Skip to main content

Advertisement

Log in

An Efficient Deep Learning Technique for Driver Drowsiness Detection

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Deep learning techniques allow us to learn about a person’s behavior based on pictures and videos. Using digital cameras, the system can identify and classify a person’s behavior based on images and videos. This paper aims to present a method for detecting drivers’ drowsiness based on deep learning. To determine which transfer learning technique best suits this work, we used DenseNet169, MobileNetV2, ResNet50V2, VGG19, InceptionV3, and Xception on the dataset. The dataset used in this paper is the Driver Drowsiness Dataset (DDD), which is publicly available on Kaggle. This dataset consists of 41,790 RGB images, and each image has a size of 227 \(\times\) 227, which has 2 classes: drowsy and not drowsy. The Drivers Drowsiness Dataset is based on the images extracted from the real-life Drowsiness dataset (RLDD). After comparing the results coming from all 6 models, the highest accuracy achieved was 100% by ResNet50V2, and various parameters are calculated like accuracy, F1 score, etc. Additionally, this work compared the results with existing methods to demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The Driver Drowsiness Dataset (DDD) [1] is openly available online and can be accessed through the URL: https://www.kaggle.com/datasets/ismailnasri20/driver-drowsiness-dataset-ddd.

References

  1. https://www.kaggle.com/datasets/ismailnasri20/driver-drowsiness-dataset-ddd. Accessed 26 Jan 2024

  2. Organization WH, editor. global status report on road safety 2018. World Health Organization; 2018.

    Google Scholar 

  3. Road traffic injuries RTIA. Online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. Accessed 19 July 2022.

  4. AD, DR, AR. A smart phone based drowsiness detection and warning system for automotive drivers. IEEE Trans Intell Transp Syst. 2018;20(11):4045–54. https://doi.org/10.1109/TITS.2018.2879609.

  5. AJ, SK, SB, TM. In-the-wild drowsiness detection from facial expressions. In: IEEE Intelligent Vehicles Symposium (IV), pp. 207–212. IEEE. 2020. https://doi.org/10.1109/IV47402.2020.9304579.

  6. Alguindigue J, Singh A, Narayan A, Samuel S. Biosignals monitoring for driver drowsiness detection using deep neural networks. IEEE Access. 2024;12:93075–86. https://doi.org/10.1109/ACCESS.2024.3423723.

    Article  Google Scholar 

  7. Bansal M, Kumar M, Sachdeva M, Mittal A. Transfer learning for image classification using vgg19: Caltech-101 image data set. J Ambient Intell Humaniz Comput. 2021;14:3609–620.

    Article  Google Scholar 

  8. Ch SP, Guduru S, Ronagala V, Kuresan H, Dhanalakshmi S. Automatic system for driver drowsiness detection system using deep learning. In: 2023 International Conference for advancement in technology (ICONAT), 2023; pp. 1–4. IEEE.

  9. Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017; p. 1251–1258.

  10. Das S, Pratihar S, Pradhan B, Jhaveri RH, Benedetto F. Iot-assisted automatic driver drowsiness detection through facial movement analysis using deep learning and a u-net-based architecture. Information. 2024;15(1). https://doi.org/10.3390/info15010030. https://www.mdpi.com/2078-2489/15/1/30

  11. Deng WWR. Real-time driver-drowsiness detection system using facial features. IEEE Access. 2019;7:118727–38.

    Article  Google Scholar 

  12. Donges N. What is transfer learning? exploring the popular deep learning approach. 2022. https://builtin.com/data-science/transfer-learning. Accessed 26 Jan 2024

  13. Feng Y, Xiaolong L, Yunbo G, Hailwei W, Hongyi L. A real-time driving drowsiness detection algorithm with individual differences consideration. In: IEEE Access. 2019;7:179396-179408.

  14. Fouad IA. A robust and efficient eeg-based drowsiness detection system using different machine learning algorithms. Ain Shams Eng J. 2023;14(3): 101895.

    Article  Google Scholar 

  15. Ganatra N, Patel A. Performance analysis of fine-tuned convolutional neural network models for plant disease classification. Int J Control Autom. 2020;13(3):293–305.

    Google Scholar 

  16. Gonçalves M, Amici R, Lucas R, Åkerstedt T, Cirignotta F, Horne J, Léger D, McNicholas WT, Partinen M, Téran-Santos J, et al. Sleepiness at the wheel across Europe: a survey of 19 countries. J Sleep Res. 2015;24(3):242–53.

    Article  Google Scholar 

  17. Gupta I, Garg N, Aggarwal A, Nepalia N, Verma B. Real-time driver’s drowsiness monitoring based on dynamically varying threshold. In: 2018 Eleventh International Conference on contemporary computing (IC3), 2018; pp. 1–6. IEEE.

  18. Hanafi MFFM, Nasir MSFM, Wani S, Abdulghafor RAA, Gulzar Y, Hamid Y. A real time deep learning based driver monitoring system. Int J Percept Cognit Comput. 2021;7(1):79–84.

    Google Scholar 

  19. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017; p. 4700–4708.

  20. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, 2017; pp. 4700–4708.

  21. In India RA. Road accidents in India. https://morth.nic.in/sites/default/filesAccidednt.pdf, 2018; pp 1-125. Accessed 2 Mar 2021.

  22. Jafar A, Lee M. High-speed hyperparameter optimization for deep resnet models in image recognition. Cluster Comput. 2021;26:2605–13.

    Article  Google Scholar 

  23. KK, RP, SVM. Real-time driver distraction detection system using convolutional neural networks. In: Proceedings of ICETIT 2019. Springer, 2020; pp. 280–291.

  24. Khosro S-H, Yazdi Z. Fatigue management in the workplace. Ind Psychiatry J. 2015;24(1):12–7.

    Article  Google Scholar 

  25. Kamaruzzaman MA, Othman M, Hassan R, Rahman AWA, Mahri N. Eeg features for driver’s mental fatigue detection: a preliminary work. Int J Percept Cognit Comput. 2023;9(1):88–94.

    Google Scholar 

  26. Khan MA, Nawaz T, Khan US, Hamza A, Rashid N. Iot-based non-intrusive automated driver drowsiness monitoring framework for logistics and public transport applications to enhance road safety. IEEE Access. 2023;11:14385–97. https://doi.org/10.1109/ACCESS.2023.3244008.

    Article  Google Scholar 

  27. Khasawneh N, Fraiwan M, Fraiwan L. Detection of k-complexes in eeg signals using deep transfer learning and yolov3. Clust Comput. 2023;26(6):3985–95.

    Article  Google Scholar 

  28. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

    Article  Google Scholar 

  29. Lamaazi H, Alqassab A, Fadul R, Mizouni R. Smart edge-based driver drowsiness detection in mobile crowdsourcing. IEEE Access. 2023. https://doi.org/10.1109/ACCESS.2023.3250834.

    Article  Google Scholar 

  30. Lanjewar MG, Parab JS, Shaikh AY, Sequeira M. Cnn with machine learning approaches using extratreesclassifier and mrmr feature selection techniques to detect liver diseases on cloud. Clust Comput. 2023;26(6):3657–72.

    Article  Google Scholar 

  31. Lawoyin S, Fei DY, Bai O. Accelerometer-based steering-wheel movement monitoring for drowsy-driving detection. Proc Inst Mech Eng Part D J Automob Eng. 2015;229(2):163–73.

    Article  Google Scholar 

  32. Lenskiy AA, Lee JS. Driver’s eye blinking detection using novel color and texture segmentation algorithms. Int J Control Autom Syst. 2012;10:317–27.

    Article  Google Scholar 

  33. Li X, Ye M, Fu M, Xu P, Li T. Domain adaption of vehicle detector based on convolutional neural networks. Int J Control Autom Syst. 2015;13:1020–31.

    Article  Google Scholar 

  34. Mika S, Shin-ichi S, Wataru N, Makoto M, Koichi K, Hiroki K. Comprehensive drowsiness level detection model combining multimodal information. IEEE Sens J. 2020;20(7):3709–17.

    Article  Google Scholar 

  35. Madni HA, Raza A, Sehar R, Thalji N, Abualigah L. Novel transfer learning approach for driver drowsiness detection using eye movement behavior. IEEE Access. 2024;12:64765–78. https://doi.org/10.1109/ACCESS.2024.3392640.

    Article  Google Scholar 

  36. Magán E, Sesmero MP, Alonso-Weber JM, Sanchis A. Driver drowsiness detection by applying deep learning techniques to sequences of images. Appl Sci. 2022;12(3):1145.

    Article  Google Scholar 

  37. Maheswari VU, Aluvalu R, Kantipudi MP, Chennam KK, Kotecha K, Saini JR. Driver drowsiness prediction based on multiple aspects using image processing techniques. IEEE Access. 2022;10:54980–90.

    Article  Google Scholar 

  38. Mase JM, Agrawal U, Pekaslan D, Mesgarpour M, Chapman P, Torres MT, Figueredo GP. Capturing uncertainty in heavy goods vehicles driving behaviour. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), IEEE. 2020; p. 1–7.

  39. Mbouna RO, Kong GS, Chun M-G. Visual analysis of eye state and head pose for driver alertness monitoring. IEEE Trans Intell Transport Syst. 2013;14(3):1462–9.

    Article  Google Scholar 

  40. Mittal S, Gupta S, Shamma A, Sahni I, Thakur N, et al. Driver drowsiness detection using machine learning and image processing. In: 2021 9th International Conference on reliability, infocom technologies and optimization (Trends and Future Directions)(ICRITO), 2021; pp. 1–8. IEEE.

  41. Nagrath P, Jain R, Madan A, Arora R, Kataria P, Hemanth J. Ssdmnv2: a real time dnn-based face mask detection system using single shot multibox detector and mobilenetv2. Sustain Cities Soc. 2021;66: 102692.

    Article  Google Scholar 

  42. Nair S, Gohel JV. A review on contemporary hole transport materials for perovskite solar cells. Nanotechnol Energy Environ Eng. 2020; p. 145–68.

  43. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. J Big Data. 2015;2(1):1–21.

    Article  Google Scholar 

  44. Nakisa B, Rastgoo MN, Tjondronegoro D, Chandran V. Evolutionary computation algorithms for feature selection of eeg-based emotion recognition using mobile sensors. Expert Syst Appl. 2018;93:143–55.

    Article  Google Scholar 

  45. Nasri I, Karrouchi M, Snoussi H, Kassmi K, Messaoudi A. Detection and prediction of driver drowsiness for the prevention of road accidents using deep neural networks techniques. In: WITS 2020: Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems, 2022; pp. 57–64. Springer.

  46. Paul A, Pramanik R, Malakar S, Sarkar R. An ensemble of deep transfer learning models for handwritten music symbol recognition. Neural Comput Appl. 2022;34(13):10409–27.

    Article  Google Scholar 

  47. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC, Iyengar SS. A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR). 2018;51(5):1–36.

    Article  Google Scholar 

  48. RG, Galib M, AV. A realistic dataset and baseline temporal model for early drowsiness detection. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition workshops, 2019. http://www.cv-foundation.org/.

  49. Rastgoo MN, Nakisa B, Rakotonirainy A, Chandran V, Tjondronegoro D. A critical review of proactive detection of driver stress levels based on multimodal measurements. ACM Comput Surv (CSUR). 2018;51(5):1–35.

    Article  Google Scholar 

  50. Reddy JSH, Chandana T, Navya JL, Rachapudi V. Effective model of detecting driver’s drowsiness. In: 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2023; pp. 1405–1408. IEEE.

  51. Riemann D, Baum E, Cohrs S, Crönlein T, Hajak G, Hertenstein E, Klose P, Langhorst J, Mayer G, Nissen C, et al. S3-leitlinie nicht erholsamer schlaf/schlafstörungen. Somnologie. 2017;21(1):2–44.

    Article  Google Scholar 

  52. Shipeng F, Lu L, Hu L, Zhen L, Wei W, Anand P, Gwanggil J, Xiaomin Y. A real-time super-resolution method based on convolutional neural networks. Circ Syst Signal Process. 2020;39(2):805-817.

    Article  Google Scholar 

  53. Saini V, Saini R. Driver drowsiness detection system and techniques: a review. Intl J Comput Sci Inform Technol. 2014;5(3):4245–9.

    Google Scholar 

  54. Sathish Kumar L, Routray S, Prabu A, Rajasoundaran S, Pandimurugan V, Mukherjee A, Al-Numay MS. Artificial intelligence based health indicator extraction and disease symptoms identification using medical hypothesis models. Clust Comput. 2023;26(4):2325–37.

    Article  Google Scholar 

  55. Shahverdy M, Fathy M, Berangi R, Sabokrou M. Driver behavior detection and classification using deep convolutional neural networks. Expert Syst Appl. 2020;149: 113240.

    Article  Google Scholar 

  56. Shahverdy M, Fathy M, Berangi R, Sabokrou M. Driver behaviour detection using 1d convolutional neural networks. 2021. https://doi.org/10.1049/ell2.12076.

  57. Shamrat FJM, Azam S, Karim A, Ahmed K, Bui FM, De Boer F. High-precision multiclass classification of lung disease through customized mobilenetv2 from chest x-ray images. Comput Biol Med. 2023;p. 106646.

  58. Singh J. Learning based driver drowsiness detection model pp. 698–701 (2020). https://doi.org/10.1109/ICISS49785.2020.9316131

  59. Tamanani R, Muresan R, Al-Dweik A. Estimation of driver vigilance status using real-time facial expression and deep learning. IEEE Sens Lett. 2021;5(5):1–4.

    Article  Google Scholar 

  60. Tumuluru P, Kumar SS, Sunanda N, Koduri JS, Ayyappa T, Balasankar K. Sddd: stacked ensemble model for driver drowsiness detection. In: 2023 5th International Conference on smart systems and inventive technology (ICSSIT), 2023; pp. 1374–1380. IEEE.

  61. Xie Y, Li P, Nedjah N, Gupta BB, Taniar D, Zhang J. Privacy protection framework for face recognition in edge-based internet of things. Clust Comput. 2023;26(5):3017–35.

    Article  Google Scholar 

  62. Dong Y, Hu Z, Uchimura K, Murayama N. Driver inattention monitoring system for intelligent vehicles: a review. IEEE Trans Intell Transp Syst. 2010;12(2):596–614.

    Google Scholar 

  63. YT, MM, MY, HH. Sleepiness detection system based on facial expressions. In: IECON 2019-45th Annual Conference of the IEEE Industrial electronics society, 2019; vol 1, pp 6934-6939. IEEE. https://doi.org/10.1109/IECON.2019.8927215.

  64. Yassine N. Artificial intelligence techniques for driver fatigue detection. Ph.D. thesis, Oxford Brookes University. 2020.

  65. Zhu Y, Newsam S. Densenet for dense flow 2017; pp. 790–794. 1https://doi.org/10.1109/ICIP.2017.8296389

  66. Ziryawulawo A. A machine learning based driver monitoring system for the kayoola evs. Ph.D. thesis. 2021.

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhineet Ranjan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Sharma, S., Mate, P. et al. An Efficient Deep Learning Technique for Driver Drowsiness Detection. SN COMPUT. SCI. 5, 988 (2024). https://doi.org/10.1007/s42979-024-03316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03316-z

Keywords

Navigation