadlines. The opera-
tion of this algorithm is further supported by a heuristic 
approach that shuts down idle VMs. [20] emphasizes the 
necessity of balancing communication processes with com-
puting tasks in cloud resource allocation. They introduce 
the CA-DAG model, offering a scheduling technique that 
distinctly allocates resources for computing and communi-
cation requirements. Meanwhile, authors in [21] propose a 
cost-optimized DAG scheduling algorithm in IaaS cloud 
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platforms, as a response to the emergence of cost-centric 
public cloud services.

In this work, we present the first, to the best of our knowl-
edge, application of the multi-agent rollout technique in such 
a context. This optimization approach, rooted in the prin-
ciples of Approximate Dynamic Programming and Rein-
forcement Learning, is used to consider both immediate and 
future decision impacts. The cost of immediate decisions is 
directly assessed through the cost function, while the cost 
of future decisions is approximated by the greedy heuristic 
algorithm. This heuristic aids in estimating the cost associ-
ated with resource assignments tied to subsequent agents, 
thereby equipping the model with enriched information for 
more judicious decision-making. Different parameters are 
used to decide the effect of future actions and the explora-
tion of the immediate actions during the resource allocation 
process.

Resource Allocation Mechanisms

The Edge‑Cloud Infrastructure

We consider a hierarchical edge-cloud infrastructure, with 
multiple layers of edge resources (e.g., on-device, near-edge, 
far-edge) to serve the incoming cloud-native workload. We 
assume that the edge layers consist of machines with rela-
tively limited resources, such as Raspberry Pi’s, NVIDIA 
Jetson, servers, mini-data centers, etc., while the cloud layer 
has practically unlimited resources.

The hierarchical edge-cloud infrastructure is denoted 
by an Undirected Weighted Graph G = (V ,E) . The nodes 
v ∈ V  of the graph correspond to the locations where com-
puting resources are available. Each location is described 
by a tuple of the available resources �v = [cv, rv, ov, nv] , 
where cv is node’s v CPU capacity measured in CPU units, 
rv is the node’s RAM capacity measured in RAM units, ov 
is the node’s operating cost, and nv is the node’s network-
ing cost coefficient. In our case, operational cost relates to 
the expenses made for purchasing, deploying, and oper-
ating the respective computing/storage systems. As pro-
viders achieve economies of scale the operational cost is 
small for the cloud layer, and gradually increases as we 
move to the lower edge layers, which are characterized by 
their geographically dispersed placement, a limited num-
ber of resources, and a small number of users. Network-
ing cost coefficient nv results from the usage of any link 
from the nodes where data are generated, to the node(s) v 
where computing operations take place and is multiplied 
by the ingress data to deduce the actual networking cost 
of service. The coefficient is minimal for the near-edge 
nodes, where links are shorter in distance and cheaper to 
install, while it gradually increases up to the massive links 

connecting the cloud nodes. Generally, data is generated 
at the lower levels of the infrastructure that can be either 
equipped with computing resources (local processing) or 
not. As they are typically located on the near edge, the 
delay is small for transferring the data to a subset of near 
edge nodes as they are located closer to the data source, 
given their plurality and thus higher geographical density, 
while it increases for the higher layer nodes (far edge, 
cloud). Finally, each link e ∈ E between two nodes v and 
v′ is characterized by a weight lv,v′ , representing the com-
munication (propagation) delay of nodes v and v′.

The workload under consideration consists of a set A 
of cloud-native applications. Each application a ∈ A is 
described by an Undirected Weighted Graph Ga = (Va,Ea) , 
with the nodes Va corresponding to the microservices that 
make up the application and the arcs Ea representing the 
inter-dependencies (communication requirements) among 
them. Each cloud-native application has a source node 
�a ∈ V  and each microservice i = 1,… , |Ia| of application 
a, has specific resource requirements described by the tuple 
[�a,i, �a,i, sa,i] , where �a,i is the microservice’s CPU demand, 
�a,i is its memory demand, and sa,i is the size of the data to 
be transferred. Furthermore, each arc e ∈ Ea between two 
microservices i, i� ∈ Va is characterized by a weight �ai,i′ that 
represents the maximum acceptable delay between the corre-
sponding service nodes v, v′ . This is a measure of the inten-
sity of the dependency between these two microservices, 
in the sense that highly dependent microservices should be 
served by the same or geographically approximate nodes to 
reduce communication costs and guarantee the application’s 
efficiency with in-time calculations. In Table 1 we summa-
rize all the notations used throughout this section for clarity 
and ease of understanding.

Mixed Integer Linear Programming (MILP) 
Formulation

In this subsection, we present the mathematical model of 
the resource allocation problem encountered by cloud-native 
applications within an integrated edge-cloud architecture, 
initially introduced in [22]. The core aim is to optimize the 
weighted sum of the average operational and networking 
costs and the maximum delay for data communication for 
each application, under the constraints set by computational 
and networking constraints, application-specific needs, and 
node resources.

Objective Function:

Subject to the following constraints:

(1)min

{
w

A∑

a=1

�a + (1 − w)

A∑

a=1

�a

}
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C.1. Placement of the microservices to nodes. For each 
application a = 1,… ,A and for each microservice i = 1,… , Ia

C.2. Respect of the relative latency between the applications’ 
microservices. For each application a = 1,… ,A , and each 
pair of microservices of application a, i, i� = 1,… , Ia,

C.3. The allocated CPU units of the served applications can-
not surpass the number of available CPU units at each node. 
For each node v = 1,… ,V ,

(2)
V∑

v=1

xv,a,i = 1

(3)lv,v� xv,a,i + lv,v� xv� ,a,i� ≤ �a,i,i� + lv,v�

(4)
A∑

a=1

Ia∑

i=1

�a,ixv,a,i ≤ cv

C.4. The allocated memory units of the served applications 
cannot surpass the number of available memory units at each 
node. For each node v = 1,… ,V ,

C.5. Total monetary application cost �a calculation. For each 
application a = 1,… ,A,

C.6. Maximum per application latency (propagation) cal-
culation. For each node v = 1,… ,V  , for each cloud-native 
application a = 1,… ,A , and each of its microservices 
i = 1,… , Ia,

(5)
A∑

a=1

Ia∑

i=1

�a,ixv,a,i ≤ rv

(6)�a =

V∑

v=1

Ia∑

i=1

(ov + nvsa,i)xv,a,i

(7)�a ≥ xv,a,il�a,v

Table 1   Summary of notations Notation Interpretation

G Undirected Weighted Graph representing the infrastructure
Ga Graph representing microservices and dependencies of application a ∈ A

V Set of infrastructure nodes
�v The tuple representing the computing characteristics and associated mon-

etary cost of node v ∈ V

cv CPU capacity of node v ∈ V

rv RAM capacity of node v ∈ V

ov Operating cost of node v ∈ V

nv Networking cost coefficient of node v ∈ V

lv,v′ Communication delay between nodes v, v� ∈ V

A Set of cloud-native applications
pa Source node of application a ∈ A

Ia Set of microservices of application a ∈ A

�a,i CPU demand of microservice i ∈ Ia

�a,i RAM demand of microservice i ∈ Ia

sa,i Input size for microservice i ∈ Ia

�a�,�′ Maximum acceptable delay between the service nodes of microservices �, �′

xv,a,i Binary variable for allocation of microservice i ∈ Ia to node v ∈ V

�a Total monetary cost for serving application a ∈ A

�a Communication delay for application a ∈ A

w Weighting coefficient controlling the objective
X State space in the multi-Agent Rollout mechanism
T Available resources of infrastructure nodes in state space
W Remaining microservices pending service in state space
Q Allocation of nodes for microservices within the current application
U Action space comprising all feasible actions from a given state
R Reward function in the Rollout mechanism
gk(xk, uk) Scalar value reward function for transition due to action uk
J∗
k
(xk) Cost function representing the optimal cost action for state k

� Discount factor in the Rollout mechanism
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The objective function (Eq. 1) is the weighted sum of the 
maximum delay and cost per application assignment, where 
w = 0 considers purely the delay minimization problem and 
thus the microservices of the applications are preferably 
placed in the edge (horizontal scaling), w = 1 deals with the 
cost minimization problem and thus the vertical scaling of 
applications, and any intermediate value of w considers both 
of the aforementioned parameters, with the different contri-
bution in the calculation of the total objective value. The first 
constraint (Eq. 2) is used to ensure that every microservice is 
assigned to exactly one node. The second constraint (Eq. 3) 
enforces that the allocation of resources among interacting 
applications of a microservice, is performed with respect 
to their latency constraint. Constraints (3) and (4) ensure 
that microservices running in a node do not use more than 
the available resources, while constraints (5) and (6) calcu-
late the monetary cost and the maximum latency of each 
application respectively. Note that our considered formula-
tion supports general workloads (not strictly cloud-native 
applications) that can take the form of an application with a 
single microservice.

The total number of variables required by the MILP for-
mulation, given an infrastructure with |V| nodes that serve 
|A| cloud-native applications, each comprised of |I| micros-
ervices, is [|V| ⋅ |A| ⋅ |I| + 2 ⋅ |A|] . The formulation entails 
|A| ⋅ |I| equality constraints for constraint 1 (Eq. 2 C.1.) and 
an additional |A| for constraint 5 (Eq. 6). The inequality con-
straints include |A| ⋅ |I|2 ⋅ |V|2 for constraint 2 (Eq. 3), |V| 
each for constraints 3 and 4 (Eqs. 4 and 5 respectively), and 
|V| ⋅ |A| ⋅ |I| for constraint 6 (Eq. 7).

Greedy Best‑Fit Resource Allocation Algorithm

The considered problem belongs to the NP-hard class of 
problems [23] the presented MILP is computationally 
intensive with prohibitively large execution time even for 
small-sized problems. For this reason, we developed sub-
optimal mechanisms. First, we present a greedy heuristic 
that performs the provisioning of resources of the micros-
ervices sequentially in a best-fit manner. Next, we present 
the multi-Agent Rollout mechanism, a meta-heuristic that 
leverages the developed greedy heuristic in a reinforcement 
learning manner to provide an improved solution through 
an iterative process.

The considered greedy heuristic [22] seeks to find a sat-
isfactory solution by serving the application demands in a 
best-fit manner. It takes as input the infrastructure graph 
G = (V ,E) along with all the applications’ demands and its 
microservices described by graph Ga = (Va,Ea) for appli-
cation a, ∀a = 1,… ,A and serves the applications sequen-
tially, one by one. After selecting an application, the first 
microservice of the application is selected and the candidate 
infrastructure nodes with enough resources are calculated 

in order to accommodate it. These nodes are ranked based 
on the objective function considering the cost and the 
latency introduced by the assignment of the microservice 
i = 1,… , Ia to each node. The best node v ∈ V  is selected 
and the processing and memory resources demanded by the 
microservice are reserved. If the application consists of more 
than one microservice, the next microservice is selected. The 
same process is followed for the following microservice with 
the addition of the relative latency constraint between the 
communicating microservices.

Hence, given the first microservice location, the mecha-
nism selects the nodes v�

∈ V  that exhibit communication 
latency smaller than the limit set by the examined micros-
ervice, lv,v′ ≤ ��a,1,�a,2

 . If more than one node is found, it 
places the second microservice in the best one (it could be 
the same node as the first microservice). The same process 
is repeated until the Ia-th microservice of the application is 
served. If it is not possible to find a node to host an appli-
cation’s microservice, the procedure is re-initiated for the 
same application considering the second-best node for the 
first microservice and so on. When a solution is found, the 
utilization of the resources is updated and the application 
is marked as served. The above process is repeated for all 
applications, returning the final assignment and the value of 
the objective function (Eq. 1). Note that from the descrip-
tion of the procedure, it may be the case where the selection 
of the first node can make the execution of an application 
impossible due to the latency constraint among the micros-
ervices of the application. Although this may happen for the 
edge resources which are characterized by a limited capac-
ity of resources, this does not stand for the abundant cloud 
resources, which are able to execute the application demands 
at the price of increased propagation latency. The complex-
ity of this approach is polynomial with a worst-case execu-
tion time of O(|A| ⋅ |Ia| ⋅ |V|2) , assuming that all the nodes 
|V| are candidate locations to serve the first microservice of 
each application, and all possible re-allocations take place. 
A typical iteration of this algorithm is presented in the flow-
chart of Fig. 1.

Multi‑Agent Rollout Mechanism

To further improve the performance of the aforementioned 
greedy heuristic, we considered a multi-agent rollout mech-
anism, inspired by approximate dynamic programming 
[24], a well-known reinforcement learning technique. The 
mechanism comprises multiple agents, one per microser-
vice, which operate sequentially, trying to meet the assigned 
microservice’s requirements. Each agent allocates resources 
to serve the assigned microservice with respect to the con-
straints set by the cloud-native application and the infra-
structure and communicates its decision to the remaining 
agents, which are therefore accurately informed about the 
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availability of the infrastructure resources, the assignment 
of the microservices that make up the application and the 
remaining microservices that need to be served.

This is reflected in the state space X  of the system which 
is defined as X = (T,W,A) , where T  represents the avail-
able resources of the infrastructure nodes, captured as a set 
of tuples T =

⋃
v∈V �v with each �v specifying the utilization 

on node v in CPU and RAM; W represents the remaining 
microservices that are pending service; and Q details the 
allocation of nodes for the microservices within the cur-
rent application, where each allocation qi signifies the node 
assignment for microservice i.

The agent receives as input the partial solution of the 
problem as described by the current state and examines the 
different actions that can be made to allocate resources for 
the assigned microservice. The action space U  comprises 
all feasible actions from any given state. Specifically, for 
state k, an action uk ∈ U corresponds to the assignment of 
a microservice to an infrastructure node V. An action is 
deemed feasible when it meets certain requirements: it must 
adhere to the capacity constraint, meaning a node v’s avail-
able resources must be sufficient for the task it is allocated, 
and the latency constraint, which ensures that the latency 
between nodes managing intercommunicating tasks does not 
surpass the established acceptable limits.

When an action is applied, the system transitions to the 
next state while a reward is obtained. The reward function 
R is determined by the reward function gk(xk, uk) , which 
assigns a scalar value to the transition from state xk to xk+1 
due to action uk and is the cost obtained by the objective 
function of the considered optimization problem. To approx-
imate the future cost to serve the remaining microservices, 
the presented greedy best-fit heuristic is used as a base pol-
icy to account for the remaining microservices. Among all 

possible actions, the one ( J∗
k
(xk) ) that minimizes the sum-

mation of the immediate cost xk that marks the transition 
to state xk+1 , and future cost approximation from state xk+1 , 
J∗
k+1

(xk) , is selected (eq. 8).

In other words, from all the actions uk for state k, the option 
with the least cost J∗

k
(xk) is selected (Fig. 2). The node uti-

lization serving the microservice is updated, marking until 
all application demands A are addressed. Finally, the assign-
ment of microservices to nodes and the weighted cost of the 
assignment are returned.

As the action space for a given state can be huge the pos-
sible actions are ordered based on the immediate cost from 
the lowest to the greatest, with a number of actions uk (up to 
a maximum of � ) being computed, where uk represents the 
possible placements for the current microservice containing 
all the nodes that respect the resource allocation constraints 
at the state xk . If more than � placements exist, they are 
limited to the first � . This parameter becomes particularly 
useful when the exact methods are too slow and/or when 
solutions provided by heuristics are inefficient. The depth 
window, � , optimizes execution by regulating the count of 
distinct placements assessed for a given microservice during 
the immediate cost assessment. Despite potentially affecting 
the algorithm’s efficacy, it proves valuable when multiple 
placements exist for a given microservice in controlling the 
execution time of the Rollout mechanism.

Another critical parameter is the use of a discount factor 
� which adjusts the influence of the heuristic’s future cost 
approximation on the current action selection. The incor-
poration of � , a key aspect of the standard infinite horizon 
discounted MDP, becomes especially beneficial when the 

(8)J∗
k
(xk) = min

uk∈Uk(xk)

[
gk(xk, uk) + � ∗ J∗

k+1

(
xk, uk)

)]

Fig. 1   The flowchart of the best-fit heuristic
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performance of the base policy does not meet expectations, 
allowing for an adjusted approach that can yield better 
immediate-term outcomes without completely disregarding 
future implications. The practical significance of the dis-
count factor in our model lies in scenarios where telemetry 
data may not provide accurate estimations, reinforcing the 
necessity of a mechanism that can adapt to uncertainties in 
the operational environment. By judiciously adjusting � , our 
system maintains a proactive stance in resource allocation, 
thus ensuring efficiency under different conditions.

A significant advantage of this method is that exploits the 
trade off between the complexity of the action space with 
new states, making computational demands proportional to 
the microservice and the infrastructure’s node count. Con-
sider an application with Ia microservices. Each micros-
ervice’s potential placement in any of the V infrastructure 
nodes can lead to |V||Ia| different choices for the applica-
tion’s collective decision. Dividing application a resource 
allocation into |Ia| sequential decisions and applying agent-
by-agent rather than all simultaneously reduces the different 
choices to |V| ⋅ |Ia|.

Simulation Experiments

In this section, we delve into the simulation experiments 
conducted to evaluate the performance of the proposed 
mechanisms. These experiments not only offer a thorough 
evaluation of the mechanisms’ performance but also provide 
deep insights into the problem’s complexities. The proposed 
mechanisms were implemented in MATLAB and the simula-
tion experiments were conducted on a 6-core 2.6 GHz Intel 
Core i7 PC with 12 GB of RAM.

Simulation Setup

We assume an infrastructure that spans over the edge-
cloud continuum and is organized into three distinct layers 

of computing resources, each characterized by its unique 
capabilities. These layers range from powerful cloud servers, 
offering substantial processing power, to far and near-edge 
resources, which provide localized, rapid-response capabili-
ties with lower computing capacity compared to the cloud 
ones.

To cater to different experimental scenarios, we exam-
ined two distinct edge-cloud topologies. The first topology, 
namely the “basic topology”, comprises 20 near-edge, 5 far-
edge and 2 cloud nodes. This limited configuration allows 
the evaluation of the proposed sub-optimal mechanisms 
against the optimal performance given by the MILP mecha-
nism, which can be efficiently executed in such small-scale 
problem instances. We also assumed, an upscaled configu-
ration, namely the “extended topology” that encompasses 
150 near-edge nodes, 30 far-edge nodes and 7 cloud nodes. 
This setup allows a better understanding of the problem’s 
dynamics while showcasing the scalability of our proposed 
sub-optimal mechanisms.

We modeled cloud resources, comprising a cluster of 400 
to 600 CPU cores per node as profiled in [25] and memory 
size in the interval [600, 800] GBs. The far-edge layer was 
assumed to include nodes with [40, 80] CPU cores and [50, 
100] GB RAM. Finally, near-edge computing nodes were 
assumed to align with the specification of devices indicative 
in such environments, hence we considered near-edge nodes 
equipped with [1,8] cores and GB of RAM respectively. In 
our model, the monetary cost of service is normalized within 
the [1,10] cost units (c.u.) interval, while the variance in 
costs across different computing layers—cloud, near-edge, 
and far-edge—is derived from the differences outlined in 
[26]. Near-edge resources incur the highest costs, reflecting 
their geographical scarcity and confined availability. Con-
versely, cloud nodes offer the most cost-efficient service due 
to their centralized nature, while far-edge resources fall in 
between. These specifications cost distributions across the 
different layers are detailed in Table 2. The networking cost 
coefficient values are based on [27], effectively considering 

Fig. 2   The different multi-Agent Rollout options for serving the i-th microservice of application k 



SN Computer Science           (2024) 5:318 	 Page 9 of 13    318 

SN Computer Science

the cheaper networking cost of edge networks and are pre-
sented in latency units (l.u.).

Finally, the communication delays among the different 
infrastructure nodes are presented in (Table 3). The con-
sidered propagation delays are aligned with the inherent 
characteristics of each layer: Near-edge nodes are situated 
in close proximity to the data source, hence incurring the 
lowest delay. Conversely, cloud nodes, located in distant 
areas, experience prolonged delays, while the far-edge layer 
stands amidst the near-edge and cloud, providing moderate 
delays [28].

The workload for our study is based on cloud-native 
applications, composed of various microservices. These 
microservices’ specific CPU and RAM demands are syn-
thesized by leveraging publicly available, real-world data-
sets, as elaborated in [29]. This dataset includes traces of 
both online services and batch jobs. For the design of our 
workload, we specifically focused on the resource consump-
tion patterns of online services, which are engineered for 
real-time user interaction. These services typically require 
consistent and predictable resource allocation to achieve per-
formance benchmarks, such as low latency.

Optimality Performance Evaluation of Heuristic 
and Multi‑Agent Rollout Mechanism

In Table 4, we initially evaluate the performance of the 
multi-agent rollout and the greedy heuristic against the opti-
mal MILP solution in terms of execution time and objective 
cost. These evaluations are based on workloads that consist 
of a ranging number of cloud-native applications from 50 
to 300. We set the depth size parameters at � = 90% and 
� = 0.8 and utilize the basic topology. The primary focus of 
our objective function is to optimize latency, with a minimal 
inclusion of cost. If we were to optimize solely for mon-
etary cost, microservices would predominantly utilize cloud 
resources due to their high availability, resulting in most 
placements being in the cloud.

In assessing the performance of the proposed mecha-
nisms, the best-fit heuristic achieved the worst performance, 
with a gap of up to 10% from the optimal solution, whereas 
the multi-Agent rollout managed to generate solutions within 
4% of the optimal in all cases. As for the execution time, 
the greedy heuristic exposed the lowest execution time in 
the order of milliseconds even for higher workloads, while 
rollout’s execution time growth is polynomial with the work-
load increment. Finally, the MILP solver had exponentially 
increasing execution times, and for the workload sizes of 250 
and 300 application demands, it finished its operation within 
the time limit that was set, while for the largest workload did 
not manage to produce a feasible solution during this period.

Evaluating the Performance Based on the Different 
Objectives

In this sub-section, we explore how varying objectives influ-
ence system performance, as illustrated in our allocative 
efficiency analysis presented in Fig. 3. For our experiments 

Table 2   Node characteristics on 
different topology layers

Layer Nodes CPU (cores) Mem. (GB) Mon. Cost (c.u.) Net. cost (l.u.)

Near Edge 50 [1, 4] [1, 8] [6, 8] [0.1,0.2]
Far Edge 10 [40, 80] [50, 100] [3, 4] [0.4,0.6]
Cloud 5 [400,600] [600,800] [1, 2] [1,1.2]

Table 3   Communication delays between layers (values in units)

Data source Near edge Far edge Cloud

Near edge [1, 2] [0.5, 2] [2, 4] [5, 6]
Far Edge [3, 4] [2, 3] [3, 4]
Cloud [7, 8] [4, 5]

Table 4   The total cost and the 
execution time for w = 0.01 for 
the different mechanisms

Application 
demands

MILP Multi-Agent Rollout Heuristic

Obj. value Exec. time Obj.Value Exec.time Obj.Value Exec.Time

50 52.14 17.41 55.12 8.33 57.14 0.06
100 107.13 306.35 109.81 45.67 116.54 0.18
150 231.71 3561.76 238.15 121.33 254.77 0.33
200 414.51 6513.13 433.68 245.63 451.09 0.44
250 667.04 10000 691.51 357.16 714.44 0.69
300 - 10000 991.64 411.11 1034.88 0.91
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we considered the extended topology and a workload 
demand that consists of 1000 cloud-native applications. As 
expected, the lowest cost is achieved when cloud and far-
edge resources are highly utilized and thus the propagation 
latency increases as cloud resources are located in a few 
distant locations to which the data are transferred. When the 
single optimization criterion is the minimization of latency, 
the propagation delay is minimized by approximately 80% 
compared to the previous case, while the monetary cost is 
increased by almost 160%.

Next, we examined the utilization of edge and cloud 
resources for the different weighting coefficients w (Fig. 4) 
over the extended topology. Edge resources are utilized more 
in small weight values, as the objective is delay minimiza-
tion and edge layers consist of nodes in geographic prox-
imity to the data source. In this case, the microservices of 
an application expand over the resources of the edge layer. 
On the other hand, far-edge and cloud resources are heavily 
utilized in high w values, as the objective is approaching the 

monetary cost minimization, thus the “cheap” and power-
ful cloud nodes are preferred. For intermediate values of w, 
applications’ microservices are allocated mostly across the 
far-edge layer, which strikes a fair balance between delay 
and cost. This showcases the importance of edge resources 
in the minimization of the latency of the applications for 
time-critical operations.

Figure 5 presents the contribution of networking and 
operational costs for the different weighting coefficient val-
ues. When the objective function targets the minimization of 
the monetary cost, the cloud resources are preferred with the 
networking costs contributing approximately 49% to the total 
cost, as the processing cost is low while the networking cost 
increases for transferring the application data to the cloud. 
On the other hand, when the objective is the minimization of 
latency and edge resources are utilized, the processing cost 
of the edge resources is the main factor of the total monetary 
cost, with the networking cost corresponding to a mere 5% 
of the total cost.

Evaluating the Influence of Depth Window Size 
and Discount Factor on the Performance of the Multi‑Agent 
Rollout

While the multi-agent rollout mechanism achieves perfor-
mance close to the optimal, its computational complexity 
can be significantly higher for larger configurations. In the 
next set of experiments, we seek to explore the dynamics 
of the depth window size � and future cost approximation 
� when dealing with 1000 application demands and the 
extended topology. As the proposed heuristic algorithm 
exhibits linear complexity with regards to the workload size, 
albeit quadratic with the infrastructure, the multi-agent Roll-
out mechanism invokes the heuristic each time a new place-
ment for a microservice (function) is evaluated, resulting 
in thousands or even tens of thousands of invocations in a 

Fig. 3   The Pareto efficiency chart

Fig. 4   The The number of microservices served at the near/far edge 
and the cloud layer

Fig. 5   The operational and networking cost for the different objective 
co-efficients
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single run. Execution time and scalability are Rollout’s fun-
damental caveats. Properly fine-tuning Rollout’s parameters 
� and � can strike a balance between optimality and execu-
tion time depending on the characteristics of the examined 
workload. This flexibility in adjusting the parameters � and � 
is particularly beneficial in real-case scenarios where work-
load characteristics are dynamic, allowing for tailored tuning 
to optimize performance under varying conditions.

In Fig. 6, we present the effect of the depth window size � 
on the performance of the algorithm and the average execu-
tion time for � = 0.8 . We observed that as the depth window 
size � increases, there is a noticeable impact on the algo-
rithm’s performance. Specifically, with a smaller � , the algo-
rithm tends to converge faster and settles for an immediate 
action minimum as in the case of the greedy best-fit heuris-
tic. On the other hand, a larger � allows for a more thorough 
exploration of the solution space but at the cost of compu-
tational efficiency. As expected, the average execution time 
rises with an increase in � as the calls to the heuristic for the 
future cost approximation increase. The results, however, 
also highlight the trade-offs involved: while higher values 
of � lead to better solutions, they can increase the execution 
time. However, by appropriately configuring parameter � , 
it is possible to achieve a balance between solution quality 
and computational efficiency. This balance is crucial for sce-
narios where timely decision-making is imperative.

In Fig. 7, we present the performance of the multi-agent 
Rollout mechanism with a depth window size of � = 0.8 , 
focusing on the role of the future cost approximation param-
eter, � . A higher � places an emphasis on incorporating 
future cost approximations into current placement decisions 
for microservices, while a lower � leads to a myopic view 
that favors the direct cost reduction. At � = 0 , the mecha-
nism completely disregards future costs, aligning closely 
with a best-fit greedy heuristic. The difference in objective 

cost between the two extreme values of � is almost 15% 
showcasing the need for accurate telemetry mechanisms. 
The efficacy of � becomes particularly crucial when coupled 
with a telemetry mechanism capable of providing informa-
tion regarding the future demands, enhancing performance 
by enabling the multi-agent rollout to fully leverage the pro-
vided data.

Conclusion

In this work, we tackled the challenge of resource alloca-
tion within multi-layered edge-cloud architectures, focus-
ing on the optimal delivery of cloud-native applications. 
We incorporated several critical parameters, such as delay 
constraints arising from microservice communication and 
the availability of computing resources for serving cloud-
native applications. Our proposed solution, the multi-agent 
rollout mechanism, effectively orchestrates resource alloca-
tion for various microservices of cloud-native applications, 
modeling the respective problem in the context of Reinforce-
ment Learning. We employed a greedy best-fit heuristic for 
future cost approximation, capitalizing on its rapid execu-
tion and reliable estimations. Nonetheless, our mechanism 
retains its versatility, allowing the integration of alternative 
algorithms for future cost prediction. Furthermore, we intro-
duced parameters that control the exploration intensity of the 
multi-agent rollout and manage execution time by restricting 
the solution space for each microservice. Our simulation 
results underscore the mechanism’s adeptness at balancing 
delay against service monetary costs. They affirm the near-
optimal efficiency of the multi-agent rollout mechanism with 
decreased execution time.
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