Abstract
In this paper, we propose a new optimization model for searching the optimal center of a one-dimensional set. Unlike the existing one, the developed optimization model does not involve any parameters and exponential function. The proposed model aims to decrease the overflow effect experienced by the existing exponential-based optimization model in a computational phase. The numerical simulation results in finding the optimal center of the randomly obtained data set reveal that our model is dependable. To test the superiority of the proposed model, a comparison is conducted with the existing one. The comparison results show that our model is more efficient based on three indicators, namely the smaller number of iterations, function evaluations, and faster running time.







Similar content being viewed by others
Data availability
Data sharing not applicable to this article.
References
Al-Janabee O, Al-Sarray B. Review of clustering for gene expression data. AIP Conf Proc. 2023;2475(1): 070019. https://doi.org/10.1063/5.0102840.
Benabdellah AC, Benghabrit A, Bouhaddou I. A survey of clustering algorithms for an industrial context. Procedia Comput Sci. 2019;148:291–302.
BPS-Indonesia. Produksi Padi Tahun 2022. 2022. https://searchengine.web.bps.go.id/search?mfd=all&q=produksi+padi &content=table &page=1 &title=0 &from=2022 &to=all &sort=relevansi. Accessed 8 Mar 2024.
Chattopadhyay A, Hassanzadeh P, Pasha S. Predicting clustered weather patterns: a test case for applications of convolutional neural networks to spatio-temporal climate data. Sci Rep. 2020;10(1):1317.
Ezugwu A, Ikotun A, Oyelade O, et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell. 2022;110:10474. https://doi.org/10.1016/j.engappai.2022.104743.
Ezugwu AE. Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study. SN Appl Sci. 2020;2(2):273.
Fahad A, Alshatri N, Tari Z, et al. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput. 2014;2(3):267–79.
Fahim AM, Salem AM, Torkey FA, et al. An efficient enhanced k-means clustering algorithm. J Zhejiang Univ Sci A. 2006;7:1626–33. https://doi.org/10.1631/jzus.2006.A1626.
Farcomeni A. Snipping for robust k-means clustering under component-wise contamination. Stat Comput. 2014;24(6):907–19. https://doi.org/10.1007/s11222-013-9410-8.
Gajawada S, Toshniwal D. Projected clustering using particle swarm optimization. Procedia Technol. 2012;4:360–4. https://doi.org/10.1016/j.protcy.2012.05.055.
Geng X, Mu Y, Mao S, et al. An improved k-means algorithm based on fuzzy metrics. IEEE Access. 2020;8:217416–24. https://doi.org/10.1109/ACCESS.2020.3040745.
Grimmer J, Roberts ME, Stewart BM. Machine learning for social science: an agnostic approach. Annu Rev Polit Sci. 2021;24:395–419.
Honda K, Notsu A, Ichihashi H. Fuzzy PCA-guided robust k-means clustering. IEEE Trans Fuzzy Syst. 2009;18(1):67–79. https://doi.org/10.1109/TFUZZ.2009.2036603.
Hosseinalipour A, Ghanbarzadeh R. A novel metaheuristic optimisation approach for text sentiment analysis. Int J Mach Learn Cybern. 2023;14(3):889–909.
Ichikawa K, Morishita S. A simple but powerful heuristic method for accelerating k-means clustering of large-scale data in life science. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(4):681–92. https://doi.org/10.1109/TCBB.2014.2306200.
Ikotun AM, Ezugwu AE, Abualigah L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data. Inf Sci. 2023;622:178–210. https://doi.org/10.1016/j.ins.2022.11.139.
José-García A, Gómez-Flores W. Automatic clustering using nature-inspired metaheuristics: a survey. Appl Soft Comput. 2016;41:192–213.
Kogan J. Introduction to clustering large and high-dimensional data. Cambridge: Cambridge University Press; 2007.
Kou G, Peng Y, Wang G. Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci. 2014;275:1–12. https://doi.org/10.1016/j.ins.2014.02.137.
Kowsari K, Jafari MK, Heidarysafa M, et al. Text classification algorithms: a survey. Information. 2019;10(4):1–6. https://doi.org/10.3390/info10040150.
Lai JZC, Huang TJ, Liaw YC. A fast k-means clustering algorithm using cluster center displacement. Pattern Recognit. 2009;42(11):2551–6. https://doi.org/10.1016/j.patcog.2009.02.014.
Lee SS, Lin JC. An accelerated k-means clustering algorithm using selection and erasure rules. J Zhejiang Univ Sci C. 2012;13(10):761–8. https://doi.org/10.1631/jzus.C1200078.
Lee SS, Lin JC. Fast k-means clustering using deletion by center displacement and norms product (CDNP). Pattern Recognit Image Anal. 2013;23(2):199–206. https://doi.org/10.1134/S1054661813020144.
Lei J, Jiang T, Wu K, et al. Robust k-means algorithm with automatically splitting and merging clusters and its applications for surveillance data. Multimed Tools Appl. 2016;75(19):12043–59. https://doi.org/10.1007/s11042-016-3322-5.
Li T, Kou G, Peng Y, et al. An integrated cluster detection, optimization, and interpretation approach for financial data. IEEE Trans Cybern. 2021;52(12):13848–61.
Lin H, Gao Y, Wang X, et al. A filled function which has the same local minimizer of the objective function. Optim Lett. 2019;13(4):761–76. https://doi.org/10.1007/s11590-018-1275-5.
Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000;33(9):1455–65. https://doi.org/10.1016/S0031-3203(99)00137-5.
Mishulina OA, Sukonkin IN. Genetic algorithm for data clustering based on SV criterion. Opt Memory Neural Netw. 2015;24(2):82–92. https://doi.org/10.3103/S1060992X15020046.
Omran M, Engelbrecht AP, Salman A. Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell. 2005;19(3):297–321. https://doi.org/10.1142/S0218001405004083.
Petegrosso R, Li Z, Kuang R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief Bioinform. 2019;21(4):1209–23. https://doi.org/10.1093/bib/bbz063.
Sabo K, Scotovski R, Vazler I. One-dimensional center-based l1-clustering method. Optim Lett. 2013;7:5–22. https://doi.org/10.1007/s11590-011-0389-9.
Sajjad M, Kwon S, et al. Clustering-based speech emotion recognition by incorporating learned features and deep BiLSTM. IEEE Access. 2020;8:79861–75.
Scitovski R. A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set. J Glol Optim. 2017;68(4):713–27. https://doi.org/10.1007/s10898-017-0510-4.
Selim SZ, Alsultan K. A simulated annealing algorithm for the clustering problem. Pattern Recognit. 1991;24(10):1003–8. https://doi.org/10.1016/0031-3203(91)90097-O.
Teboulle M. A unified continuous optimization framework for center-based clustering methods. J Mach Learn Res. 2007;8:65–102.
Vincent T, Kawahara K, Antonov V, et al. Data cluster analysis and machine learning for classification of twisted bilayer graphene. Carbon. 2023;201:141–9. https://doi.org/10.1016/j.carbon.2022.09.021.
Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2:165–93.
Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78.
Zhao F, Wang C, Liu H. Differential evolution-based transfer rough clustering algorithm. Complex Intell Syst. 2023. https://doi.org/10.1007/s40747-023-00987-8.
Acknowledgements
This research was funded by the Ministry of Education, Culture, Research and Technology, Indonesia, through research grants 059/LL6/PB/AL.04/2023.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pandiya, R., Ahdika, A., Khomsah, S. et al. A New Optimization Model for Solving Center-Based Clustering Problem. SN COMPUT. SCI. 5, 1116 (2024). https://doi.org/10.1007/s42979-024-03444-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-024-03444-6