Skip to main content

Advertisement

Log in

Air Quality Monitoring Using Sentinel-5p TROPOMI—A Case Study of Pune City

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

India and Pune city are experiencing infrastructural changes like never before on a more extensive and smaller scale, respectively. However, the infrastructure changes also degrade air quality due to various air pollutants. Additionally, the concentration of air pollutants affects the health of the atmosphere. Traditional ground station-based systems are tedious and challenging to monitor the necessary daily concentrations. Therefore, it is essential to monitor air quality through the latest technologies. In this case, satellite datasets could be the best choice to monitor air pollutants. Thus, the present study finds out the changes in the concentration of air pollutants Carbon Monoxide (CO), Formaldehyde (HCHO), Nitrogen Dioxide (NO2), Ozone (O3), Sodium Dioxide (SO2), Methane (CH4), and Particulate Matter (PM2.5) in the period of 2020 to 2023 using satellite and ground station dataset. The experiments were conducted using Google Earth Engine (GEE) and QGIS 3.34. The concentration of air pollutants swayed from 2020 to 2023, with an increase in 2021. The outcome of the present study could be used in urban planning and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data will be made available upon reasonable request.

References

  1. Ahn DH, Choi T, Kim J, Park SS, Lee YG, Kim SJ, Koo JH. Southern Hemisphere mid-and high-latitudinal AOD, CO, NO 2, and HCHO: spatiotemporal patterns revealed by satellite observations. Prog Earth Planet Sci. 2019;6:1–16.

    Article  Google Scholar 

  2. Aghdam FZ, Hasanlou M, Dehghanijabbarlou M. Quantifying urban air quality through multispectral satellite imagery and Google earth Engine. J Atmos Solar Terr Phys. 2024;261: 106301.

    Article  Google Scholar 

  3. Alvim DS, Chiquetto JB, D’Amelio MTS, Khalid B, Herdies DL, Pendharkar J, Nobre P. Evaluating carbon monoxide and aerosol optical depth simulations from CAM-Chem using satellite observations. Remote Sens. 2021;13(11):2231.

    Article  Google Scholar 

  4. Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, Brisco B. Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J Sel Top Appl Earth Observ Remote Sens. 2020;13:5326–50.

    Article  Google Scholar 

  5. Anand V, Panicker AS, Beig G. Gaseous pollutants over different sites in a metropolitan region (Pune) over India. SN Appl Sci. 2020;2:1–19.

    Article  Google Scholar 

  6. Behera MD, Mudi S, Shome P, Das PK, Kumar S, Joshi A, Sirivella Z. COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data. Geocarto Int. 2022;37(25):8127–47.

    Article  Google Scholar 

  7. Bugdayci I, Ugurlu O, Kunt F. Spatial analysis of SO2, PM10, CO, NO2, and O3 pollutants: the case of Konya Province. Turkey Atmosphere. 2023;14(3):462.

    Article  Google Scholar 

  8. Butz A, Galli A, Hasekamp O, Landgraf J, Tol P, Aben I. TROPOMI aboard Sentinel-5 Precursor: prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sens Environ. 2012;120:267–76.

    Article  Google Scholar 

  9. Central Pollution Control Board (CPCB) https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing. Accessed 02 Jul 2024.

  10. Chandra A, Singh S. An assessment of air quality indicators Sentinel-5P TROPOMI data were used to examine the NO2 SO2 O3 AEROSOL levels in Uttar Pradesh before, after, and during the COVID 19 phase. World J Adv Res Rev. 2023;20(1):324–36.

    Article  Google Scholar 

  11. Domingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res. 2020;187: 109650.

    Article  Google Scholar 

  12. Gautam S. COVID-19: air pollution remains low as people stay at home. Air Qual Atmos Health. 2020;13(7):853–7.

    Article  Google Scholar 

  13. Glencross DA, Ho TR, Camina N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radical Biol Med. 2020;151:56–68.

    Article  Google Scholar 

  14. Gurjar BR, Ravindra K, Nagpure AS. Air pollution trends over Indian megacities and their local-to-global implications. Atmos Environ. 2016;142:475–95.

    Article  Google Scholar 

  15. Haque MN, Sharif MS, Rudra RR, Mahi MM, Uddin MJ, Abd Ellah RG. Analyzing the spatio-temporal directions of air pollutants for the initial wave of COVID-19 epidemic over Bangladesh: application of satellite imageries and Google Earth Engine. Remote Sens Appl Soc Environ. 2022;28: 100862.

    Google Scholar 

  16. Ialongo I, Virta H, Eskes H, Hovila J, Douros J. Comparison of TROPOMI/Sentinel-5 Precursor NO 2 observations with ground-based measurements in Helsinki. Atmospheric measurement techniques. 2020;13(1):205–18.

    Article  Google Scholar 

  17. Jodhani KH, Gupta N, Parmar AD, Bhavsar JD, Patel D, Singh SK, Omar GJ. Unveiling seasonal fluctuations in air quality using Google Earth Engine: a case study for Gujarat, India. Top Catal. 2024;67:961–982. https://doi.org/10.1007/s11244-024-01957-1

    Article  Google Scholar 

  18. Kantakumar LN, Kumar S, Schneider K. What drives urban growth in Pune? A logistic regression and relative importance analysis perspective. Sustain Cities Soc. 2020;60: 102269.

    Article  Google Scholar 

  19. Karim I, Rappenglück B. Impact of Covid-19 lockdown regulations on PM2 5 and trace gases (NO2, SO2, CH4, HCHO, C2H2O2 and O3) over Lahore. Pakistan Atmos Environ. 2023;303:119746.

    Article  Google Scholar 

  20. Kazemi Garajeh M, Laneve G, Rezaei H, Sadeghnejad M, Mohamadzadeh N, Salmani B. Monitoring trends of CO, NO2, SO2, and O3 pollutants using time-series sentinel-5 images based on google earth engine. Pollutants. 2023;3(2):255–79.

    Article  Google Scholar 

  21. Madkour KM. Monitoring the impacts of COVID-19 pandemic on climate change and the environment on Egypt using Sentinel-5P Images, and the Carbon footprint methodology. Egyptian J Remote Sens Sp Sci. 2022;25(1):205–19.

    Google Scholar 

  22. Mamić L, Gašparović M, Kaplan G. Developing PM2.5 and PM10 prediction models on a national and regional scale using open-source remote sensing data. Environ Monit Assess. 2023;195(6):644.

    Article  Google Scholar 

  23. Mampitiya L, Rathnayake N, Leon LP, Mandala V, Azamathulla HM, Shelton S, Rathnayake U. Machine learning techniques to predict the air quality using meteorological data in two urban areas in Sri Lanka. Environments. 2023;10(8):141.

    Article  Google Scholar 

  24. Morillas C, Alvarez S, Pires JC, Garcia AJ, Martinez S. Impact of the implementation of Madrid’s low emission zone on NO2 concentration using Sentinel-5P/TROPOMI data. Atmos Environ. 2024;320: 120326.

    Article  Google Scholar 

  25. Ojha A, Mukherjee S. Evaluation of cost benefit analysis of air pollution impact on health in Pune City.

  26. Okoduwa KA, Amaechi CF. Monitoring and mapping of atmospheric concentration of carbon monoxide, sulphur dioxide, and nitrogen dioxide from 2019–2022 in Benin City, Southern Nigeria. J Appl Sci Environ Manag. 2023;27(12):2715–22.

    Google Scholar 

  27. Phuong DTK, Nhut MC, Tri ND. Air pollution assessment using RS and Gis in Ho Chi Minh City, Viet Nam: a case study of period 2015–2019 for SO2 and NO2. IOP Conf Ser Earth Environ Sci. 2021;652(1):012004.

    Article  Google Scholar 

  28. Rabiei-Dastjerdi H, Mohammadi S, Saber M, Amini S, McArdle G. Spatiotemporal analysis of NO2 production using TROPOMI time-series images and Google Earth Engine in a middle eastern country. Remote Sensing. 2022;14(7):1725.

    Article  Google Scholar 

  29. Sari NM, Kuncoro MNS. Monitoring of CO, NO2 And SO2 levels during the covid-19 pandemic In Iran using remote sensing imagery. Geography, Environment, Sustainability. 2021;14(4):183–91.

    Article  Google Scholar 

  30. Scaria HP, Avanthika P, Jose AM, Alisa JS, Sadasivan A, Varghese GK. Relational Study of PM2. 5 Surface Concentration with MODIS Level 3 AOD Data Over India. In: International Conference on civil engineering trends and challenges for sustainability, 2021, pp. 99–113). Singapore: Springer Nature Singapore.

  31. Sharma S, Zhang M, Gao J, Zhang H, Kota SH. Effect of restricted emissions during COVID-19 on air quality in India. Sci Total Environ. 2020;728: 138878.

    Article  Google Scholar 

  32. Shaw N, Gorai AK. Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration. Environ Dev Sustain. 2020;22:265–79.

    Article  Google Scholar 

  33. Siddiqui A, Halder S, Kannemadugu HBS, Prakriti, Chauhan P. Detecting methane emissions from space over India: analysis using EMIT and Sentinel-5P TROPOMI datasets. J Indian Soc Remote Sens. 2024;52:1901–1921. https://doi.org/10.1007/s12524-024-01925-y

    Article  Google Scholar 

  34. Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J Photogramm Remote Sens. 2020;164:152–70.

    Article  Google Scholar 

  35. Uyar N. Monitoring and analysis of air quality in Zonguldak Province by remote sensing. Türkiye Uzaktan Algılama Dergisi. 2024;6(1):57–67.

    MathSciNet  Google Scholar 

  36. Vîrghileanu M, Săvulescu I, Mihai BA, Nistor C, Dobre R. Nitrogen Dioxide (NO2) Pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens. 2020;12(21):3575.

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Suraj Shah: Concept, methodology, data analytics, original paper draft. Sandeep V. Gaikwad: Supervision, validation, writing & editing. Amol D. Vibhute: Investigation, supervision, validation, writing—review and final editing.

Corresponding author

Correspondence to Sandeep V. Gaikwad.

Ethics declarations

Conflict of Interest

All the authors declare that he/she has no conflict of interest.

Research Involving Human and /or Animals

This research did not involve any human participants or animals.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.V., Gaikwad, S.V. & Vibhute, A.D. Air Quality Monitoring Using Sentinel-5p TROPOMI—A Case Study of Pune City. SN COMPUT. SCI. 5, 1125 (2024). https://doi.org/10.1007/s42979-024-03500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03500-1

Keywords

Navigation