Skip to main content
Log in

A New Optimization Model for Solving Center-Based Clustering Problem

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we propose a new optimization model for searching the optimal center of a one-dimensional set. Unlike the existing one, the developed optimization model does not involve any parameters and exponential function. The proposed model aims to decrease the overflow effect experienced by the existing exponential-based optimization model in a computational phase. The numerical simulation results in finding the optimal center of the randomly obtained data set reveal that our model is dependable. To test the superiority of the proposed model, a comparison is conducted with the existing one. The comparison results show that our model is more efficient based on three indicators, namely the smaller number of iterations, function evaluations, and faster running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article.

References

  1. Al-Janabee O, Al-Sarray B. Review of clustering for gene expression data. AIP Conf Proc. 2023;2475(1): 070019. https://doi.org/10.1063/5.0102840.

    Article  Google Scholar 

  2. Benabdellah AC, Benghabrit A, Bouhaddou I. A survey of clustering algorithms for an industrial context. Procedia Comput Sci. 2019;148:291–302.

    Article  Google Scholar 

  3. BPS-Indonesia. Produksi Padi Tahun 2022. 2022. https://searchengine.web.bps.go.id/search?mfd=all&q=produksi+padi &content=table &page=1 &title=0 &from=2022 &to=all &sort=relevansi. Accessed 8 Mar 2024.

  4. Chattopadhyay A, Hassanzadeh P, Pasha S. Predicting clustered weather patterns: a test case for applications of convolutional neural networks to spatio-temporal climate data. Sci Rep. 2020;10(1):1317.

    Article  Google Scholar 

  5. Ezugwu A, Ikotun A, Oyelade O, et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell. 2022;110:10474. https://doi.org/10.1016/j.engappai.2022.104743.

    Article  Google Scholar 

  6. Ezugwu AE. Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Appl Sci. 2020;2(2):273.

    Article  Google Scholar 

  7. Fahad A, Alshatri N, Tari Z, et al. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput. 2014;2(3):267–79.

    Article  Google Scholar 

  8. Fahim AM, Salem AM, Torkey FA, et al. An efficient enhanced k-means clustering algorithm. J Zhejiang Univ Sci A. 2006;7:1626–33. https://doi.org/10.1631/jzus.2006.A1626.

    Article  Google Scholar 

  9. Farcomeni A. Snipping for robust k-means clustering under component-wise contamination. Stat Comput. 2014;24(6):907–19. https://doi.org/10.1007/s11222-013-9410-8.

    Article  MathSciNet  Google Scholar 

  10. Gajawada S, Toshniwal D. Projected clustering using particle swarm optimization. Procedia Technol. 2012;4:360–4. https://doi.org/10.1016/j.protcy.2012.05.055.

    Article  Google Scholar 

  11. Geng X, Mu Y, Mao S, et al. An improved k-means algorithm based on fuzzy metrics. IEEE Access. 2020;8:217416–24. https://doi.org/10.1109/ACCESS.2020.3040745.

    Article  Google Scholar 

  12. Grimmer J, Roberts ME, Stewart BM. Machine learning for social science: an agnostic approach. Annu Rev Polit Sci. 2021;24:395–419.

    Article  Google Scholar 

  13. Honda K, Notsu A, Ichihashi H. Fuzzy PCA-guided robust k-means clustering. IEEE Trans Fuzzy Syst. 2009;18(1):67–79. https://doi.org/10.1109/TFUZZ.2009.2036603.

    Article  Google Scholar 

  14. Hosseinalipour A, Ghanbarzadeh R. A novel metaheuristic optimisation approach for text sentiment analysis. Int J Mach Learn Cybern. 2023;14(3):889–909.

    Article  Google Scholar 

  15. Ichikawa K, Morishita S. A simple but powerful heuristic method for accelerating k-means clustering of large-scale data in life science. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(4):681–92. https://doi.org/10.1109/TCBB.2014.2306200.

    Article  Google Scholar 

  16. Ikotun AM, Ezugwu AE, Abualigah L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci. 2023;622:178–210. https://doi.org/10.1016/j.ins.2022.11.139.

    Article  Google Scholar 

  17. José-García A, Gómez-Flores W. Automatic clustering using nature-inspired metaheuristics: a survey. Appl Soft Comput. 2016;41:192–213.

    Article  Google Scholar 

  18. Kogan J. Introduction to clustering large and high-dimensional data. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  19. Kou G, Peng Y, Wang G. Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci. 2014;275:1–12. https://doi.org/10.1016/j.ins.2014.02.137.

    Article  Google Scholar 

  20. Kowsari K, Jafari MK, Heidarysafa M, et al. Text classification algorithms: a survey. Information. 2019;10(4):1–6. https://doi.org/10.3390/info10040150.

    Article  Google Scholar 

  21. Lai JZC, Huang TJ, Liaw YC. A fast k-means clustering algorithm using cluster center displacement. Pattern Recognit. 2009;42(11):2551–6. https://doi.org/10.1016/j.patcog.2009.02.014.

    Article  Google Scholar 

  22. Lee SS, Lin JC. An accelerated k-means clustering algorithm using selection and erasure rules. J Zhejiang Univ Sci C. 2012;13(10):761–8. https://doi.org/10.1631/jzus.C1200078.

    Article  Google Scholar 

  23. Lee SS, Lin JC. Fast k-means clustering using deletion by center displacement and norms product (CDNP). Pattern Recognit Image Anal. 2013;23(2):199–206. https://doi.org/10.1134/S1054661813020144.

    Article  Google Scholar 

  24. Lei J, Jiang T, Wu K, et al. Robust k-means algorithm with automatically splitting and merging clusters and its applications for surveillance data. Multimed Tools Appl. 2016;75(19):12043–59. https://doi.org/10.1007/s11042-016-3322-5.

    Article  Google Scholar 

  25. Li T, Kou G, Peng Y, et al. An integrated cluster detection, optimization, and interpretation approach for financial data. IEEE Trans Cybern. 2021;52(12):13848–61.

    Article  Google Scholar 

  26. Lin H, Gao Y, Wang X, et al. A filled function which has the same local minimizer of the objective function. Optim Lett. 2019;13(4):761–76. https://doi.org/10.1007/s11590-018-1275-5.

    Article  MathSciNet  Google Scholar 

  27. Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000;33(9):1455–65. https://doi.org/10.1016/S0031-3203(99)00137-5.

    Article  Google Scholar 

  28. Mishulina OA, Sukonkin IN. Genetic algorithm for data clustering based on SV criterion. Opt Memory Neural Netw. 2015;24(2):82–92. https://doi.org/10.3103/S1060992X15020046.

    Article  Google Scholar 

  29. Omran M, Engelbrecht AP, Salman A. Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell. 2005;19(3):297–321. https://doi.org/10.1142/S0218001405004083.

    Article  Google Scholar 

  30. Petegrosso R, Li Z, Kuang R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform. 2019;21(4):1209–23. https://doi.org/10.1093/bib/bbz063.

    Article  Google Scholar 

  31. Sabo K, Scotovski R, Vazler I. One-dimensional center-based l1-clustering method. Optim Lett. 2013;7:5–22. https://doi.org/10.1007/s11590-011-0389-9.

    Article  MathSciNet  Google Scholar 

  32. Sajjad M, Kwon S, et al. Clustering-based speech emotion recognition by incorporating learned features and deep BiLSTM. IEEE Access. 2020;8:79861–75.

    Article  Google Scholar 

  33. Scitovski R. A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set. J Glol Optim. 2017;68(4):713–27. https://doi.org/10.1007/s10898-017-0510-4.

    Article  MathSciNet  Google Scholar 

  34. Selim SZ, Alsultan K. A simulated annealing algorithm for the clustering problem. Pattern Recognit. 1991;24(10):1003–8. https://doi.org/10.1016/0031-3203(91)90097-O.

    Article  MathSciNet  Google Scholar 

  35. Teboulle M. A unified continuous optimization framework for center-based clustering methods. J Mach Learn Res. 2007;8:65–102.

    MathSciNet  Google Scholar 

  36. Vincent T, Kawahara K, Antonov V, et al. Data cluster analysis and machine learning for classification of twisted bilayer graphene. Carbon. 2023;201:141–9. https://doi.org/10.1016/j.carbon.2022.09.021.

    Article  Google Scholar 

  37. Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2:165–93.

    Article  Google Scholar 

  38. Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78.

    Article  Google Scholar 

  39. Zhao F, Wang C, Liu H. Differential evolution-based transfer rough clustering algorithm. Complex Intell Syst. 2023. https://doi.org/10.1007/s40747-023-00987-8.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Education, Culture, Research and Technology, Indonesia, through research grants 059/LL6/PB/AL.04/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atina Ahdika.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiya, R., Ahdika, A., Khomsah, S. et al. A New Optimization Model for Solving Center-Based Clustering Problem. SN COMPUT. SCI. 5, 1116 (2024). https://doi.org/10.1007/s42979-024-03444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03444-6

Keywords

Mathematics Subject Classification

Navigation