
Vol.:(0123456789)

SN Computer Science (2024) 5:318
https://doi.org/10.1007/s42979-024-02630-w

SN Computer Science

ORIGINAL RESEARCH

Performance Optimization Across the Edge‑Cloud Continuum:
A Multi‑agent Rollout Approach for Cloud‑Native Application
Workload Placement

Polyzois Soumplis1,2  · Georgios Kontos1,2 · Panagiotis Kokkinos2,3 · Aristotelis Kretsis1,2 ·
Sergio Barrachina‑Muñoz4 · Rasoul Nikbakht4 · Jorge Baranda4 · Miquel Payaró4 · Josep Mangues‑Bafalluy4 ·
Emmanuel Varvarigos4

Received: 21 September 2023 / Accepted: 17 January 2024
© The Author(s) 2024

Abstract
The advancements in virtualization technologies and distributed computing infrastructures have sparked the development
of cloud-native applications. This is grounded in the breakdown of a monolithic application into smaller, loosely connected
components, often referred to as microservices, enabling enhancements in the application’s performance, flexibility, and
resilience, along with better resource utilization. When optimizing the performance of cloud-native applications, specific
demands arise in terms of application latency and communication delays between microservices that are not taken into
consideration by generic orchestration algorithms. In this work, we propose mechanisms for automating the allocation of
computing resources to optimize the service delivery of cloud-native applications over the edge-cloud continuum. We ini-
tially introduce the problem’s Mixed Integer Linear Programming (MILP) formulation. Given the potentially overwhelming
execution time for real-sized problems, we propose a greedy algorithm, which allocates resources sequentially in a best-fit
manner. To further improve the performance, we introduce a multi-agent rollout mechanism that evaluates the immediate
effect of decisions but also leverages the underlying greedy heuristic to simulate the decisions anticipated from other agents,
encapsulating this in a Reinforcement Learning framework. This approach allows us to effectively manage the performance–
execution time trade-off and enhance performance by controlling the exploration of the Rollout mechanism. This flexibility
ensures that the system remains adaptive to varied scenarios, making the most of the available computational resources while
still ensuring high-quality decisions.

Keywords  Cloud native applications · Cloud edge continuum · Resource allocation · Multi-agent rollout · Reinforcement
learning

Introduction

Monolithic application design centers on a single, uni-
fied, and inseparable entity [1]. Historically, this paradigm
was exceptionally efficient during times when applications
encompassed a client-side user interface, a server-side logic,
and an associated database. However, as the landscape of
Information and Communication Technologies evolved
[2–4]—with the advent of innovations like virtualization,
optical networks, and the transitions to 5 G and 6 G—the
complexity of the underlying application design increased.
This created the constant need for refinements and optimiza-
tions to meet the ever-increasing Quality of Service (QoS)
demands. In such a competitive and volatile environment,

This article is part of the topical collection “Recent Trends on Cloud
Computing and Services Science” guest edited by Claus Pahl and
Maarten van Steen.

 *	 Polyzois Soumplis
	 soumplis@mail.ntua.gr

 *	 Georgios Kontos
	 giorgoskontos@mail.ntua.gr

1	 School of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece

2	 Institute of Communication and Computer Systems, Athens,
Greece

3	 Department of Digital Systems, University of Peloponnese,
Sparta, Greece

4	 Services as Networks (SaS), Centre Tecnològic
Telecomunicacions CTTC/CERCA), Catalunya, Spain

http://orcid.org/0000-0003-0725-5463
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02630-w&domain=pdf

	 SN Computer Science (2024) 5:318 318   Page 2 of 13

SN Computer Science

the monolithic approach stands inadequate, leading to the
emergence of the cloud-native application model.

In response to this evolving landscape, the principle of
cloud-native application design has gained significant trac-
tion. Its cornerstone lies in the effective decomposition
into microservices. These are discrete, loosely coupled
components, each encapsulating its own logic, executing
independently, and fulfilling a distinct function. Typically,
microservices are executed within isolated virtual comput-
ing frameworks, such as containers [5]. These containers
allocate the necessary computing, networking, and storage
capacities directly from the host operating system. The cloud
computing model seems to be a favorable candidate for ena-
bling the scalable and dynamic operation of cloud-native
applications. Through this, the microservices of an applica-
tion can be deployed and scaled independently [6].

Today, a myriad of emerging applications, services,
and digitized assets generate vast volumes of data at the
network’s edge, necessitating ultra-low processing delays.
This encompasses innovative domains such as autonomous
vehicles, smart cities, virtual/augmented reality, and bio-
medical care, which all harness a plethora of sensors and
data-generating mechanisms. In these settings, relaying the
generated data to distant cloud data centers can increase
network congestion. Moreover, this approach cannot satisfy
the stringent latency requirements of certain applications.
In response, the paradigm of edge computing has emerged
[7]. Edge computing decentralizes resources, situating them
proximate to the data origins. This ensures immediate access
to computing, networking, and storage capabilities. While
these edge units might not match the capacity of compre-
hensive cloud infrastructures, they significantly augment the
performance of cloud-native applications by handling time-
sensitive tasks. Hence, cloud resources need to be utilized
in combination with the edge, e.g., serving latency-tolerant
workloads, creating a powerful edge-cloud continuum. Soft-
ware-wise, lightweight containers are the ideal technology to
enable the seamless execution of cloud-native applications,
or parts of them, on the edge [8], especially when compared
to other virtualization approaches like virtual machines.

The proliferation of applications and their requirements
necessitates the development of innovative mechanisms.
These mechanisms must consider application-related char-
acteristics, such as resource availability and latency when
placing microservices. They should also account for the
broader infrastructure’s available resources. The challenge
to optimize resource utilization across both edge and cloud
infrastructures is a complex task. From a resource alloca-
tion standpoint, this involves operations like the placement
of tasks, load balancing, and data management distributed
across diverse computing landscapes. These challenges
intensify given the volatile nature of multi-technology envi-
ronments in edge and cloud computing and the unpredictable

workloads nature, fluctuating resource availability, and
potential infrastructure or application failures. The use of
a global scheduler to dictate the operation of the different
domains in a centralized manner is not applicable due to this
high complexity which results in unaffordable slow execu-
tion time. In this direction, multi-agent algorithms are par-
ticularly well-suited as they can advantageously provision
resources to applications’ workload in a distributed manner
speeding up the process, while also incorporating real-time
monitoring and historical telemetry data, and even pricing
information.

The present work focuses on developing a multi-agent
rollout mechanism for allocating the available computing
and storage resources in the various layers of an edge-cloud
infrastructure to fulfill the diverse computing, storage, and
latency constraints of the incoming workloads from cloud-
native applications. The proposed mechanisms, offline in
nature, can seamlessly leverage infrastructure telemetry
mechanisms to enable a periodic reevaluation and adjust-
ment of resource allocation strategies in anticipation of the
expected workloads. By integrating this dynamic data, our
algorithms can adapt to changing application needs in a
reinforcement learning manner to ensure efficient resource
utilization even in evolving operational contexts. We aim
to jointly optimize a weighted combination of the average
delay (per application) and the average cost of service while
ensuring that the delay between dependent microservices
and the available resources on the infrastructure nodes meets
the requirements specified by the applications.

We first provide the Mixed Integer Linear Program-
ming (MILP) model of the problem that is able to track the
optimal solution. Recognizing the potentially prohibitive
execution time for real-sized scenarios, we then introduce a
greedy best-fit heuristic that achieves a considerably lower
execution time. A multi-agent rollout mechanism is also
proposed to exploit further the trade-off between execution
time and performance. This reinforcement learning mecha-
nism assesses the cost of immediate and future decisions
during the resource allocation process in order to decide
for a given allocation. The estimation of the future cost is
based on the greedy heuristic, and it simulates the decisions
that will be made by the agents. Our evaluation, conducted
through extensive simulations leveraging publically avail-
able traces of cloud providers, across a variety of scenarios,
showcases the effectiveness of the proposed solutions in
delivering timely decisions, adeptly balancing execution
time and performance.

The remainder of this work is organized as follows: In
Sect. “Related Work”, we report on the related work. In
Sect. “Resource Allocation Mechanisms”, we present the
considered edge-cloud infrastructure model and the cloud-
native applications workload. Next, we present the MILP
problem formulation, the heuristic, and the multi-agent

SN Computer Science (2024) 5:318 	 Page 3 of 13  318

SN Computer Science

rollout algorithm. In Sect. “Simulation Experiments”, we
present the simulation results and finally, in Sect. “Conclu-
sions”, we conclude our work.

Related Work

The resource allocation problem in virtualized environments
is a multi-dimensional research area that has attracted the
interest of the research community. The modeling of the
problem among the different works varies according to the
considered topology and the adopted technologies, while the
proposed solutions employ techniques from the wider realms
of mathematics and computer science.

In [9], the study addresses the placement of Virtual
Machines (VMs) on physical systems in cloud data cent-
ers for IoT big-data analytics. Using a graph model with
nodes as VMs and links representing network communica-
tion, the goal is to evenly distribute link utilization, thus
averting congestion. A greedy heuristic is employed to place
closely interacting VMs on the same system, reducing com-
munication costs. Meanwhile, [10] introduces the VNFPRA
problem, which aims for optimal Virtual Network Function
(VNF) placement in SDN-NFV-enabled multi-access edge
computing (MEC) nodes, targeting minimal deployment
and resource costs. The infrastructure is depicted using a
weighted graph with nodes representing MEC capacities and
links signifying network capacities. Formulated as a MILP
problem, the total service cost encompasses placement,
resource usage, and link costs, with a genetic-based heuristic
proposed for efficiency. Authors of [11] employ a Gaussian
Process Regression-based algorithm to predict traffic, focus-
ing on timely request servicing. A hierarchical infrastructure
is leveraged to prioritize time-sensitive demands. Lastly, the
work in [12] tackles the problem of resource allocation for
IoT machine learning applications over the edge-cloud con-
tinuum. The authors consider the continuous movement of
sensors’ data to computing machines for the efficient training
of machine learning models. A balance between cost, execu-
tion and communication delay, and accuracy is explored. A
Mixed Integer Linear Programming formulation is presented
to optimally solve the problem, while a heuristic followed by
a simulated annealing is developed to provide a faster, albeit
sub-optimal, solution.

In [13], a decentralized approach is emphasized for
selecting an appropriate edge-fog node to orchestrate
IoT workloads. Their heuristic evaluates both application
requirements and fog node conditions to identify the most
suitable Fog Orchestrator Node (FON). [14] tackles the
mapping challenge between end devices and edge gate-
ways, aiming to reduce communication costs and maintain
load balance. They introduce a particle swarm optimiza-
tion metaheuristic where initial solutions adopt exploration

or exploitation tactics. The method’s efficacy is validated
through simulations. In [15], a QoE-aware placement pol-
icy for IoT applications in fog environments is proposed.
Employing two fuzzy logic models, they evaluate appli-
cation expectations and fog node performance and feed a
linear optimization mechanism to perform the placement.

Reinforcement learning has been pivotal in resource
allocation within edge-cloud domains. In [16], a state-
action-reward-state-action-based deep reinforcement
learning method addresses task off-loading in MEC. By
modeling user requests as sub-tasks and considering
execution options (nearest edge, adjacent edge, or central
cloud), authors aim for reduced service delays and energy
use. Authors in [4] confront a microservice coordination
mechanism in mobile edge computing. With mobile users
like autonomous vehicles offloading computation, the
challenge is to mitigate both delay and migration costs.
An optimal offline algorithm is presented, complemented
by a Q-learning approach that offers near-real-time, near-
optimal solutions. Further, [17] details a deep reinforce-
ment learning strategy for microservice deployment across
heterogeneous edge-cloud terrains. Viewing microservices
as ordered service chains, they aim to optimize the Aver-
age Waiting Time (AWT) of these services. Finally, Yang
et al. [18] approach the problem of partial-offloading
of end-user applications by employing a tandem-queue
system comprising edge and cloud processing. Request
arrivals, service times and computation resources are
considered to be stochastic parameters. A DRL agent is
exploited to make the decisions of the computational speed
of each queue by appropriately allocating computational
resources, with an objective of avoiding resource wast-
age while minimizing the probability of delay-constraints
violation.

In distributed infrastructures, timely communication
between microservices is paramount to prevent computa-
tional inconsistencies. Interactions, either sequential or par-
allel, are pivotal. To address this, Directed Acyclic Graph
(DAG)-based methods have been proposed for resource
allocation. In [19], the authors target the minimization of
resources and virtual machine instance hours for DAG-based
and deadline-constrained applications in the cloud. They
developed the MSMD (minimal slack time and minimal
distance) algorithm, aiming to optimize the number of VM
instances while meeting application deadlines. The opera-
tion of this algorithm is further supported by a heuristic
approach that shuts down idle VMs. [20] emphasizes the
necessity of balancing communication processes with com-
puting tasks in cloud resource allocation. They introduce
the CA-DAG model, offering a scheduling technique that
distinctly allocates resources for computing and communi-
cation requirements. Meanwhile, authors in [21] propose a
cost-optimized DAG scheduling algorithm in IaaS cloud

	 SN Computer Science (2024) 5:318 318   Page 4 of 13

SN Computer Science

platforms, as a response to the emergence of cost-centric
public cloud services.

In this work, we present the first, to the best of our knowl-
edge, application of the multi-agent rollout technique in such
a context. This optimization approach, rooted in the prin-
ciples of Approximate Dynamic Programming and Rein-
forcement Learning, is used to consider both immediate and
future decision impacts. The cost of immediate decisions is
directly assessed through the cost function, while the cost
of future decisions is approximated by the greedy heuristic
algorithm. This heuristic aids in estimating the cost associ-
ated with resource assignments tied to subsequent agents,
thereby equipping the model with enriched information for
more judicious decision-making. Different parameters are
used to decide the effect of future actions and the explora-
tion of the immediate actions during the resource allocation
process.

Resource Allocation Mechanisms

The Edge‑Cloud Infrastructure

We consider a hierarchical edge-cloud infrastructure, with
multiple layers of edge resources (e.g., on-device, near-edge,
far-edge) to serve the incoming cloud-native workload. We
assume that the edge layers consist of machines with rela-
tively limited resources, such as Raspberry Pi’s, NVIDIA
Jetson, servers, mini-data centers, etc., while the cloud layer
has practically unlimited resources.

The hierarchical edge-cloud infrastructure is denoted
by an Undirected Weighted Graph G = (V ,E) . The nodes
v ∈ V of the graph correspond to the locations where com-
puting resources are available. Each location is described
by a tuple of the available resources �v = [cv, rv, ov, nv] ,
where cv is node’s v CPU capacity measured in CPU units,
rv is the node’s RAM capacity measured in RAM units, ov
is the node’s operating cost, and nv is the node’s network-
ing cost coefficient. In our case, operational cost relates to
the expenses made for purchasing, deploying, and oper-
ating the respective computing/storage systems. As pro-
viders achieve economies of scale the operational cost is
small for the cloud layer, and gradually increases as we
move to the lower edge layers, which are characterized by
their geographically dispersed placement, a limited num-
ber of resources, and a small number of users. Network-
ing cost coefficient nv results from the usage of any link
from the nodes where data are generated, to the node(s) v
where computing operations take place and is multiplied
by the ingress data to deduce the actual networking cost
of service. The coefficient is minimal for the near-edge
nodes, where links are shorter in distance and cheaper to
install, while it gradually increases up to the massive links

connecting the cloud nodes. Generally, data is generated
at the lower levels of the infrastructure that can be either
equipped with computing resources (local processing) or
not. As they are typically located on the near edge, the
delay is small for transferring the data to a subset of near
edge nodes as they are located closer to the data source,
given their plurality and thus higher geographical density,
while it increases for the higher layer nodes (far edge,
cloud). Finally, each link e ∈ E between two nodes v and
v′ is characterized by a weight lv,v′ , representing the com-
munication (propagation) delay of nodes v and v′.

The workload under consideration consists of a set A
of cloud-native applications. Each application a ∈ A is
described by an Undirected Weighted Graph Ga = (Va,Ea) ,
with the nodes Va corresponding to the microservices that
make up the application and the arcs Ea representing the
inter-dependencies (communication requirements) among
them. Each cloud-native application has a source node
�a ∈ V and each microservice i = 1,… , |Ia| of application
a, has specific resource requirements described by the tuple
[�a,i, �a,i, sa,i] , where �a,i is the microservice’s CPU demand,
�a,i is its memory demand, and sa,i is the size of the data to
be transferred. Furthermore, each arc e ∈ Ea between two
microservices i, i� ∈ Va is characterized by a weight �ai,i′ that
represents the maximum acceptable delay between the corre-
sponding service nodes v, v′ . This is a measure of the inten-
sity of the dependency between these two microservices,
in the sense that highly dependent microservices should be
served by the same or geographically approximate nodes to
reduce communication costs and guarantee the application’s
efficiency with in-time calculations. In Table 1 we summa-
rize all the notations used throughout this section for clarity
and ease of understanding.

Mixed Integer Linear Programming (MILP)
Formulation

In this subsection, we present the mathematical model of
the resource allocation problem encountered by cloud-native
applications within an integrated edge-cloud architecture,
initially introduced in [22]. The core aim is to optimize the
weighted sum of the average operational and networking
costs and the maximum delay for data communication for
each application, under the constraints set by computational
and networking constraints, application-specific needs, and
node resources.

Objective Function:

Subject to the following constraints:

(1)min

{
w

A∑

a=1

�a + (1 − w)

A∑

a=1

�a

}

SN Computer Science (2024) 5:318 	 Page 5 of 13  318

SN Computer Science

C.1. Placement of the microservices to nodes. For each
application a = 1,… ,A and for each microservice i = 1,… , Ia

C.2. Respect of the relative latency between the applications’
microservices. For each application a = 1,… ,A , and each
pair of microservices of application a, i, i� = 1,… , Ia,

C.3. The allocated CPU units of the served applications can-
not surpass the number of available CPU units at each node.
For each node v = 1,… ,V ,

(2)
V∑

v=1

xv,a,i = 1

(3)lv,v� xv,a,i + lv,v� xv� ,a,i� ≤ �a,i,i� + lv,v�

(4)
A∑

a=1

Ia∑

i=1

�a,ixv,a,i ≤ cv

C.4. The allocated memory units of the served applications
cannot surpass the number of available memory units at each
node. For each node v = 1,… ,V ,

C.5. Total monetary application cost �a calculation. For each
application a = 1,… ,A,

C.6. Maximum per application latency (propagation) cal-
culation. For each node v = 1,… ,V  , for each cloud-native
application a = 1,… ,A , and each of its microservices
i = 1,… , Ia,

(5)
A∑

a=1

Ia∑

i=1

�a,ixv,a,i ≤ rv

(6)�a =

V∑

v=1

Ia∑

i=1

(ov + nvsa,i)xv,a,i

(7)�a ≥ xv,a,il�a,v

Table 1   Summary of notations Notation Interpretation

G Undirected Weighted Graph representing the infrastructure
Ga Graph representing microservices and dependencies of application a ∈ A

V Set of infrastructure nodes
�v The tuple representing the computing characteristics and associated mon-

etary cost of node v ∈ V

cv CPU capacity of node v ∈ V

rv RAM capacity of node v ∈ V

ov Operating cost of node v ∈ V

nv Networking cost coefficient of node v ∈ V

lv,v′ Communication delay between nodes v, v� ∈ V

A Set of cloud-native applications
pa Source node of application a ∈ A

Ia Set of microservices of application a ∈ A

�a,i CPU demand of microservice i ∈ Ia

�a,i RAM demand of microservice i ∈ Ia

sa,i Input size for microservice i ∈ Ia

�a�,�′ Maximum acceptable delay between the service nodes of microservices �, �′

xv,a,i Binary variable for allocation of microservice i ∈ Ia to node v ∈ V

�a Total monetary cost for serving application a ∈ A

�a Communication delay for application a ∈ A

w Weighting coefficient controlling the objective
X State space in the multi-Agent Rollout mechanism
T Available resources of infrastructure nodes in state space
W Remaining microservices pending service in state space
Q Allocation of nodes for microservices within the current application
U Action space comprising all feasible actions from a given state
R Reward function in the Rollout mechanism
gk(xk, uk) Scalar value reward function for transition due to action uk
J∗
k
(xk) Cost function representing the optimal cost action for state k

� Discount factor in the Rollout mechanism

	 SN Computer Science (2024) 5:318 318   Page 6 of 13

SN Computer Science

The objective function (Eq. 1) is the weighted sum of the
maximum delay and cost per application assignment, where
w = 0 considers purely the delay minimization problem and
thus the microservices of the applications are preferably
placed in the edge (horizontal scaling), w = 1 deals with the
cost minimization problem and thus the vertical scaling of
applications, and any intermediate value of w considers both
of the aforementioned parameters, with the different contri-
bution in the calculation of the total objective value. The first
constraint (Eq. 2) is used to ensure that every microservice is
assigned to exactly one node. The second constraint (Eq. 3)
enforces that the allocation of resources among interacting
applications of a microservice, is performed with respect
to their latency constraint. Constraints (3) and (4) ensure
that microservices running in a node do not use more than
the available resources, while constraints (5) and (6) calcu-
late the monetary cost and the maximum latency of each
application respectively. Note that our considered formula-
tion supports general workloads (not strictly cloud-native
applications) that can take the form of an application with a
single microservice.

The total number of variables required by the MILP for-
mulation, given an infrastructure with |V| nodes that serve
|A| cloud-native applications, each comprised of |I| micros-
ervices, is [|V| ⋅ |A| ⋅ |I| + 2 ⋅ |A|] . The formulation entails
|A| ⋅ |I| equality constraints for constraint 1 (Eq. 2 C.1.) and
an additional |A| for constraint 5 (Eq. 6). The inequality con-
straints include |A| ⋅ |I|2 ⋅ |V|2 for constraint 2 (Eq. 3), |V|
each for constraints 3 and 4 (Eqs. 4 and 5 respectively), and
|V| ⋅ |A| ⋅ |I| for constraint 6 (Eq. 7).

Greedy Best‑Fit Resource Allocation Algorithm

The considered problem belongs to the NP-hard class of
problems [23] the presented MILP is computationally
intensive with prohibitively large execution time even for
small-sized problems. For this reason, we developed sub-
optimal mechanisms. First, we present a greedy heuristic
that performs the provisioning of resources of the micros-
ervices sequentially in a best-fit manner. Next, we present
the multi-Agent Rollout mechanism, a meta-heuristic that
leverages the developed greedy heuristic in a reinforcement
learning manner to provide an improved solution through
an iterative process.

The considered greedy heuristic [22] seeks to find a sat-
isfactory solution by serving the application demands in a
best-fit manner. It takes as input the infrastructure graph
G = (V ,E) along with all the applications’ demands and its
microservices described by graph Ga = (Va,Ea) for appli-
cation a, ∀a = 1,… ,A and serves the applications sequen-
tially, one by one. After selecting an application, the first
microservice of the application is selected and the candidate
infrastructure nodes with enough resources are calculated

in order to accommodate it. These nodes are ranked based
on the objective function considering the cost and the
latency introduced by the assignment of the microservice
i = 1,… , Ia to each node. The best node v ∈ V is selected
and the processing and memory resources demanded by the
microservice are reserved. If the application consists of more
than one microservice, the next microservice is selected. The
same process is followed for the following microservice with
the addition of the relative latency constraint between the
communicating microservices.

Hence, given the first microservice location, the mecha-
nism selects the nodes v�

∈ V that exhibit communication
latency smaller than the limit set by the examined micros-
ervice, lv,v′ ≤ ��a,1,�a,2

 . If more than one node is found, it
places the second microservice in the best one (it could be
the same node as the first microservice). The same process
is repeated until the Ia-th microservice of the application is
served. If it is not possible to find a node to host an appli-
cation’s microservice, the procedure is re-initiated for the
same application considering the second-best node for the
first microservice and so on. When a solution is found, the
utilization of the resources is updated and the application
is marked as served. The above process is repeated for all
applications, returning the final assignment and the value of
the objective function (Eq. 1). Note that from the descrip-
tion of the procedure, it may be the case where the selection
of the first node can make the execution of an application
impossible due to the latency constraint among the micros-
ervices of the application. Although this may happen for the
edge resources which are characterized by a limited capac-
ity of resources, this does not stand for the abundant cloud
resources, which are able to execute the application demands
at the price of increased propagation latency. The complex-
ity of this approach is polynomial with a worst-case execu-
tion time of O(|A| ⋅ |Ia| ⋅ |V|2) , assuming that all the nodes
|V| are candidate locations to serve the first microservice of
each application, and all possible re-allocations take place.
A typical iteration of this algorithm is presented in the flow-
chart of Fig. 1.

Multi‑Agent Rollout Mechanism

To further improve the performance of the aforementioned
greedy heuristic, we considered a multi-agent rollout mech-
anism, inspired by approximate dynamic programming
[24], a well-known reinforcement learning technique. The
mechanism comprises multiple agents, one per microser-
vice, which operate sequentially, trying to meet the assigned
microservice’s requirements. Each agent allocates resources
to serve the assigned microservice with respect to the con-
straints set by the cloud-native application and the infra-
structure and communicates its decision to the remaining
agents, which are therefore accurately informed about the

SN Computer Science (2024) 5:318 	 Page 7 of 13  318

SN Computer Science

availability of the infrastructure resources, the assignment
of the microservices that make up the application and the
remaining microservices that need to be served.

This is reflected in the state space X of the system which
is defined as X = (T,W,A) , where T represents the avail-
able resources of the infrastructure nodes, captured as a set
of tuples T =

⋃
v∈V �v with each �v specifying the utilization

on node v in CPU and RAM; W represents the remaining
microservices that are pending service; and Q details the
allocation of nodes for the microservices within the cur-
rent application, where each allocation qi signifies the node
assignment for microservice i.

The agent receives as input the partial solution of the
problem as described by the current state and examines the
different actions that can be made to allocate resources for
the assigned microservice. The action space U comprises
all feasible actions from any given state. Specifically, for
state k, an action uk ∈ U corresponds to the assignment of
a microservice to an infrastructure node V. An action is
deemed feasible when it meets certain requirements: it must
adhere to the capacity constraint, meaning a node v’s avail-
able resources must be sufficient for the task it is allocated,
and the latency constraint, which ensures that the latency
between nodes managing intercommunicating tasks does not
surpass the established acceptable limits.

When an action is applied, the system transitions to the
next state while a reward is obtained. The reward function
R is determined by the reward function gk(xk, uk) , which
assigns a scalar value to the transition from state xk to xk+1
due to action uk and is the cost obtained by the objective
function of the considered optimization problem. To approx-
imate the future cost to serve the remaining microservices,
the presented greedy best-fit heuristic is used as a base pol-
icy to account for the remaining microservices. Among all

possible actions, the one ( J∗
k
(xk) ) that minimizes the sum-

mation of the immediate cost xk that marks the transition
to state xk+1 , and future cost approximation from state xk+1 ,
J∗
k+1

(xk) , is selected (eq. 8).

In other words, from all the actions uk for state k, the option
with the least cost J∗

k
(xk) is selected (Fig. 2). The node uti-

lization serving the microservice is updated, marking until
all application demands A are addressed. Finally, the assign-
ment of microservices to nodes and the weighted cost of the
assignment are returned.

As the action space for a given state can be huge the pos-
sible actions are ordered based on the immediate cost from
the lowest to the greatest, with a number of actions uk (up to
a maximum of � ) being computed, where uk represents the
possible placements for the current microservice containing
all the nodes that respect the resource allocation constraints
at the state xk . If more than � placements exist, they are
limited to the first � . This parameter becomes particularly
useful when the exact methods are too slow and/or when
solutions provided by heuristics are inefficient. The depth
window, � , optimizes execution by regulating the count of
distinct placements assessed for a given microservice during
the immediate cost assessment. Despite potentially affecting
the algorithm’s efficacy, it proves valuable when multiple
placements exist for a given microservice in controlling the
execution time of the Rollout mechanism.

Another critical parameter is the use of a discount factor
� which adjusts the influence of the heuristic’s future cost
approximation on the current action selection. The incor-
poration of � , a key aspect of the standard infinite horizon
discounted MDP, becomes especially beneficial when the

(8)J∗
k
(xk) = min

uk∈Uk(xk)

[
gk(xk, uk) + � ∗ J∗

k+1

(
xk, uk)

)]

Fig. 1   The flowchart of the best-fit heuristic

	 SN Computer Science (2024) 5:318 318   Page 8 of 13

SN Computer Science

performance of the base policy does not meet expectations,
allowing for an adjusted approach that can yield better
immediate-term outcomes without completely disregarding
future implications. The practical significance of the dis-
count factor in our model lies in scenarios where telemetry
data may not provide accurate estimations, reinforcing the
necessity of a mechanism that can adapt to uncertainties in
the operational environment. By judiciously adjusting � , our
system maintains a proactive stance in resource allocation,
thus ensuring efficiency under different conditions.

A significant advantage of this method is that exploits the
trade off between the complexity of the action space with
new states, making computational demands proportional to
the microservice and the infrastructure’s node count. Con-
sider an application with Ia microservices. Each micros-
ervice’s potential placement in any of the V infrastructure
nodes can lead to |V||Ia| different choices for the applica-
tion’s collective decision. Dividing application a resource
allocation into |Ia| sequential decisions and applying agent-
by-agent rather than all simultaneously reduces the different
choices to |V| ⋅ |Ia|.

Simulation Experiments

In this section, we delve into the simulation experiments
conducted to evaluate the performance of the proposed
mechanisms. These experiments not only offer a thorough
evaluation of the mechanisms’ performance but also provide
deep insights into the problem’s complexities. The proposed
mechanisms were implemented in MATLAB and the simula-
tion experiments were conducted on a 6-core 2.6 GHz Intel
Core i7 PC with 12 GB of RAM.

Simulation Setup

We assume an infrastructure that spans over the edge-
cloud continuum and is organized into three distinct layers

of computing resources, each characterized by its unique
capabilities. These layers range from powerful cloud servers,
offering substantial processing power, to far and near-edge
resources, which provide localized, rapid-response capabili-
ties with lower computing capacity compared to the cloud
ones.

To cater to different experimental scenarios, we exam-
ined two distinct edge-cloud topologies. The first topology,
namely the “basic topology”, comprises 20 near-edge, 5 far-
edge and 2 cloud nodes. This limited configuration allows
the evaluation of the proposed sub-optimal mechanisms
against the optimal performance given by the MILP mecha-
nism, which can be efficiently executed in such small-scale
problem instances. We also assumed, an upscaled configu-
ration, namely the “extended topology” that encompasses
150 near-edge nodes, 30 far-edge nodes and 7 cloud nodes.
This setup allows a better understanding of the problem’s
dynamics while showcasing the scalability of our proposed
sub-optimal mechanisms.

We modeled cloud resources, comprising a cluster of 400
to 600 CPU cores per node as profiled in [25] and memory
size in the interval [600, 800] GBs. The far-edge layer was
assumed to include nodes with [40, 80] CPU cores and [50,
100] GB RAM. Finally, near-edge computing nodes were
assumed to align with the specification of devices indicative
in such environments, hence we considered near-edge nodes
equipped with [1,8] cores and GB of RAM respectively. In
our model, the monetary cost of service is normalized within
the [1,10] cost units (c.u.) interval, while the variance in
costs across different computing layers—cloud, near-edge,
and far-edge—is derived from the differences outlined in
[26]. Near-edge resources incur the highest costs, reflecting
their geographical scarcity and confined availability. Con-
versely, cloud nodes offer the most cost-efficient service due
to their centralized nature, while far-edge resources fall in
between. These specifications cost distributions across the
different layers are detailed in Table 2. The networking cost
coefficient values are based on [27], effectively considering

Fig. 2   The different multi-Agent Rollout options for serving the i-th microservice of application k 

SN Computer Science (2024) 5:318 	 Page 9 of 13  318

SN Computer Science

the cheaper networking cost of edge networks and are pre-
sented in latency units (l.u.).

Finally, the communication delays among the different
infrastructure nodes are presented in (Table 3). The con-
sidered propagation delays are aligned with the inherent
characteristics of each layer: Near-edge nodes are situated
in close proximity to the data source, hence incurring the
lowest delay. Conversely, cloud nodes, located in distant
areas, experience prolonged delays, while the far-edge layer
stands amidst the near-edge and cloud, providing moderate
delays [28].

The workload for our study is based on cloud-native
applications, composed of various microservices. These
microservices’ specific CPU and RAM demands are syn-
thesized by leveraging publicly available, real-world data-
sets, as elaborated in [29]. This dataset includes traces of
both online services and batch jobs. For the design of our
workload, we specifically focused on the resource consump-
tion patterns of online services, which are engineered for
real-time user interaction. These services typically require
consistent and predictable resource allocation to achieve per-
formance benchmarks, such as low latency.

Optimality Performance Evaluation of Heuristic
and Multi‑Agent Rollout Mechanism

In Table 4, we initially evaluate the performance of the
multi-agent rollout and the greedy heuristic against the opti-
mal MILP solution in terms of execution time and objective
cost. These evaluations are based on workloads that consist
of a ranging number of cloud-native applications from 50
to 300. We set the depth size parameters at � = 90% and
� = 0.8 and utilize the basic topology. The primary focus of
our objective function is to optimize latency, with a minimal
inclusion of cost. If we were to optimize solely for mon-
etary cost, microservices would predominantly utilize cloud
resources due to their high availability, resulting in most
placements being in the cloud.

In assessing the performance of the proposed mecha-
nisms, the best-fit heuristic achieved the worst performance,
with a gap of up to 10% from the optimal solution, whereas
the multi-Agent rollout managed to generate solutions within
4% of the optimal in all cases. As for the execution time,
the greedy heuristic exposed the lowest execution time in
the order of milliseconds even for higher workloads, while
rollout’s execution time growth is polynomial with the work-
load increment. Finally, the MILP solver had exponentially
increasing execution times, and for the workload sizes of 250
and 300 application demands, it finished its operation within
the time limit that was set, while for the largest workload did
not manage to produce a feasible solution during this period.

Evaluating the Performance Based on the Different
Objectives

In this sub-section, we explore how varying objectives influ-
ence system performance, as illustrated in our allocative
efficiency analysis presented in Fig. 3. For our experiments

Table 2   Node characteristics on
different topology layers

Layer Nodes CPU (cores) Mem. (GB) Mon. Cost (c.u.) Net. cost (l.u.)

Near Edge 50 [1, 4] [1, 8] [6, 8] [0.1,0.2]
Far Edge 10 [40, 80] [50, 100] [3, 4] [0.4,0.6]
Cloud 5 [400,600] [600,800] [1, 2] [1,1.2]

Table 3   Communication delays between layers (values in units)

Data source Near edge Far edge Cloud

Near edge [1, 2] [0.5, 2] [2, 4] [5, 6]
Far Edge [3, 4] [2, 3] [3, 4]
Cloud [7, 8] [4, 5]

Table 4   The total cost and the
execution time for w = 0.01 for
the different mechanisms

Application
demands

MILP Multi-Agent Rollout Heuristic

Obj. value Exec. time Obj.Value Exec.time Obj.Value Exec.Time

50 52.14 17.41 55.12 8.33 57.14 0.06
100 107.13 306.35 109.81 45.67 116.54 0.18
150 231.71 3561.76 238.15 121.33 254.77 0.33
200 414.51 6513.13 433.68 245.63 451.09 0.44
250 667.04 10000 691.51 357.16 714.44 0.69
300 - 10000 991.64 411.11 1034.88 0.91

	 SN Computer Science (2024) 5:318 318   Page 10 of 13

SN Computer Science

we considered the extended topology and a workload
demand that consists of 1000 cloud-native applications. As
expected, the lowest cost is achieved when cloud and far-
edge resources are highly utilized and thus the propagation
latency increases as cloud resources are located in a few
distant locations to which the data are transferred. When the
single optimization criterion is the minimization of latency,
the propagation delay is minimized by approximately 80%
compared to the previous case, while the monetary cost is
increased by almost 160%.

Next, we examined the utilization of edge and cloud
resources for the different weighting coefficients w (Fig. 4)
over the extended topology. Edge resources are utilized more
in small weight values, as the objective is delay minimiza-
tion and edge layers consist of nodes in geographic prox-
imity to the data source. In this case, the microservices of
an application expand over the resources of the edge layer.
On the other hand, far-edge and cloud resources are heavily
utilized in high w values, as the objective is approaching the

monetary cost minimization, thus the “cheap” and power-
ful cloud nodes are preferred. For intermediate values of w,
applications’ microservices are allocated mostly across the
far-edge layer, which strikes a fair balance between delay
and cost. This showcases the importance of edge resources
in the minimization of the latency of the applications for
time-critical operations.

Figure 5 presents the contribution of networking and
operational costs for the different weighting coefficient val-
ues. When the objective function targets the minimization of
the monetary cost, the cloud resources are preferred with the
networking costs contributing approximately 49% to the total
cost, as the processing cost is low while the networking cost
increases for transferring the application data to the cloud.
On the other hand, when the objective is the minimization of
latency and edge resources are utilized, the processing cost
of the edge resources is the main factor of the total monetary
cost, with the networking cost corresponding to a mere 5%
of the total cost.

Evaluating the Influence of Depth Window Size
and Discount Factor on the Performance of the Multi‑Agent
Rollout

While the multi-agent rollout mechanism achieves perfor-
mance close to the optimal, its computational complexity
can be significantly higher for larger configurations. In the
next set of experiments, we seek to explore the dynamics
of the depth window size � and future cost approximation
� when dealing with 1000 application demands and the
extended topology. As the proposed heuristic algorithm
exhibits linear complexity with regards to the workload size,
albeit quadratic with the infrastructure, the multi-agent Roll-
out mechanism invokes the heuristic each time a new place-
ment for a microservice (function) is evaluated, resulting
in thousands or even tens of thousands of invocations in a

Fig. 3   The Pareto efficiency chart

Fig. 4   The The number of microservices served at the near/far edge
and the cloud layer

Fig. 5   The operational and networking cost for the different objective
co-efficients

SN Computer Science (2024) 5:318 	 Page 11 of 13  318

SN Computer Science

single run. Execution time and scalability are Rollout’s fun-
damental caveats. Properly fine-tuning Rollout’s parameters
� and � can strike a balance between optimality and execu-
tion time depending on the characteristics of the examined
workload. This flexibility in adjusting the parameters � and �
is particularly beneficial in real-case scenarios where work-
load characteristics are dynamic, allowing for tailored tuning
to optimize performance under varying conditions.

In Fig. 6, we present the effect of the depth window size �
on the performance of the algorithm and the average execu-
tion time for � = 0.8 . We observed that as the depth window
size � increases, there is a noticeable impact on the algo-
rithm’s performance. Specifically, with a smaller � , the algo-
rithm tends to converge faster and settles for an immediate
action minimum as in the case of the greedy best-fit heuris-
tic. On the other hand, a larger � allows for a more thorough
exploration of the solution space but at the cost of compu-
tational efficiency. As expected, the average execution time
rises with an increase in � as the calls to the heuristic for the
future cost approximation increase. The results, however,
also highlight the trade-offs involved: while higher values
of � lead to better solutions, they can increase the execution
time. However, by appropriately configuring parameter � ,
it is possible to achieve a balance between solution quality
and computational efficiency. This balance is crucial for sce-
narios where timely decision-making is imperative.

In Fig. 7, we present the performance of the multi-agent
Rollout mechanism with a depth window size of � = 0.8 ,
focusing on the role of the future cost approximation param-
eter, � . A higher � places an emphasis on incorporating
future cost approximations into current placement decisions
for microservices, while a lower � leads to a myopic view
that favors the direct cost reduction. At � = 0 , the mecha-
nism completely disregards future costs, aligning closely
with a best-fit greedy heuristic. The difference in objective

cost between the two extreme values of � is almost 15%
showcasing the need for accurate telemetry mechanisms.
The efficacy of � becomes particularly crucial when coupled
with a telemetry mechanism capable of providing informa-
tion regarding the future demands, enhancing performance
by enabling the multi-agent rollout to fully leverage the pro-
vided data.

Conclusion

In this work, we tackled the challenge of resource alloca-
tion within multi-layered edge-cloud architectures, focus-
ing on the optimal delivery of cloud-native applications.
We incorporated several critical parameters, such as delay
constraints arising from microservice communication and
the availability of computing resources for serving cloud-
native applications. Our proposed solution, the multi-agent
rollout mechanism, effectively orchestrates resource alloca-
tion for various microservices of cloud-native applications,
modeling the respective problem in the context of Reinforce-
ment Learning. We employed a greedy best-fit heuristic for
future cost approximation, capitalizing on its rapid execu-
tion and reliable estimations. Nonetheless, our mechanism
retains its versatility, allowing the integration of alternative
algorithms for future cost prediction. Furthermore, we intro-
duced parameters that control the exploration intensity of the
multi-agent rollout and manage execution time by restricting
the solution space for each microservice. Our simulation
results underscore the mechanism’s adeptness at balancing
delay against service monetary costs. They affirm the near-
optimal efficiency of the multi-agent rollout mechanism with
decreased execution time.

Acknowledgements  The work presented is supported by the EU Hori-
zon 2020 research and innovation program under grant agreement No.
101017171 in the context of the MARSAL project and by the Hellenic
Foundation for Research and Innovation (H.F.R.I.) under the “2nd

Fig. 6   The objective cost and the execution time for different sizes of
depth window size �

Fig. 7   The evolution of the objective value through time for different
� values)

	 SN Computer Science (2024) 5:318 318   Page 12 of 13

SN Computer Science

Call for H.F.R.I. Research Projects to support Faculty Members &
Researchers” (Project Number: 04596).

Funding  Open access funding provided by HEAL-Link Greece.
The work presented in this paper was supported by the EU Horizon
2020 research and innovation program under grant agreement No.
101017171 within the context of the MARSAL project. Additionally,
support was provided by the Hellenic Foundation for Research and
Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Pro-
jects to support Faculty Members & Researchers” (Project Number:
04596).

Data availability  The data supporting the findings of this study are
available upon request. However, the algorithm developed and used
in this research is proprietary/confidential and cannot be shared at this
time.

Declarations 

Conflict of interest  The authors declare that this work was supported
by the EU Horizon 2020 research and innovation program in the con-
text of the MARSAL project, under grant agreement No. 101017171.
Polyzois Soumplis, Georgios Kontos, and Emmanuel Varvarigos re-
ceived support by the Hellenic Foundation for Research and Innova-
tion (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to
support Faculty Members & Researchers” (Project Number: 04596).
The funding bodies had no role in the design of the study, the collec-
tion, analysis, and interpretation of data, or in writing the manuscript.
There are no other relationships or activities that could appear to have
influenced the submitted work.

Consent for publication  All authors have agreed to the publication of
this work.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Villamizar M, Garcés O, Castro H, Verano M, Salamanca L,
Casallas R, Gil S. Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud. In:
2015 10th Computing Colombian Conference (10CCC); 2015. p.
583–90. https://​doi.​org/​10.​1109/​Colum​bianCC.​2015.​73334​76

	 2.	 Akbar MS, Hussain Z, Sheng QZ, Mukhopadhyay S. 6g survey on
challenges, requirements, applications, key enabling technologies,
use cases, ai integration issues and security aspects; 2022.

	 3.	 Dangi R, Lalwani P, Choudhary G, You I, Pau G. Study and inves-
tigation on 5g technology: A systematic review. Sensors (Basel,
Switzerland). 2021;22. https://​doi.​org/​10.​3390/​s2201​0026.

	 4.	 Wang S, Guo Y, Zhang N, Yang P, Zhou A, Shen X. Delay-
aware microservice coordination in mobile edge computing:

a reinforcement learning approach. IEEE Trans Mob Comput.
2021;20(3):939–51. https://​doi.​org/​10.​1109/​TMC.​2019.​29578​04.

	 5.	 Bernstein D. Containers and cloud: from lxc to docker to kuber-
netes. IEEE Cloud Comput. 2014;1:81–4. https://​doi.​org/​10.​1109/​
MCC.​2014.​51.

	 6.	 Ren Z, Wang W, Wu G, Gao C, Chen W, Wei J, Huang T. Migrat-
ing web applications from monolithic structure to microservices
architecture. Assoc Comput Mach. 2018. https://​doi.​org/​10.​1145/​
32752​19.​32752​30.

	 7.	 Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: vision and
challenges. IEEE Internet Things J. 2016;3:637–46. https://​doi.​
org/​10.​1109/​JIOT.​2016.​25791​98.

	 8.	 Goethals T. Fledge: Kubernetes compatible container orchestra-
tion on low-resource edge devices

	 9.	 Li X, Lian Z, Qin X, Jie W. Topology-aware resource alloca-
tion for iot services in clouds. IEEE Access. 2018;6:77880–9.
https://​doi.​org/​10.​1109/​ACCESS.​2018.​28842​51.

	10.	 Kiran N, Liu X, Wang S, Changchuan Y. Vnf placement and
resource allocation in sdn/nfv-enabled mec networks; 2020.

	11.	 Silva RACD, Fonseca NLSD. Resource allocation mechanism
for a fog-cloud infrastructure, vol. 2018-May. New Jersey: Insti-
tute of Electrical and Electronics Engineers Inc.; 2018. https://​
doi.​org/​10.​1109/​ICC.​2018.​84222​37.

	12.	 Sartzetakis I, Soumplis P, Pantazopoulos P, Katsaros KV,
Sourlas V, Varvarigos EM. Resource allocation for distributed
machine learning at the edge-cloud continuum. ICC 2022 -
IEEE International Conference on Communications; 2022.
https://​doi.​org/​10.​1109/​icc45​855.​2022.​98386​47

	13.	 Kumar D, Maurya AK, Baranwal G. Chapter 6 - iot services
in healthcare industry with fog/edge and cloud computing. In:
Singh, S.K., Singh, R.S., Pandey, A.K., Udmale, S.S., Chaud-
hary, A. (eds.) IoT-Based Data Analytics for the Healthcare
Industry. Intelligent Data-Centric Systems, Academic Press;
2021. p. 81–103. https://​doi.​org/​10.​1016/​B978-0-​12-​821472-​
5.​00017-X.

	14.	 Sangaiah AK, Pham H, Qiu T, Muhammad K. Convergence of
deep machine learning and parallel computing environment for
bio-engineering applications. Concurrency and Computation:
Practice and Experience. 2019;32(1). https://​doi.​org/​10.​1002/​
cpe.​5424.

	15.	 Mahmud R, Srirama SN, Ramamohanarao K, Buyya R. Quality of
experience (qoe)-aware placement of applications in fog comput-
ing environments. Journal of Parallel and Distributed Computing.
2019;132:190–203. https://​doi.​org/​10.​1016/j.​jpdc.​2018.​03.​004.

	16.	 Alfakih T, Hassan MM, Gumaei A, Savaglio C, Fortino G. Task
offloading and resource allocation for mobile edge computing
by deep reinforcement learning based on sarsa. IEEE Access.
2020;8:54074–84. https://​doi.​org/​10.​1109/​ACCESS.​2020.​29814​
34.

	17.	 Chen L, Xu Y, Lu Z, Wu J, Gai K, Hung PCK, Qiu M. Iot micros-
ervice deployment in edge-cloud hybrid environment using rein-
forcement learning. IEEE Internet Things J. 2021;8:12610–22.
https://​doi.​org/​10.​1109/​JIOT.​2020.​30149​70.

	18.	 Yang C, Xu H, Fan S, Cheng X, Liu M, Wang X. Efficient resource
allocation policy for cloud edge end framework by reinforcement
learning. In: 2022 IEEE 8th International Conference on Com-
puter and Communications (ICCC); 2022. https://​doi.​org/​10.​1109/​
iccc5​6324.​2022.​10065​844

	19.	 Wu H, Hua X, Li Z, Ren S. Resource and instance hour minimi-
zation for deadline constrained dag applications using computer
clouds. IEEE Trans Parallel Distrib Syst. 2016;27(3):885–99.
https://​doi.​org/​10.​1109/​TPDS.​2015.​24112​57.

	20.	 Kliazovich D, Pecero JE, Tchernykh A, Bouvry P, Khan SU, Zom-
aya AY. Ca-dag: Communication-aware directed acyclic graphs
for modeling cloud computing applications. In: Proceedings of the
2013 IEEE Sixth International Conference on Cloud Computing.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.3390/s22010026
https://doi.org/10.1109/TMC.2019.2957804
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ACCESS.2018.2884251
https://doi.org/10.1109/ICC.2018.8422237
https://doi.org/10.1109/ICC.2018.8422237
https://doi.org/10.1109/icc45855.2022.9838647
https://doi.org/10.1016/B978-0-12-821472-5.00017-X
https://doi.org/10.1016/B978-0-12-821472-5.00017-X
https://doi.org/10.1002/cpe.5424
https://doi.org/10.1002/cpe.5424
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1109/ACCESS.2020.2981434
https://doi.org/10.1109/ACCESS.2020.2981434
https://doi.org/10.1109/JIOT.2020.3014970
https://doi.org/10.1109/iccc56324.2022.10065844
https://doi.org/10.1109/iccc56324.2022.10065844
https://doi.org/10.1109/TPDS.2015.2411257

SN Computer Science (2024) 5:318 	 Page 13 of 13  318

SN Computer Science

CLOUD ’13, IEEE Computer Society, USA; 2013. p. 277–284.
https://​doi.​org/​10.​1109/​CLOUD.​2013.​40.

	21.	 Convolbo MW, Chou J. Cost-aware dag scheduling algo-
rithms for minimizing execution cost on cloud resources. J
Supercomput. 2016;72(3):985–1012. https://​doi.​org/​10.​1007/​
s11227-​016-​1637-7.

	22.	 Kontos G, Soumplis P, Kokkinos P, Varvarigos E. Cloud-Native
Applications’ Workload Placement over the Edge-Cloud Con-
tinuum. In: Proceedings of the 13th International Conference on
Cloud Computing and Services Science - Volume 1: CLOSER,
SciTePress; 2023;p. 57–66. https://​doi.​org/​10.​5220/​00118​50100​
003488. INSTICC

	23.	 Sallam G, Ji B. Joint placement and allocation of vnf nodes with
budget and capacity constraints; 2019.

	24.	 Bertsekas D. Multiagent reinforcement learning: rollout and pol-
icy iteration. IEEE/CAA J Autom Sin. 2021;8(2):249–72. https://​
doi.​org/​10.​1109/​JAS.​2021.​10038​14.

	25.	 Hadary O, Marshall L, Menache I, Pan A, Greeff EE, Dion D,
Dorminey S, Joshi S, Chen Y, Russinovich M, Moscibroda T.

Protean: VM allocation service at scale. In: 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
20), USENIX Association; 2020. p. 845–861. https://​www.​usenix.​
org/​confe​rence/​osdi20/​prese​ntati​on/​hadary

	26.	 Mobile Experts Inc.: EDGE INSIGHT: Cost of Outpost vs DIY
Edge Cloud; 2020.

	27.	 Rutlege K. Bandwidth Economics are the business case for Edge
Computing. LinkedIn; 2019. https://​short​url.​at/​hnqs4

	28.	 Madden J. Analysis : The economics of edge computing; 2020.
	29.	 Alibaba Group: Alibaba Cluster Data 2017. Accessed:

[12/08/2023] (2017). https://​github.​com/​aliba​ba/​clust​erdata/​tree/​
master/​clust​er-​trace-​v2017

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CLOUD.2013.40
https://doi.org/10.1007/s11227-016-1637-7
https://doi.org/10.1007/s11227-016-1637-7
https://doi.org/10.5220/0011850100003488
https://doi.org/10.5220/0011850100003488
https://doi.org/10.1109/JAS.2021.1003814
https://doi.org/10.1109/JAS.2021.1003814
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://shorturl.at/hnqs4
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2017
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2017

	Performance Optimization Across the Edge-Cloud Continuum: A Multi-agent Rollout Approach for Cloud-Native Application Workload Placement
	Abstract
	Introduction
	Related Work
	Resource Allocation Mechanisms
	The Edge-Cloud Infrastructure
	Mixed Integer Linear Programming (MILP) Formulation
	Greedy Best-Fit Resource Allocation Algorithm
	Multi-Agent Rollout Mechanism

	Simulation Experiments
	Simulation Setup
	Optimality Performance Evaluation of Heuristic and Multi-Agent Rollout Mechanism
	Evaluating the Performance Based on the Different Objectives
	Evaluating the Influence of Depth Window Size and Discount Factor on the Performance of the Multi-Agent Rollout

	Conclusion
	Acknowledgements
	References

