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Abstract
Decision problems from various fields (e.g., assortment optimization, product line 
selection, location planning) require to endogenously incorporate probabilistic 
choice behavior in dependence of the availability of given choice alternatives. 
A widely spread demand model in marketing and econometrics to represent such 
choices is the attraction choice model. Of this model, the well-known multinomial 
logit model and—in case of multiple latent customer segments—the finite-mixture 
logit model are special cases. However, integrating such models in optimization 
problems results in non-linear formulations. Thus, in recent years, several exact 
linearization approaches have been proposed. These approaches are based on 
different ideas, and they have appeared independently from each other in different 
fields of research. Thus, the question arises how these approaches differ and how 
they relate to each other. In this short communication, we settle this question by 
arguing that many of the proposed approaches—even though they might seem 
different at first glance—can be traced back to one of two underlying linearization 
ideas. Establishing a generic problem, we discuss the two ideas in a unified way 
by presenting two corresponding general model formulations that are shown to be 
equivalent. Based upon this, we are able to classify the major publications which 
integrate some type of attraction choice model in detail. In particular, for each 
formulation of the analyzed literature, we explain to which extent it is a special 
case of (one of) the presented generic formulations. This also makes clear under 
which context-specific conditions certain elements of the generic linearization can 
be omitted, potentially serving as helpful guideline for future applications of such 
linearizations.
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1  Introduction

In the business-to-consumer market, many decisions made by companies influence 
customers’ choices and thus the resulting demand or market share. For instance, in 
assortment optimization, the decision about the assortment of products and their 
prices might directly affect the demand for a single product due to its dependence 
on the other products on offer and their prices. Likewise, in location planning, 
the decision about the position of a facility might influence the demand occurring 
in other facilities and vice versa (e.g., park and ride facilities). Therefore, if such 
decisions are supported by methods of Operations Research, the underlying 
mathematical formulations need to endogenously consider this choice behavior.

In the academic literature, one of the most widely spread models to incorporate 
choice behavior is the attraction choice model drawing on Bradley and Terry [4] 
and Luce [14]. In its basic form, the attraction choice model (ACM) explains 
demand indirectly by reference to the market share and states that the market 
share of a choice alternative is the ratio of the alternative’s attraction to the 
overall attraction of all available alternatives (including the alternative to choose 
nothing). Thus, if an alternative is not available, the market share of this alternative 
is recaptured by the available alternatives (including the no-choice alternative) 
in proportion to their attractions. Note that the ACM can account for different 
observable customer segments by incorporating segment-specific characteristics, 
such as sociodemographic variables, into the attractions’ specifications. However, 
if unobserved segments, i.e., latent classes of customers, shall be captured, it is 
common to model each of these segments by its separate ACM weighted by the 
segment’s share of the population, so that one ends up with an overall more complex 
model. Please note, as a special case of the ACM, the multinomial logit model [16] 
is one of today’s most prominent choice models to represent probabilistic demand 
in econometrics and marketing. In case of multiple, non-observable customer 
segments, the corresponding overall model is known as finite-mixture logit or latent-
class model. Discussions of customer segments are provided in detail in Train [24] 
and Müller and Haase [19].

Over the last decade, contributions with regard to business optimization 
problems that integrate such choice behavior following the ACM have tremendously 
increased. However, due to the ACM’s properties, its straightforward consideration 
in mathematical optimization leads to nonlinear formulations. Therefore, in order to 
be able to apply standard software of (mixed-integer) linear programming (MILP), 
quite a number of coexisting publications from different research communities and 
fields are dedicated to the exact linearization of the resulting nonlinear formulation 
and sometimes claim this linearization as one of their key contributions. Examples 
include publications from the field of revenue management and assortment 
optimization in the operations community [7, 18], from product line selection—
which originates more from the marketing community and is indeed technically very 
similar to assortment optimization [20, 21], as well as from location planning [1, 9].

In this paper, we contribute to the literature by providing a unifying analysis 
of linear reformulations proposed in major publications of different research 
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fields and by clarifying their relationship to each other. Based on a generic 
problem formulation that covers the majority of the investigated problems of the 
different fields of research (Sect. 2), first, we describe two linearization ideas to 
which the proposed approaches can be traced back and present the appropriate 
mathematical formulations in the generic context. Second, we show that the 
resulting formulations can straightforwardly be transformed into each other, 
thereby also confirming that they indeed model the same problem (Sect. 3). Third, 
based upon the generic formulations, we are able to systematically discuss the 
specific linear formulations proposed in major works of the academic literature. 
In particular, for each formulation, we explain to which extent it is a special case 
of (one of) the presented generic formulations. This also makes clear under which 
context-specific conditions certain elements of the generic linearization can be 
omitted, potentially serving as helpful guideline for future applications of such 
linearizations (Sect. 4). Finally, some concluding remarks are given (Sect. 5).

2 � Generic Problem Definition

Let J = {1,… ,m} be a set of different alternatives that can be made available to 
customers. Further, let N be the set of customer segments. Then, following the ACM, 
the choice probability of customer segment n ∈ N for alternative j ∈ S0 = S ∪ {0} 
when subset S ⊆ J is made available—with j = 0 representing the no-choice 
alternative (always available)—is given by

with Anj ≥ 0 (An0 > 0) being a segment-specific measure of attraction preassigned 
to alternative j ∈ S . In the special case that demand follows the multinomial logit 
model, in line with random utility theory, Anj = evnj , with vnj being the deterministic 
part of the utility of customer segment n ∈ N for alternative j . Note that the 
no-choice alternative may also include other alternatives available to customers but 
not being within the decision-making scope.

Since the choice probability of each alternative j ∈ S0 is equal to its attraction 
Anj relative to the attraction of all available alternatives, for each customer segment 
n ∈ N , the choice probabilities sum up to one:

The problem is now to decide about the offer set S of available alternatives 
subject to a predefined problem specific objective (e.g., profit maximization) under 
the assumption that customer segments are not necessarily observable. For this 
purpose, we define the binary decision variables xj ∈ {0,1} with j ∈ J that equal 
1 if alternative j should be made available and zero otherwise. The corresponding 

(1)Pnj(S) =
Anj

An0 +
∑

i∈SAni

,

(2)
∑

j∈S
Pnj(S) + Pn0(S) = 1.
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offer set is S(x) ∶=
{
j ∈ J|xj = 1

}
. A generic formulation of the resulting objective 

function—incorporating the demand of all customer segments—is given by

where �n is the segment’s share of the population and �nj is a context-specific 
constant associated with each alternative j ∈ J and each segment n ∈ N.

The objective in (Eq. 3) aims at maximizing the sum of weighted �nj by deciding 
about the available alternatives. Depending on the context, this might, for instance, 
be the expected overall profit or market share. The resulting problem in (3) is a 
binary and nonlinear, fractional program containing a sum of ratios. Importantly, 
note that if |N| = 1 , i.e., if  only one segment exists, the problem becomes much 
easier to handle (also see Sect. 4).

3 � Generic Linearization Approaches

3.1 � Method‑Based Linearization

The first linearization idea consists of applying global formal methods developed to 
linearize nonlinear terms in fractional formulations (referred to as ML—“method-
based linearization”). For example, the linearizations presented by Schön  [20, 21]  
as well as by Miranda-Bront et al. [18] can be seen to be in line with this idea.

Applying such techniques [12, 25], the linearization can be accomplished in two 
steps: Regarding the generic formulation (3), in the first step, we substitute 

1

An0+
∑

i∈JAnixi
 by non-negative decision variables yn ∀n ∈ N . This substitution draws on 

the idea of Charnes and Cooper [5] who first proposed it in a similar way for 
continuous fractional functions and one segment. The variable yn is from the interval �

1

An0+
∑

i∈JAni

;
1

An0

�
 . The lower bound of yn is reached when all alternatives are available, 

i.e., xj = 1 ∀j ∈ J . The upper bound is reached when none of the alternatives is 
offered, i.e., xj = 0 ∀j ∈ J . The resulting nonlinear program is given by

subject to

with xj ∈ {0, 1} ∀j ∈ J and yn ≥ 0 ∀n ∈ N . Constraints (5) ensure the correct 
substitution by yn as described above. Note that this substitution is generally valid 
for the ACM since Anj ≥ 0 ∀j ∈ J, ∀n ∈ N and An0 > 0 ∀n ∈ N , and thus, the 
variables yn are always positive.

(3)Max
x

�
n∈N

�n

�
j∈J

�njPnj(S(x)) = Max
x

�
n∈N

�n

∑
j∈J�njAnjxj

An0 +
∑

i∈JAnixi
,

(4)max
x,y

∑
n∈N

�n

∑
j∈J

�njAnjxjyn

(5)An0yn +
∑

j∈J
Anjxjyn = 1 ∀n ∈ N
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In the second step, we eliminate the resulting bilinear term xjyn [25]. For this 
purpose, we define new decision variables znj ∶= xjyn ∀j ∈ J, ∀n ∈ N . To guar-
antee znj = xjyn in dependence of the value of the variables xj , the logical condi-
tions (I) xj = 0 ⇒ znj = 0 and (II) xj = 1⇒ znj = yn must be imposed by a number 
of linear constraints. The resulting linear program—equivalent to problem (3)—is 
given by

subject to

with xj ∈ {0, 1} ∀j ∈ J , yn ≥ 0 ∀n ∈ N , and Knj(10) as well as Knj(11) ∀n ∈ N, ∀j ∈ J 
being sufficiently large numbers. Constraints (8) and (10) impose implication (I), 
whereas implication (II) is represented by constraints (9) and (11). For tight definitions 
of the parameters Knj(10) and Knj(11) , see Appendix 1.

3.2 � Property‑Based Linearization

The second linearization idea is motivated from specific properties of the ACM 
(referred to as PL—“property-based linearization”). This approach is followed, for 
instance, by Davis et  al. [7], Haase [9], and Aros-Vera et  al. [1]. More precisely, 
the fundamental property of demand models whose structure follows (1), as, for 
instance, the multinomial logit model, is the so-called independence of irrelevant 
alternatives (IIA) property. This property states that the ratio of two available 
alternatives’ choice probabilities is constant and thus independent of the availability 
of other and hence irrelevant alternatives. From definition (1) of the choice 
probabilities in the ACM, it follows that this constant ratio is equal to

Note, demand models not following (1), as, for instance, the nested logit model 
or the probit model, do not suffer from the IIA property.

(6)max
z

∑
n∈N

�n

∑
j∈J

�njAnjznj

(7)An0yn +
∑

j∈J
Anjznj = 1 ∀n ∈ N

(8)znj ≥ 0 ∀n ∈ N, ∀j ∈ J

(9)znj ≤ yn ∀n ∈ N, ∀j ∈ J

(10)znj ≤ Knj(10)xj ∀n ∈ N, ∀j ∈ J

(11)znj ≥ yn + Knj(11)(xj − 1) ∀n ∈ N, ∀j ∈ J

(12)
Pnj

Pni

=
Anj

An0 +
∑

k∈S Ank

∕
Ani

An0 +
∑

k∈S Ank

=
Anj

Ani

∀n ∈ N, ∀j, i ∈ S0
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In the mathematical program, it is necessary to ensure the IIA property and 
hence the ratios in (12). Therefore, we further exploit the fact Pnj

Pni

=
Pnj

Pn0

∕
Pni

Pn0

 . This 
means that every ratio of two alternatives can be expressed by two ratios 
comprising the no-choice alternative. Since the no-choice alternative is always 
available, we can ensure the IIA property in the mathematical program by 
merely imposing

So instead of |N| ⋅ ||S0||
2 , only |N| ⋅ |S| ratios have to be determined.

For the PL, we define non-negative decision variables pnj ∀n ∈ N, ∀j ∈ J ∪ {0} 
which represent the choice probabilities of alternatives j ∈ J ∪ {0} for customers 
belonging to segment n ∈ N  in dependence of the offered alternatives. The model 
formulation building on the IIA property is given by

subject to

with xj ∈ {0, 1} ∀j ∈ J and Mnj(18) as well as Mnj(19) ∀n ∈ N, ∀j ∈ J ∪ {0} being 
sufficiently large numbers. First of all, constraints (15) reflect the ACM’s property 
stated in (2). For the IIA property as stated in (13) to hold, the two logical conditions  
xj = 0 ⇒ pnj = 0 and xj = 1⇒ pnj =

Anj

An0

pn0 must be ensured. While constraints (16) 
and (18) impose the first implication, the second implication (IV) is modeled by 
constraints (17) and (19). For tight definitions of the parameters Mnj(18) andMnj(19) , 
see Appendix 1.

The general ML (6)-(11) and the general PL (14)-(19) presented in Sects. 3.1 
and 3.2 are equivalent mixed-integer linear formulations of problem (3), as they 

(13)
Pnj

Pn0

=
Anj

An0

∀n ∈ N, ∀j ∈ S

(14)max
p

∑
n∈N

�n

∑
j∈J

�njpnj

(15)pn0 +
∑

j∈J
pnj = 1 ∀n ∈ N

(16)pnj ≥ 0 ∀n ∈ N, ∀j ∈ J

(17)pnj ≤
Anj

An0

pn0 ∀n ∈ N, ∀j ∈ J

(18)pnj ≤ Mnj(18)xj ∀n ∈ N, ∀j ∈ J

(19)pnj ≥
Anj

An0

[
pn0 +Mnj(19)(xj − 1)

]
∀n ∈ N, ∀j ∈ J
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can straightforwardly be transformed into each other by variable substitution. 
The proof is given in Appendix 2.

4 � Classification of Specific Linearization Approaches

Based upon the two generic approaches presented in Sect. 3, we are now able to 
systematically discuss and compare major publications’ linearization approaches. 
We argue that most of the resulting programs can be traced back to either the 
presented ML or PL. Further, we show that problem-specific characteristics and 
the considered setting lead to special and simplified cases of ML or PL regarding 
the linearization part, i.e., the required constraints.

Table 1 presents the comparison. Column 1 states the research field to which 
the reference in column 2 is dedicated. Column 3 states if the work referenced 
in column 2 considers a market divided into different customer segments or not. 
The last block of columns classifies whether the referenced work’s proposed 
linearization is based on the methodological (Sect.  3.1) or property-driven 
approach (Sect. 3.2), and thus, if they can be directly traced back to either ML or 
PL. Further, it is shown which of the constraints of the general formulations are 
applied as a result of the specific setting considered.

In Schön’s [20], [21] optimization approaches for the product line selection 
problem, an ML is used with additional constraints reflecting pricing decisions. 
Schön [20] allows to consider each segment separately with regard to the 
linearization; each segment-specific objective function is quasi-convex and quasi-
concave, and the model has a unimodular (price) constraint matrix. Thus, without 
explicitly claiming integrality, an optimal binary solution can be obtained [6]. Hence, 
Schön [20] can drop the integrality requirement on the decision variables xj and thus 
does not require any constraints like (10) and (11). Hence, the applied linearization, 
as stated by herself, resembles the classical Charnes-Cooper transformation for 
continuous variables [5]. In Schön [21], pricing is made continuous rather than 
based on a discrete set of prices as in Schön [20]. This would normally result in a 
non-concave objective function which is circumvented by defining the continuous 
probability as the central decision variable. Hence, constraints (10) and (11) are also 
not necessary. In Bechler et al. [2], the product line selection problem is extended by 
the empirically proven effect that customers tend to choose compromise alternatives. 
This results in a non-unimodular formulation such that integrality constraints cannot 
be dropped, and thus, their proposed formulation comprises the full set of ML’s 
constraints as given in (7)-(11).

In the context of revenue management and assortment optimization, Talluri 
and van Ryzin [23] study problem (3) for the multinomial logit model and 
only one customer segment. They confirm an earlier result from fractional 
programming [22], stating that in this particular case without any further 
constraints, an optimal assortment can easily be obtained by greedily adding 
products into the offer set in order of decreasing revenues, such that a model-
based approach is not necessary at all. Miranda-Bront et  al. [18] consider 
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the case of multiple customer segments and propose an ML exactly as stated 
in (7)-(11). In their setting, each customer segment is characterized by one 
consideration set (i.e., the set of products this segment considers choosing from). 
They assume that the different consideration sets do not need to be disjoint but 
can overlap to some extent.

As one of their contributions, Davis et al. [7] present a PL for a setting with 
one customer segment and several alternative additional types of side con-
straints, such as price constraints. Similar to Schön [20], [21], these constraints’ 
coefficients form a unimodular constraint matrix which allows for neglecting 
constraints (18) and (19). Thus, even though developed independently, from a 
technical point of view, the linearization proposed by Davis et al. [7] resembles 
the classical Charnes-Cooper transformation. Méndez-Díaz et al. [17] present an 
ML which is a problem related extension of Miranda-Bront et al. [18].

In the area of location planning, the objective mostly is the optimization of 
the market share without the consideration of cost, but under consideration of 
different customer segments. In this context, customer segments are denoted 
as demand nodes. Benati and Hansen [3] propose an ML but, in contrast to 
already mentioned linear formulations, completely substitute the objective 
function (3). In this case, constraints (9) and (10) can be omitted, since the 
variables substituting the resulting bilinear terms are negatively considered 
in the objective function and thus are minimized. Hence, only the lower 
bounds represented by (16) and (19) need to be ensured. Haase [9] proposes 
a PL. However, in constraints (19), he explicitly formulates the IIA property 
drawing on (12) for every possible pair of alternatives. This automatically 
includes constraints (17) but results in many redundant constraints (for details 
see Sect.  3.2). Zhang et  al. [26] propose an ML by substituting the single 
probabilities for the different alternatives (in contrast to Benati and Hansen 
[3] who substitute the sum of all probabilities). For the linearization of the 
resulting nonlinear terms, |N| ⋅ |J|2 instead of |N| ⋅ |J| variables and |N| ⋅ |J|2 of 
each of the constraints (7)-(11) are necessary. In line with Haase [9], Aros-Vera 
et al. [1] propose a PL considering all possible pairs of alternatives to formulate 
the IIA property. In contrast to Haase [9], constraints (16) are omitted since the 
objective of market share maximization automatically favors the largest values 
for the choice probabilities. Haase and Müller’s [10] reformulation of Haase 
[9] omits the redundant constraints and formulates the IIA property as given 
by (17). Due to the objective of market share maximization, constraints (19) 
are not necessary and constraints (15) can be formulated as inequality. Haase 
and Müller [10] consider Mnj(18) as defined in Appendix 1, which represents the 
tightest upper bound for the choice probabilities in the PL in general. However, 
in the special case of facility location planning, a predefined and fixed 
number of r facilities are required to be open which is considered in the MILP 
formulation as additional constraint. Based on this, a stronger formulation 
of constraints (18) can be derived. The resulting tighter bound for Mnj(18) is 
presented by Freire et  al. [8] in the context of Haase and Müller’s [10] linear 
formulation (see Appendix 1 for its definition).
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Note that in the context of location planning, other linearizations have recently been 
discussed by Ljubić and Moreno [13] and Mai and Lodi [15]. Ljubić and Moreno’s 
[13] approach relies on the outer-approximation of the continuous relaxation of the 
objective function and its submodularity property. Mai and Lodi’s [15] approach 
allows to create a set of piecewise linear functions that outer-approximate separated 
parts of the objective function. The corresponding models arise in the specific context 
of branch-and-cut or cutting-plane solution procedures the authors develop and 
therefore are omitted in Table 1.

5 � Discussion

In this paper, we argue that major publications’ linearizations of attraction choice 
behavior in business optimization problems can be traced back to one of two 
different but equivalent MILP formulations, each relying on a specific linearization 
idea. By a systematic analysis, we revealed that differences of the publications’ 
linearizations to the presented ones result from problem-specific characteristics 
depending on the field of application. Thus, our analysis can serve as helpful 
guideline for future applications of such linearizations.

Note that, basically, both linearization schemes rely on the same number of (binary 
and nonnegative real-valued) variables and constraints. Further, given that their 
equivalence can be shown by variable substitution, there are no specific indications that 
one is generally more suitable than the other one. Besides the equivalence, it can be seen 
from the substitution that the defined bounds in Appendix 1 lead to the same tightness of 
constraints in both formulations. Hence, no solution time differences can be expected in 
general. However, with regard to the future development of context-specific linearization 
approaches on the basis of these generic models, it is important to keep considering 
both variants. In particular, one could be more intuitive than the other with regard to 
the required model adjustments, potentially leading to differences in efficiency of the 
resulting specific linearizations.

Further, we want to emphasize that the two presented MILP formulations are of 
special interest in the case of only one customer segment, since then, the formulations 
can be solved very efficiently and utilized for a broad range of applications [7]. In the case 
of several latent segments, even though the MILP formulations are NP-hard, standard 
MILP solver methods have been reported to work pretty fast in many cases, or at least, the 
formulations can serve as helpful starting points for the derivation of promising heuristic 
solution procedures [18]. Additionally, as discussed in this paper, problem specific 
circumstances can further simplify the linearization effort needed.

Appendix 1. Tight bounds for ML and PL

For the ML’s constraints (10), we know by definition of yn that it does not exceed the 
value 1

An0+Anj

 in case xj = 1 . Since znj ≤ yn ∀n ∈ N, ∀j ∈ J (constraints (9)), we can 
define the tightest upper bound for znj in constraints (10) by Knj(10) ∶=

1

An0+Anj
∀n ∈ N, ∀j ∈ J , 
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which would be reached in case only alternative j is offered. In line with Wu [25], we 
define the parameters Knj(11) based on our knowledge about the upper bounds of the 
variables yn by Knj(11) ∶=

1

An0
∀n ∈ N, ∀j ∈ J . This imposes the tightest lower bound of zero 

for znj in constraints (11) in case xj = 0 , which is reached, if no alternative j ∈ J is 
offered.

For PL, we use the properties of the underlying choice model to define the parameters 
Mnj(18) and Mnj(19) . For constraints (18), we utilize the fact that the maximum value of pnj 
for j ∈ J given xj = 1 is by definition (1) Anj

An0+Anj

 (only alternative j ∈ J is offered) with 

An0 > 0 and Anj ≥ 0 . Thus, we can define Mnj(18) ∶=
Anj

An0+Anj

∀n ∈ N, ∀j ∈ J as the 
tightest upper bound in constraints (18), if xj = 1 . For constraints (19), the right-hand side 
must be smaller or equal to zero in case xj = 0 . Thus, we need to ensure that Mnj(19) ≥ pn0 . 
Since the maximum value of pn0 is reached if xj = 0 ∀j ∈ J (i.e., pnj = 0 ∀j ∈ J ), and is 
by definition (1) pn0 =

An0

An0

= 1 , the tightest lower bound is given by Mnj(19) = 1.
Note that, since in the special case of facility location, a predefined number r < |J| of 

facilities are required to be open, Mnj(18) can be defined even smaller resulting in a 
stronger formulation of PL’s constraints (18) [8, 11]. More precisely, for a segment n and 
alternative j , let J′

⊂ J be a subset containing r alternatives such that j ∈ J
� and the 

alternatives J�

�{j} are the ones out of J�{j} with the smallest attraction values. Then, 
Mnj(18) ∶=

Anj

An0+
∑

k∈J
� Ank

 , since the maximum value for pnj for j ∈ J given xj = 1 is by 

definition (1) Anj

An0+
∑

k∈J
� Ank

 . Analogously, Knj(10) ∶=
1

An0+
∑

k∈J
� Ank

 results in the tightest 
upper bound for ML’s constraints (10). The tightest upper and lower bounds for the no-
choice probability pno in the context of facility location can be derived following the 
same idea. We refer the reader to Krohn et al. [11] who just recently discussed these 
bounds.

Appendix 2. Equivalence of ML and PL

Consider the ML (6)-(11). The derivation of (6) implies Pnj = Anjznj . Hence, we 
can replace each term Anjznj by new decision variables pnj representing Pnj , such 
that we obtain the objective function (14) of the PL. Since the variables 
yn =

�
An0 +

∑
i∈JAnixi

�−1 and in (1), the no-choice probability Pn0 is defined as 
An0

An0+
∑

i∈SAni

 , the variable yn can be interpreted as the ratio Pn0

An0

 . Substituting yn by pn0
An0

 , 
where pn0 denotes the new decision variables representing Pn0 , and znj by pnj

Anj

 in 
(7), we obtain (15). Analogously, the substitution of znj by pnj

Anj

 in (8) results in 
pnj

Anj

≥ 0 ⟺ pnj ≥ 0 and the substitutions of yn by pn0
An0

 and znj by pnj
Anj

 in (9) result in 
pnj

Anj

≤
pn0

An0

⟺ pnj ≤
Anj

An0

pn0 which is equivalent to (16) and (17), respectively. 
With the parameters Knj(10) , Knj(11) , Mnj(18) , and Mnj(19) as defined in Appendix 1, 
constraints (18) can be derived by substituting znj by pnj

Anj

 in (10), resulting in 
pnj

Anj
≤ Knj(10)xj ⟺ pnj ≤ AnjKnj(10)xj . Since Knj(10) is defined as 1

An0+Anj

 and AnjKnj(10) = Mnj(18) =
Anj

An0+Anj

 , 
(18) is equivalent to (10). The substitution of znj by pnj

Anj

 and yn by pn0
An0

 in (11) yields 
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pnj

Anj

≥
pn0

An0

+ Knj(11)

(
xj − 1

)
⟺ pnj ≥

Anj

An0

pn0 + AnjKnj(11)

(
xj − 1

)
 . Since Knj(11) is 

defined as 1

An0

 and Mnj(19) as 1, (19) is equivalent to (11).                                     ■ 
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