Skip to main content

Advertisement

Log in

In-silico screening of phytocomponents from Phlogacanthus thyrsiformis and Tinospora cordifolia for antiviral efficacy against duck enteritis virus

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The search for effective treatment against Duck Enteritis Virus (DEV) remains a significant challenge in veterinary medicine. In this study, a total of 74 and 60 compounds identified  from GC–MS analysis of alcoholic extracts of Phlogacanthus thyrsiformis and Tinospora cordifolia respectively were screened for their binding affinity and interactions with selected DEV proteins to find potential viral inhibitors. The 3D structure of six viral proteins namely pUL54, thymidine kinase, DNA polymerase, membrane glycoproteins gC and gE, and pUL48, were modelled by Modeller 9v9. Docking was performed using Autodock Vina. While many compounds demonstrated favourable binding affinity, this study identified some compounds with better binding affinity against one or multiple targets. Eudesma-4(15),7-dien-1-beta–ol, and Cholane-5,20(22)-diene-3b-phenoxy from P.thyrsiformis revealed a docking score of − 10.5 kcal/mol against thymidine kinase. Among phytocomponents showing affinity to multiple viral targets, 3-Oxatricyclo[20.8.0.0(7,16)]triaconta-1(22),7(16),9,13,23,29-hexaene displayed better binding energy ranging from − 9.3 to − 9.7 kcal/mol against five target proteins. beta-Amyrone from P. thyrsiformis showed a docking score of − 8.6 kcal/mol, 9.7 kcal/mol and − 9.3 kcal/mol with DNA polymerase, pUL48 and pUL54 respectively, while Urs-12-en-28-al from T.cordifolia, showed promising docking scores of -9.7 kcal/mol, − 9.2 kcal/mol, − 9.5 kcal/mol for DNA polymerase, pUL48 and pUL54 respectively. The identification of potential DEV inhibitors through computational analysis paves the way for future experimental validations to unravel the intricate dynamics of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The dataset produced and scrutinized in this study are accessible from the corresponding author upon reasonable request.

References

  1. Wu L, Wang M, Cheng A, Tian B, Huang J, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Zhao X. Duck plague virus tegument protein vp22 plays a key role in the secondary envelopment and cell-to-cell spread. Vet Res. 2023;54(1):1–12.

    Article  Google Scholar 

  2. International Committee on Taxonomy of Viruses (ICTV) International Committee on Taxonomy of Viruses. 2014. http://ictvonline.org/virustaxonomy.asp.

  3. Montali RJ, Bush M, Greenwell GA. An epornitic of duck viral enteritis in a zoological park. J Am Vet Med Assoc. 1976;169:954–8.

    Google Scholar 

  4. Davison S, Converse KA, Hamir AN, Eckorage RJ. Duck viral enteritis in domestic Muscovy ducks in Pennsylvania. Avian Dis. 1993;37:1142–6.

    Article  Google Scholar 

  5. Goldberg DR, Yuill TM, Burgess EC. Mortality from duck plague virus in immunosuppressed adult mallard ducks. J Wildl Dis. 1990;26:299–306.

    Article  Google Scholar 

  6. Snowdon HMC, Lecture,. New virus diseases: visible evolution. Aust Vet J. 1993;1993(70):433–6.

    Google Scholar 

  7. Shawky S, Schat KA. Latency sites and reactivation of duck enteritis virus. Avian Dis. 2002;46:308–13.

    Article  Google Scholar 

  8. De Clercq E. Strategies in the design of antiviral drugs. Nat Rev Drug Discovery. 2001;1(1):13–25. https://doi.org/10.1038/nrd703.

    Article  Google Scholar 

  9. Wu Y, Zhang S, Li Y, Pan C, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Establishment and application of a PCR assay for the identification of virulent and attenuated duck plague virus DNA in cotton swabs. Poult Sci. 2023. https://doi.org/10.1016/j.psj.2023.102555.

    Article  Google Scholar 

  10. Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, Palanivelu M, Shabbir MZ, Malik YS, Singh RK. Duck virus enteritis (duck plague): a comprehensive update. Theveterinaryquarterly. 2017;37(1):57–80. https://doi.org/10.1080/01652176.2017.1298885.

    Article  Google Scholar 

  11. Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharmac Technol Res. 2012;3(4):200–1.

    Article  Google Scholar 

  12. Katiyar C, Gupta A, Kanjilal S, Katiyar S. Drug discovery from plant sources: an integrated approach. Ayu. 2012;33(1):10.

    Article  Google Scholar 

  13. Najmi A, Javed SA, Al BM, Alhazmi HA. Modern approaches in the discovery and development of Plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022;27(2):349.

    Article  Google Scholar 

  14. Singh S, Singh DB, Singh S, Shukla R, Ramteke PW, Misra K. Exploring medicinal plant legacy for drug discovery in post-genomic era. Proc Nat Acad Sci Ind Sect B Biol Sci. 2019;89:1141–51.

    Article  Google Scholar 

  15. Mishra SB, Mukerjee A, Singh S (2021) Global approach for drug discovery and development from indian traditional medicine. Evid Based Valid Trad Med A Compreh Appr 3–27

  16. Xu J, Song X, Yin ZQ, Cheng AC, Jia RY, Deng YX, Ye KC, Shi CF, Lv C, Zhang W. Antiviral activity and mode of action of extracts from neem seed kernel against duck plague virus in vitro1. Poult Sci. 2012;91(11):2802–7. https://doi.org/10.3382/ps.2012-02468.

    Article  Google Scholar 

  17. Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002;79(2):273–8. https://doi.org/10.1016/s0378-8741(01)00395-6.

    Article  Google Scholar 

  18. Faccin-Galhardi LC, Yamamoto KA, Ray S, Ray B, Linhares REC, Nozawa C. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J Ethnopharmacol. 2012;142(1):86–90.

    Article  Google Scholar 

  19. Harazem R, Rahman SAE, Kenawy AE. Evaluation of antiviral activity of allium cepa and allium sativum extracts against newcastle disease virus. AJVS. 2019;61(1):108–18. https://doi.org/10.5455/ajvs.29663.

    Article  Google Scholar 

  20. Abiri R, Abdul-Hamid H, Sytar O, Abiri R, de Almeida B, Sharma SK, Bulgakov VP, Arroo RR, Malik S. A brief overview of potential treatments for viral diseases using natural plant compounds: the case of SARS-CoV. Molecules. 2021;26(13):3868.

    Article  Google Scholar 

  21. Xu J, Yin Z, Li L, Cheng A, Jia R, Song X, Lu H, Dai S, Lv C, Liang X, He C, Zhao L, Su G, Ye G, Shi F. Inhibitory effect of resveratrol against duck enteritis virus in vitro. PLoS ONE. 2013;8(6):e65213. https://doi.org/10.1371/journal.pone.0065213.

    Article  Google Scholar 

  22. Zhao X, Xu J, Song X, Jia R, Yin Z, Cheng A, Jia R, Zou Y, Li L, Yin L, Yue G, Lv C, Jing B. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antiviral Res. 2016;130:93–100. https://doi.org/10.1016/j.antiviral.2016.03.014.

    Article  Google Scholar 

  23. Estari M, Venkanna L, Reddy AS. In-vitro anti-HIV activity of crude extracts from T.cordifolia. BMC Infect Dis. 2012. https://doi.org/10.1186/1471-2334-12-S1-P10.

    Article  Google Scholar 

  24. Pruthvish R, Gopinatha SM. Antiviral prospective of Tinospora cordifolia on HSV-1. Int J Curr Microbiol Appl Sci. 2018;7(1):3617–24.

    Article  Google Scholar 

  25. Sharma V, Kaushik S, Pandit P, et al. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol. 2019;103:881–91. https://doi.org/10.1007/s00253-018-9488-1.

    Article  Google Scholar 

  26. Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants: Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi): a molecular docking study. J Biomol Struct Dyn. 2021;40(1):190–203. https://doi.org/10.1080/07391102.2020.1810778.

    Article  Google Scholar 

  27. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in-silico study for drug development. J Biomol Struct Dyn. 2021;39(16):6306–16. https://doi.org/10.1080/07391102.2020.1796811.

    Article  Google Scholar 

  28. Gogoi PK, Begum T, Borthakur B, et al. Green synthesis of silver nanoparticles using leaf extract of P thyrsiformis and evaluation of their antibacterial and catalytic activity. Natl Acad Sci Lett. 2015;38:231–4. https://doi.org/10.1007/s40009-014-0328-2.

    Article  Google Scholar 

  29. Kumar A, Bidyapani T, Singh D, Sharma NR, Mohan A. Study of phytochemical compositions of leaves extracts of Phlogacanthus thyrsiformis, its antibacterial and silver nanoparticle derived cell cytotoxicity on HeLa cell line. J Pharm Res. 2017;11(12):1513–7.

    Google Scholar 

  30. Gunjal A, Patwardhan R, Jedhe A, Choudhary V. Plasmid-curing, antimicrobial, antioxidant properties and phytochemical analysis of medicinal plants from North East India. Int J phar Bio Sci. 2021;11(1):100–9.

    Google Scholar 

  31. Yu D, Wang L, Wang Y. Recent advances in application of computer-aided drug design in anti-influenza a virus drug discovery. Int J Mol Sci. 2022;23(9):4738.

    Article  Google Scholar 

  32. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–12.

    Article  Google Scholar 

  33. Fiser A, Šali A. Modeller: generation and refinement of homology-based protein structure models. Academic Press. Methods Enzymol. 2003;374:461–91.

    Article  Google Scholar 

  34. Volkamer A, Kuhn D, Rippmann F, Rarey,. MDoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074–5.

    Article  Google Scholar 

  35. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    Article  Google Scholar 

  36. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):202–13.

    Article  Google Scholar 

  37. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3(1):1–14.

    Article  Google Scholar 

  38. Viegas DJ, Edwards TG, Bloom DC, Abreu PA. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res. 2019;172:04621.

    Article  Google Scholar 

  39. Ansari MY, Ahsan MJ, Yasmin S, Sahoo GC, Saini V, Das P. In silico identification of novel antagonists and binding insights by structural and functional analyses of guanylate kinase of Leishmania donovani and interaction with inhibitors. Gene Reports. 2017;8:134–43.

    Article  Google Scholar 

  40. Li Y, Huang B, Ma X, Wu J, Li F, Ai W, Song M, Yang H. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391(2):151–61.

    Article  Google Scholar 

  41. Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Chen X. Duck enteritis virus UL54 is an IE protein primarily located in the nucleus. Virol J. 2015;12:1–8.

    Article  Google Scholar 

  42. Liu S, Chen S, Li H, Kong X. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV). Gene. 2007;401(1–2):88–96.

    Article  Google Scholar 

  43. Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941. https://doi.org/10.3389/fmicb.2019.00941.

    Article  Google Scholar 

  44. Liu T, Wang M, Cheng A, et al. Duck plague virus gE serves essential functions during the virion final envelopment through influence capsids budding into the cytoplasmic vesicles. Sci Rep. 2020;10:5658. https://doi.org/10.1038/s41598-020-62604-9.

    Article  Google Scholar 

  45. Hua Y, Liu X, Zou Z, Jin M. Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity. Virus Res. 2013;174:1–7.

    Article  Google Scholar 

  46. Zhang Y, Chen A, Wang M. Research advances in VP16 of the herpes virus. Bing Du Xue Bao. 2016;32:817–24.

    Google Scholar 

  47. Zhou T, Wang M, Ruan P, Fan D, Cheng A, Zhang W, Tian B, Yang Q, Wu Y, Zhang S, Ou X. Research note: duck plague virus pUL48 is a late protein that plays an important role in viral replication. Poult Sci. 2023;102(2): 102358.

    Article  Google Scholar 

  48. Garcia DJ, Escalona Arranz JC, Jaen Batista DDG, Monzote FL, De La Vega Acosta J, Bidart de Macedo M, Cos P. Antileishmanial potentialities of Croton linearis leaf essential oil. Nat Prod Commun. 2018;13(5):629–34.

    Google Scholar 

  49. Mathur S. Isolation and characterization of bioactive components in some medicinally potent plant. Adva Pharmacol Toxicol. 2022;23:1.

    Google Scholar 

  50. Srinivasan K, Kumaravel S. Unraveling the potential phytochemical compounds of Gymnema sylvestre through GC-MS study. Int J Pharm Pharm Sci. 2016;8(1):1–4.

    Google Scholar 

  51. Idriss H, Siddig B, González-Maldonado P, Elkhair HM, Alakhras AI, Abdallah EM, Elzupir AO, et al. Inhibitory activity of Saussurea costus extract against bacteria, Candida, Herpes, and SARS-CoV-2. Plants. 2023;12(3):460.

    Article  Google Scholar 

  52. Grover M, Behl T, Virmani T. Phytochemical screening, antioxidant assay and cytotoxic profile for different extracts of Chrysopogon zizanioides roots. Chem Biodiv. 2021;18:8. https://doi.org/10.1002/cbdv.202100012.

    Article  Google Scholar 

  53. Salwa F (2005) Phytochemical and pharmacological studies of Ficus benjamina L. leaves 19–36

  54. Xikui L, Zhongrong Li, Minghua Q, Ruilin N. Triterpene constituents from Balanophora indica. Acta Bot Yunnanica. 1998;20(3):369–73.

    Google Scholar 

  55. Elfadil H, Fahal A, Kloezen W, Ahmed EM. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the Eumycetoma Major Causative Agent. PLoS Negl Trop Dis. 2015. https://doi.org/10.1371/journal.pntd.0003488.

    Article  Google Scholar 

  56. Bourjot M, Leyssen P, Eydoux C, Guillemot JC, Canard B, Rasoanaivo P, Litaudon M. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia. 2012;83(6):1076–80.

    Article  Google Scholar 

  57. Al-Abd NM, Mohamed NZ, Mansor M, Azhar F, Hasan MS, Kassim M. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complem Altern M. 2015;15:385.

    Article  Google Scholar 

  58. Gu H, Foong SY, Lam SS, Yue X, Yang J, Peng W. Characterization and potential utilization of extracts and pyrolyzates from Jasminum nudiflorum Lindl Bark. J Analyt Appl Pyrol. 2021. https://doi.org/10.1016/j.jaap.2021.105092.

    Article  Google Scholar 

  59. Gautam V, Sharma A, Arora S, Bhardwaj R. Bioactive compounds in the different extracts of flowers of Rhododendron arboreum Sm. J Chem Pharm Res. 2016;8(5):439–44.

    Google Scholar 

  60. Rakib A, Paul A, Chy MDNU, Sami SA, Baral SK, Majumder M, Tareq AM, et al. Biochemical and computational approach of selected phytocompounds from tinospora crispa in the management of COVID-19. Molecules. 2020;25(17):3936.

    Article  Google Scholar 

  61. Lotfi A, Kottb M, Elsayed A, Shafik H. Antifungal activity of some Mediterranean seaweed against Macrophomina phaseolina and Fusarium oxysporum in Vitro. Alf J Basic Appl Sci. 2021;2(1):81–96.

    Google Scholar 

  62. Thanigaivel S, Vidhya HS, Vijayakumar S, Mukherjee A, Chandrasekaran N, Thomas J. Differential solvent extraction of two seaweeds and their efficacy in controlling Aeromonas salmonicida infection in Oreochromis mossambicus: a novel therapeutic approach. Aquaculture. 2015;443:56–64. https://doi.org/10.1016/j.aquaculture.2015.03.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Cotton University, Guwahati, Assam, India; Assam Agricultural University, Khanapara Campus, Guwahati, Assam, India and Vivekanandha College of Arts and Science, Elayampalayam, Tiruchengode, Tamilnadu, India for supporting the research work by providing the facilities.

Funding

No funding received for this research.

Author information

Authors and Affiliations

Authors

Contributions

This research was a collective effort, brought to fruition through the dedicated collaboration and contributions of all the authors involved. Their collective expertise and efforts have made this research possible.

Corresponding author

Correspondence to Uma Dutta.

Ethics declarations

Conflict of Interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parameshwari, K., Dutta, U., Barman, N.N. et al. In-silico screening of phytocomponents from Phlogacanthus thyrsiformis and Tinospora cordifolia for antiviral efficacy against duck enteritis virus. SN COMPUT. SCI. 5, 1011 (2024). https://doi.org/10.1007/s42979-024-03335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03335-w

Keywords

Navigation