Skip to main content

Advertisement

Log in

Opportunities and Challenges in Deep Compressed Sensing Techniques for Multichannel ECG Data Compression

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Energy consumption involved in wireless transmission poses a major challenge in the implementation of wireless body area networks (WBAN). Compressed sensing (CS)-based multichannel electrocardiogram (ECG) compression is a new paradigm in signal acquisition and reconstruction; a viable alternative for traditional wavelet-based signal reconstruction. However, several challenges must be addressed to achieve efficient and reliable ECG compression in real-world wireless healthcare systems. This paper presents a comprehensive review focused on the evolution of compressed sensing-based energy-efficient single-channel (S-) and multi-channel (M-) ECG data compression techniques. It is observed that the performance of different compression techniques depends on several diagnostic or non-diagnostic test parameters. The present study could be useful for researchers to analyze the state-of-the-art compression techniques in e-healthcare applications. We discuss the challenges associated with implementing ECG compression in wireless healthcare systems, such as signal quality, interoperability, and privacy concerns. We also explore the potential future directions for research in this area, including the development of novel algorithms for compressed sensing-based ECG compression, the integration of artificial intelligence and deep learning techniques, and the exploration of new application areas for wireless healthcare systems. This paper will serve as a good reference for the researcher interested in the area of wireless transmission for WBAN applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All datasets and results which were analysed for this review are avaiable in the public domain.

Notes

  1. http://www.oset.ir.

References

  1. Mamaghanian H, Khaled N, Atienza D, Vandergheynst P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans Biomed Eng. 2011;58(9):2456–66.

    Article  Google Scholar 

  2. Mamaghanian H, Khaled N, Atienza D, Vandergheynst P. Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J Emerg Select Top Circ Syst. 2012;2(3):493–501.

    Article  Google Scholar 

  3. Jalaleddine SM, Hutchens CG, Strattan RD, Coberly WA. Ecg data compression techniques-a unified approach. IEEE Trans Biomed Eng. 1990;37(4):329–43.

    Article  Google Scholar 

  4. Jha CK, Kolekar M. Electrocardiogram data compression techniques for cardiac healthcare systems: a methodological review. Irbm. 2022;43(3):217–28.

    Article  Google Scholar 

  5. Tiwari A, Falk TH. Lossless electrocardiogram signal compression: a review of existing methods. Biomed Signal Process Control. 2019;51:338–46.

    Article  Google Scholar 

  6. Lal B, Gravina R, Spagnolo F, Corsonello P. Compressed sensing approach for physiological signals: a review. IEEE Sens J. 2023;23(6):5513–34.

    Article  Google Scholar 

  7. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput Biol Med. 2020;122: 103801.

    Article  Google Scholar 

  8. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng CK, Stanley H. Physiobank, physiotoolkit, and physionet: components of new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20.

    Article  Google Scholar 

  9. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

    Article  Google Scholar 

  10. Wagner P, Strodthoff N, Bousseljot R-D, Kreiseler D, Lunze FI, Samek W, Schaeffter T. PTB-XL, a large publicly available electrocardiography dataset. Sci Data. 2020;7(1):154.

    Article  Google Scholar 

  11. Moody GB, Muldrow W, Mark RG. A noise stress test for arrhythmia detectors. Comput Cardiol. 1984;11(3):381–4.

    Google Scholar 

  12. Moody GB, Mark RG, Goldberger AL. Evaluation of the TRIM ECG data compressor. Comput Cardiol. 1988;15:167–70.

    Google Scholar 

  13. McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng. 2003;50(3):289–94.

    Article  Google Scholar 

  14. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman L-W, Moody G, Heldt T, Kyaw TH, Moody B, Mark RG. Multiparameter intelligent monitoring in intensive care ii (mimic-ii): a public-access intensive care unit database. Crit Care Med. 2011;39(5):952.

    Article  Google Scholar 

  15. De Moor B, De Gersem P, De Schutter B, Favoreel W. Daisy: A database for identification of systems. J A. 1997;38(4):5.

    Google Scholar 

  16. Behar JA, Bonnemains L, Shulgin V, Oster J, Ostras O, Lakhno I. Noninvasive fetal electrocardiography for the detection of fetal arrhythmias. Prenat Diagn. 2019;39(3):178–87.

    Article  Google Scholar 

  17. Zhang Z, Jung T, Makeig S, Rao BD. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Trans Biomed Eng. 2013;60(2):300–9.

    Article  Google Scholar 

  18. Zigel Y, Cohen A, Katz A. The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans Biomed Eng. 2000;47(11):1422–30.

    Article  Google Scholar 

  19. Manikandan MS, Dandapat S. Wavelet energy based diagnostic distortion measure for ECG. Biomed Signal Process Control. 2007;2:80–96.

    Article  Google Scholar 

  20. Al-Fahoum AS. Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans Inf Technol Biomed. 2006;10(1):182–91.

    Article  Google Scholar 

  21. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv Neural Inform Process Syst. 2017;30:8.

    Google Scholar 

  22. Maaten L, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9:11.

    Google Scholar 

  23. Jolliffe I. Principal component analysis. Encycl Stat Behav Sci. 2005.

  24. McInnes L, Healy J, Saul N, Großberger L. Umap: Uniform manifold approximation and projection. J Open Sour Softw. 2018;3:29.

    Google Scholar 

  25. Deepu CJ, Lian Y. A low complexity lossless compression scheme for wearable ECG sensors. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 449–453 (2015)

  26. Miaou S-G, Yen H-L. Multichannel ECG compression using multichannel adaptive vector quantization. IEEE Trans Biomed Eng. 2001;48(10):1203–7.

    Article  Google Scholar 

  27. Reddy BRS, Murthy ISN. ECG data compression using fourier descriptors. IEEE Trans Biomed Eng BME. 1986;33(4):428–34.

    Article  Google Scholar 

  28. Hilton ML. Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans Biomed Eng. 1997;44(5):394–402.

    Article  Google Scholar 

  29. Lu Z, Kim DY, Pearlman WA. Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans Biomed Eng. 2000;47(7):849–56.

    Article  Google Scholar 

  30. Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25(2):21–30.

    Article  Google Scholar 

  31. Davenport MA, Boufounos PT, Wakin MB, Baraniuk RG. Signal processing with compressive measurements. IEEE J Select Top Signal Process. 2010;4(2):445–60.

    Article  Google Scholar 

  32. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  MathSciNet  Google Scholar 

  33. Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. SIAM Rev. 2001;43(1):129–59.

    Article  MathSciNet  Google Scholar 

  34. Berg EVD, Friedlander MP. Probing the pareto frontier for basis pursuit solutions. SIAM J Sci Comput. 2009;31(2):890–912.

    Article  MathSciNet  Google Scholar 

  35. Figueiredo MAT, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Select Top Signal Process. 2007;1(4):586–97.

    Article  Google Scholar 

  36. Daubechies I, Defrise M, Mol CD. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math. 2004;57(11):1413–57.

    Article  MathSciNet  Google Scholar 

  37. Tropp JA. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory. 2004;50(10):2231–42.

    Article  MathSciNet  Google Scholar 

  38. Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)

  39. Needell D, Tropp JA. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal. 2009;26(3):301–21.

    Article  MathSciNet  Google Scholar 

  40. Bortolotti D, Mangia M, Bartolini A, Rovatti R, Setti G, Benini L. Energy-aware bio-signal compressed sensing reconstruction on the WBSN-gateway. IEEE Trans Emerg Top Comput. 2018;6(3):370–81.

    Article  Google Scholar 

  41. Polania LF, Carrillo RE, Blanco-Velasco M, Barner KE. Exploiting prior knowledge in compressed sensing wireless ECG systems. IEEE J Biomed Health Inform. 2015;19(2):508–19.

    Article  Google Scholar 

  42. Dixon AMR, Allstot EG, Gangopadhyay D, Allstot DJ. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans Biomed Circ Syst. 2012;6(2):156–66.

    Article  Google Scholar 

  43. Chen F, Chandrakasan AP, Stojanovic VM. Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid-State Circ. 2012;47(3):744–56.

    Article  Google Scholar 

  44. Pareschi F, Mangia M, Bortolotti D, Bartolini A, Benini L, Rovatti R, Setti G. Energy analysis of decoders for rakeness-based compressed sensing of ECG signals. IEEE Trans Biomed Circ Syst. 2017;11(6):1278–89.

    Article  Google Scholar 

  45. Polania LF, Carrillo RE, Blanco-Velasco M, Barner KE. Compressed Sensing Based Method for ECG Compression. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 761–764 (2011)

  46. Zhang J, Gu Z, Yu ZL, Li Y. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted \(\ell _{1}\) minimization reconstruction. IEEE J Biomed Health Inform. 2015;19(2):520–8.

    Article  Google Scholar 

  47. Balouchestani M, Krishnan S. Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach. SIViP. 2016;10(1):113–20.

    Article  Google Scholar 

  48. Zhang Z, Liu X, Wei S, Gan H, Liu F, Li Y, Liu C, Liu F. Electrocardiogram reconstruction based on compressed sensing. IEEE Access. 2019;7:37228–37.

    Article  Google Scholar 

  49. Rateb AM. A fast compressed sensing decoding technique for remote ECG monitoring systems. IEEE Access. 2020;8:197124–33.

    Article  Google Scholar 

  50. Mitra D, Zanddizari H, Rajan S. Investigation of kronecker-based recovery of compressed ecg signal. IEEE Trans Instrum Meas. 2020;69(6):3642–53.

    Article  Google Scholar 

  51. Polania LF, Barner KE. Multi-scale dictionary learning for compressive sensing ECG. In: 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 36–41 (2013)

  52. Craven D, McGinley B, Kilmartin L, Glavin M, Jones E. Impact of compressed sensing on clinically relevant metrics for ambulatory ECG monitoring. Electron Lett. 2015;51(4):323–5.

    Article  Google Scholar 

  53. Craven D, McGinley B, Kilmartin L, Glavin M, Jones E. Energy-efficient compressed sensing for ambulatory ECG monitoring. Comput Biol Med. 2016;71:1–13.

    Article  Google Scholar 

  54. Craven D, McGinley B, Kilmartin L, Glavin M, Jones E. Adaptive dictionary reconstruction for compressed sensing of ECG signals. IEEE J Biomed Health Inform. 2017;21(3):645–54.

    Article  Google Scholar 

  55. Xu K, Li Y, Ren F. An energy-efficient compressive sensing framework incorporating online dictionary learning for long-term wireless health monitoring. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 804–808 (2016)

  56. Xu K, Li Y, Ren F. A data-driven compressive sensing framework tailored for energy-efficient wearable sensing. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 861–865 (2017)

  57. Polania LF, Plaza RI. Compressed sensing ECG using restricted boltzmann machines. Biomed Signal Process Control. 2018;45:237–45.

    Article  Google Scholar 

  58. Zhang L-B, Sun S, Chen J, Teng Y, Lv Z. Self-adaptive reconstruction for compressed sensing based ECG acquisition in wireless body area network. Futur Gener Comput Syst. 2023;142:228–36.

    Article  Google Scholar 

  59. Unni V, Gavaskar RG, Chaudhury KN. Compressive sensing of ECG signals using plug-and-play regularization. Signal Process. 2023;202: 108738.

    Article  Google Scholar 

  60. Chen Y, Chen J, Sun S, Su J, Li Q, Lyu Z. Atrial fibrillation detection from compressed ECG measurements for wireless body sensor network. ACM Trans Internet Technol. 2024.

  61. Mamaghanian H, Khaled N, Atienza D, Vandergheynst P. Structured sparsity models for compressively sensed electrocardiogram signals: a comparative study. In: IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 125–128 (2011)

  62. Polania LF, Carrillo RE, Blanco-Velasco M, Barner KE. On exploiting interbeat correlation in compressive sensing-based ECG compression. In: Proc. SPIE, vol. 8365, pp. 83650–7. 2012.

  63. Liu B, Zhang Z, Xu G, Fan H, Fu Q. Energy efficient telemonitoring of physiological signals via compressed sensing: a fast algorithm and power consumption evaluation. Biomed Signal Process Control. 2014;11:80–8.

    Article  Google Scholar 

  64. Polania L, Barner K. A Weighted \(\ell _{1}\) minimization algorithm for compressed sensing ECG. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4413–4417 (2014)

  65. Mitra D, Zanddizari H, Rajan S. Improvement of signal quality during recovery of compressively sensed ECG signals. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5 (2018)

  66. Rakshit M, Das S. Electrocardiogram beat type dictionary based compressed sensing for telecardiology application. Biomed Signal Process Control. 2019;47:207–18.

    Article  Google Scholar 

  67. Mamaghanian H, Ansaloni G, Atienza D, Vandergheynst P. Power-efficient joint compressed sensing of multi-lead ECG signals. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4409–4412 (2014)

  68. Sharma LN. Coding ECG beats using multiscale compressed sensing based processing. Comput Electr Eng. 2015;45:211–21.

    Article  Google Scholar 

  69. Singh A, Sharma LN, Dandapat S. Multi-channel ECG data compression using compressed sensing in eigenspace. Comput Biol Med. 2016;73:24–37.

    Article  Google Scholar 

  70. Hua J, Zhang H, Liu J, Zhou J. Compressive sensing of multichannel electrocardiogram signals in wireless telehealth system. J Circ Syst Comput. 2016;25(9):1–21.

    Article  Google Scholar 

  71. Singh A, Dandapat S. Weighted mixed-norm minimization based joint compressed sensing recovery of multi-channel electrocardiogram signals. Comput Electr Eng. 2016;53:203–18.

    Article  Google Scholar 

  72. Singh A, Dandapat S. Exploiting multi-scale signal information in joint compressed sensing recovery of multi-channel ECG signals. Biomed Signal Process Control. 2016;29:53–66.

    Article  Google Scholar 

  73. Singh A, Dandapat S. Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals. Healthcare Technol Lett. 2017;4(2):50–6.

    Article  Google Scholar 

  74. Zhang J, Yu ZL, Gu Z, Li Y, Lin Z. Multichannel electrocardiogram reconstruction in wireless body sensor networks through weighted \(\ell _{1,2}\) minimization. IEEE Trans Instrum Meas. 2018;67(9):2024–34.

    Article  Google Scholar 

  75. Eftekharifar S, Rezaii TY, Beheshti S, Daneshvar S. Block sparse multi-lead ECG compression exploiting between-lead collaboration. IET Signal Proc. 2019;13(1):46–55.

    Article  Google Scholar 

  76. Jahanshahi JA, Danyali H, Helfroush MS. Compressive sensing based the multi-channel ECG reconstruction in wireless body sensor networks. Biomed Signal Process Control. 2020;61:1–12.

    Google Scholar 

  77. Kumar S, Deka B, Datta S. Multichannel ECG compression using block-sparsity-based joint compressive sensing. Circ Syst Signal Process. 2020;39:6299–315.

    Article  Google Scholar 

  78. Iadarola G, Daponte P, Picariello F, De Vito L. A dynamic approach for compressed sensing of multi–lead ECG signals. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6 (2020)

  79. Deka B, Kumar S, Datta S. Dictionary learning-based multichannel ECG reconstruction using compressive sensing. IEEE Sens J. 2022;22(16):16359–69.

    Article  Google Scholar 

  80. Jianhong X, Cong W, Linyu W, Yu Z. FECG compressed sensing mode based on joint block sparsity. Biomed Signal Process Control. 2023;86: 105137.

    Article  Google Scholar 

  81. Emara HM, El-Shafai W, Algarni AD, Soliman NF, El-Samie FEA. A hybrid compressive sensing and classification approach for dynamic storage management of vital biomedical signals. IEEE Access. 2023;11:85.

    Article  Google Scholar 

  82. Hassan AMA, Mohsen S, Abo-Zahhad MM. ECG signals compression using dynamic compressive sensing technique toward IoT applications. Multimed Tools Appl. 2024;83(12):35709–26.

    Article  Google Scholar 

  83. Berg EVD, Friedlander MP. Theoretical and empirical results for recovery from multiple measurements. IEEE Trans Inf Theory. 2010;56(5):2516–27.

    Article  MathSciNet  Google Scholar 

  84. Kumar S, Deka B, Datta S. Block-sparsity based compressed sensing for multichannel ECG reconstruction. In: Pattern Recognition and Machine Intelligence: 8th International Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings, Part II, pp. 210–217 (2019). Springer

  85. Qian J, Tiwari P, Gochhayat SP, Pandey HM. A noble double-dictionary-based ECG compression technique for IoTH. IEEE Internet Things J. 2020;7(10):10160–70.

    Article  Google Scholar 

  86. Wu Y, Rosca M, Lillicrap T. Deep compressed sensing. In: International Conference on Machine Learning, pp. 6850–6860 (2019)

  87. Palangi H, Ward R, Deng L. Distributed compressive sensing: a deep learning approach. IEEE Trans Signal Process. 2016;64(17):4504–18.

    Article  MathSciNet  Google Scholar 

  88. Mousavi A, Patel AB, Baraniuk RG. A deep learning approach to structured signal recovery. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1336–1343 (2015)

  89. Khobahi S, Soltanalian M. Model-based deep learning for one-bit compressive sensing. IEEE Trans Signal Process. 2020;68:5292–307.

    Article  MathSciNet  Google Scholar 

  90. Zou J, Zou F, Liu J. A multi-channel ECG signal deep compressive sensing method using treeshaped autoecoder based on multiscale feature fusion. Biomed Signal Process Control. 2024;94: 106272.

    Article  Google Scholar 

  91. Wang D, Liu X-W. A gradient-type noise-tolerant finite-time neural network for convex optimization. Neurocomputing. 2022;493:647–56.

    Article  Google Scholar 

  92. Huang X, Cui B. A neural dynamic system for solving convex nonlinear optimization problems with hybrid constraints. Neural Comput Appl. 2019;31(10):6027–38.

    Article  Google Scholar 

  93. Machidon AL, Pejović V. Deep learning for compressive sensing: a ubiquitous systems perspective. Artif Intell Rev. 2023;56(4):3619–58.

    Article  Google Scholar 

  94. Gregor K, LeCun Y. Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 399–406 (2010)

  95. Zhang J, Ghanem B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

  96. Zhang Z, Liu Y, Liu J, Wen F, Zhu C. AMP-Net: denoising-based deep unfolding for compressive image sensing. IEEE Trans Image Process. 2020;30:1487–500.

    Article  MathSciNet  Google Scholar 

  97. Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell. 2018;42(3):521–38.

    Article  Google Scholar 

  98. Zhang X, Lian Q, Yang Y, Su Y. A deep unrolling network inspired by total variation for compressed sensing MRI. Digit Signal Process. 2020;107: 102856.

    Article  Google Scholar 

  99. Han T, Hao K, Ding Y, Tang X. A sparse autoencoder compressed sensing method for acquiring the pressure array information of clothing. Neurocomputing. 2018;275:1500–10.

    Article  Google Scholar 

  100. Mangia M, Prono L, Marchioni A, Pareschi F, Rovatti R, Setti G. Deep neural oracles for short-window optimized compressed sensing of biosignals. IEEE Trans Biomed Circuits Syst. 2020;14(3):545–57.

    Google Scholar 

  101. Zhang H, Dong Z, Wang Z, Guo L, Wang Z. CSNet: A deep learning approach for ECG compressed sensing. Biomed Signal Process Control. 2021;70: 103065.

    Article  Google Scholar 

  102. Kabkab M, Samangouei P, Chellappa R. Task-aware compressed sensing with generative adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

  103. Ouchi S, Ito S. Reconstruction of compressed-sensing mr imaging using deep residual learning in the image domain. Magn Reson Med Sci. 2021;20(2):190–203.

    Article  Google Scholar 

  104. Zhang Z, Wu Y, Gan C, Zhu Q. The optimally designed autoencoder network for compressed sensing. EURASIP J Image Video Process. 2019;2019:1–12.

    Article  Google Scholar 

  105. Bhati SASSSTAMKMBS. An ensemble-based approach for image classification using voting classifier. Int J Model Ident Control. 2022;41(1–2):87–97.

    Article  Google Scholar 

  106. Agarwal CRBBSS. Classifying hand gestures through EMG data with machine learning. In: 2023 10th Inter- National Conference on Computing for Sustainable Global Development (INDIACom), pp. 1437–1441 (2023)

  107. Muduli PR, Gunukula RR, Mukherjee A. A deep learning approach to Fetal-ECG signal reconstruction. In: 2016 Twenty Second National Conference on Communication (NCC), pp. 1–6 (2016)

  108. Gogna A, Majumdar A, Ward R. Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals. IEEE Trans Biomed Eng. 2017;64(9):2196–205.

    Article  Google Scholar 

  109. Mangia M, Marchioni A, Prono L, Pareschi F, Rovatti R, Setti G. Low-power ECG acquisition by compressed sensing with deep neural oracles. In: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 158–162 (2020)

  110. Cao W, Zhang J. Real-time deep compressed sensing reconstruction for electrocardiogram signals. In: 2022 14th International Conference on Machine Learning and Computing (ICMLC), pp. 490–494 (2022)

  111. Hua J, Rao J, Peng Y, Liu J, Tang J. Deep compressive sensing on ECG signals with modified inception block and LSTM. Entropy. 2022;24(8):1024.

    Article  Google Scholar 

  112. Fira M, Costin H-N, Gora L. A study on dictionary selection in compressive sensing for ECG signals compression and classification. Biosensors. 2022;12(3):146.

    Article  Google Scholar 

  113. Bich P, Prono L, Mangia M, Pareschi F, Rovatti R, Setti G. Aggressively prunable MAM\(^2\)-based deep neural oracle for ECG acquisition by compressed sensing. In: 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 163–167 (2022)

  114. Hua J, Zou J, Rao J, Yin H, Chen J. ECG signals deep compressive sensing framework based on multiscale feature fusion and SE block. IEEE Access (2023)

  115. Tang S, Deng Z. CS-based multi-task learning network for arrhythmia reconstruction and classification using ECG signals. Physiol Meas. 2023;44(7): 075001.

    Article  Google Scholar 

  116. Kumar KNS, Kumar GA, Gatti R, Kumar SS, Bhyratae DA, Satyasrikanth P. Design and implementation of auto encoder based bio medical signal transmission to optimize power using convolution neural network. Neurosci Inform (2023)

  117. Zhang H, Dong Z, Sun M, Gu H, Wang Z. TP-CNN: a detection method for atrial fibrillation based on transposed projection signals with compressed sensed ECG. Comput Methods Progr Biomed. 2021;210: 106358.

    Article  Google Scholar 

  118. Han S, Mao H, Dally W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: International Conference on Learning Representations (ICLR) (2016)

  119. Zhang B, Zhao J, Chen X, Wu J. ECG data compression using a neural network model based on multi-objective optimization. PLoS ONE. 2017;12(10):0182500.

    Google Scholar 

  120. Da Poian G, Liu C, Bernardini R, Rinaldo R, Clifford GD. Atrial fibrillation detection on compressed sensed ECG. Physiol Meas. 2017;38(7):1405.

    Article  Google Scholar 

  121. Dasan E, Gnanaraj R. Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach. Circ Syst Signal Process. 2022;41(11):6152–81.

    Article  Google Scholar 

  122. Karim S, Qadir A, Farooq U, Shakir M, Laghari AA. Hyperspectral imaging: a review and trends towards medical imaging. Curr Med Imaging (2022)

  123. Waqas M, Kumar K, Laghari AA, Saeed U, Rind MM, Shaikh AA, Hussain F, Rai A, Qazi AQ. Botnet attack detection in internet of things devices over cloud environment via machine learning. Concurr Comput Pract Exp. 2022;34(4):6662.

    Article  Google Scholar 

  124. Zhang Z, Zhao J, Ren F. An experimental study on transferring data-driven image compressive sensing to bioelectric signals. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1191–1195 (2022)

  125. Kulkarni K, Lohit S, Turaga P, Kerviche R, Ashok A. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)

  126. Yao H, Dai F, Zhang S, Zhang Y, Tian Q, Xu C. Dr2-net: Deep residual reconstruction network for image compressive sensing. Neurocomputing. 2019;359:483–93.

    Article  Google Scholar 

  127. Xu K, Zhang Z, Ren F. Lapran: A scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 485–500 (2018)

  128. Djelouat H, Zhai X, Al Disi M, Amira A, Bensaali F. System-on-chip solution for patients biometric: a compressive sensing-based approach. IEEE Sens J. 2018;18(23):9629–39.

    Article  Google Scholar 

  129. Li W, Chu H, Huang B, Huan Y, Zheng L, Zou Z. Enabling on-device classification of ECG with compressed learning for health iot. Microelectron J. 2021;115: 105188.

    Article  Google Scholar 

  130. Li H-T, Chou C-Y, Chen Y-T, Wang S-H, Wu A-Y. Robust and lightweight ensemble extreme learning machine engine based on eigenspace domain for compressed learning. IEEE Trans Circ Syst I Regul Pap. 2019;66(12):4699–712.

    Article  Google Scholar 

  131. Tseng Y-H, Chen Y-H, Lu C-W. Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation. Sensors. 2017;17(10):2288.

    Article  Google Scholar 

  132. Zhao Z, Nai Y, Yu Z, Xu X, Cao X, Gu X. Design of low-power ECG sampling and compression circuit. Appl Sci. 2023;13(5):3350.

    Article  Google Scholar 

  133. Warden P, Situnayake D. TinyML: machine learning with tensor flow lite on arduino and ultra-low-power microcontrollers. CA: O’Reilly Media; 2019.

    Google Scholar 

  134. Kuldeep G, Zhang Q. Lightweight electrocardiogram signal compression. Biomed Signal Process Control. 2023;85: 105012.

    Article  Google Scholar 

  135. Isa SM, Jatmiko W, Arymurthy AM. 3d spiht for multi-lead ECG compression. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 488–493 (2014)

  136. Wang X, Meng J. A 2-d ECG compression algorithm based on wavelet transform and vector quantization. Digital Signal Process. 2008;18(2):179–88.

    Article  Google Scholar 

  137. Xiao L, Zhang Q, Xie K, Xiao C. Online MECG compression based on incremental tensor decomposition for wearable devices. IEEE J Biomed Health Inform. 2021;25(4):1041–51.

    Article  Google Scholar 

  138. Neri L, Gallelli I, Dall’Olio M, Lago J, Borghi C, Diemberger I, Corazza I. Validation of a new and straightforward algorithm to evaluate signal quality during ECG monitoring with wearable devices used in a clinical setting. Bioengineering. 2024;11(3):222.

    Article  Google Scholar 

  139. Reddy PV, Tallapragada V. FPGA-enabled lossless ECG signal compression system using an integer adaptive compressor. Analog Integr Circ Signal Process. 2024;2:1–31.

    Google Scholar 

  140. Shrivastwa RR, Pudi V, Chattopadhyay A. An FPGA-based brain computer interfacing using compressive sensing and machine learning. In: 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 726–731 (2018)

  141. Hong S, Xiao C, Ma T, Li H, Sun J. Mina: Multilevel knowledge-guided attention for modeling electrocardiography signals. In: 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 5888–5894 (2019)

  142. Strodthoff N, Strodthoff C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol Meas. 2019;40:1.

    Article  Google Scholar 

  143. Ribeiro MT, Singh S, Guestrin C. " why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

  144. Ribeiro MT, Singh S, Guestrin C. Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

  145. Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart W. Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. Adv Neural Inf Process Syst. 2016;29:8.

    Google Scholar 

  146. Wang S, Aggarwal C, Liu H. Using a random forest to inspire a neural network and improving on it. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 1–9 (2017)

  147. Singhal A, Singh P, Fatimah B, Pachori RB. An efficient removal of power-line interference and baseline wander from ECG signals by employing fourier decomposition technique. Biomed Signal Process Control. 2020;57: 101741.

    Article  Google Scholar 

  148. Sharma RR, Pachori RB. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed Signal Process Control. 2018;45:33–49.

    Article  Google Scholar 

  149. Azzouz A, Bengherbia B, Wira P, Alaoui N, Souahlia A, Maazouz M, Hentabeli H. An efficient ECG signals denoising technique based on the combination of particle swarm optimisation and wavelet transform. Heliyon (2024)

  150. Mousavi A, Dasarathy G, Baraniuk RG. A data-driven and distributed approach to sparse signal representation and recovery. In: International Conference on Learning Representations (2018)

  151. Metzler C, Mousavi A, Baraniuk R. Learned d-amp: Principled neural network based compressive image recovery. Adv Neural Inf Process Syst. 2017;30:8.

    Google Scholar 

  152. Sun J, Li H, Xu Z, et al. Deep ADMM-Net for compressive sensing mri. Adv Neural Inf Process Syst. 2016;29:8.

    Google Scholar 

  153. Garbin C, Zhu X, Marques O. Dropout vs batch normalization: an empirical study of their impact to deep learning. Multimed Tools Appl. 2020;79(19):12777–815.

    Article  Google Scholar 

  154. Li X, Chen S, Hu X, Yang J. Understanding the disharmony between dropout and batch normalization by variance shift. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2682–2690 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabesh Deka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Pachori, R.B., Deka, B. et al. Opportunities and Challenges in Deep Compressed Sensing Techniques for Multichannel ECG Data Compression. SN COMPUT. SCI. 5, 1147 (2024). https://doi.org/10.1007/s42979-024-03508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03508-7

Keywords

Navigation