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Abstract
Problems related to patient scheduling and queueing in emergency departments 
are gaining increasing attention in theory, in the fields of operations research and 
emergency and healthcare services, and in practice. This paper aims to provide an 
extensive review of studies addressing queueing-related problems explicitly related 
to emergency departments. We have reviewed 229 articles and books spanning 
seven decades and have sought to organize the information they contain in a manner 
that is accessible and useful to researchers seeking to gain knowledge on specific 
aspects of such problems. We begin by presenting a historical overview of applica-
tions of queueing theory to healthcare-related problems. We subsequently elaborate 
on managerial approaches used to enhance efficiency in emergency departments. 
These approaches include bed management, fast-track, dynamic resource allocation, 
grouping/prioritization of patients, and triage approaches. Finally, we discuss sci-
entific methodologies used to analyze and optimize these approaches: algorithms, 
priority models, queueing models, simulation, and statistical approaches.

Keywords  Discrete-event simulation · Emergency department · Length of stay · 
Queueing · Literature review

1  Introduction

In recent decades, healthcare systems—and emergency departments (EDs) in 
particular—have been facing a massive increase in demand, which has led to 
a continuous need to improve and optimize operational processes and quality 
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control methods. Along with this trend, healthcare systems’ managers have begun 
to encounter logistical and operational problems that previously did not present 
a most noticeable concern. Many of these problems relate to the deployment of 
resources and patient flow planning through hospital departments: How should we 
schedule nurse and physician shifts to optimize their schedules and maximize the 
quality of care that patients receive? How can we optimize the workflow of staff 
members faced with large numbers of incoming patients? How should we direct the 
patient flow in emergency and routine scenarios?

Queueing theory and models have the capacity to address questions such as these 
in a systematic way, thereby providing managers with efficient solutions and tools 
for maintaining and improving performance. In 2013, Lakshmi and Sivakumar [1] 
produced a comprehensive literature review regarding the application of queueing 
theory in healthcare. Yet, in recent years, there has been increasing focus on prob-
lems that are specific to the ED, along with an urgent need to solve them. In 2018, 
Hu et al. [2] reviewed relevant articles published since 1970 to examine the contri-
butions of queueing theory (QT) in modeling EDs and assess the strengths and limi-
tations of this application: the ED is the first station that patients encounter when 
entering the hospital system; therefore, it is characterized by high demand levels. 
Every patient must get treatment and be assigned correctly to a specific department 
(being hospitalized or not), as the ED professional staff also needs to deal with a 
vast variety of medical conditions and injuries, high levels of uncertainty, and as 
a result, high-stress levels. More recently, in 2020, Ortíz-Barrios and Alfaro-Saíz 
[3] undertook a systematic review of methodological approaches to support process 
improvement in EDs. They reviewed scholarly articles published between 1993 and 
2019 and categorized the selected papers considering the leading ED problems.

In our present work, we aim to provide researchers and healthcare managers with 
a clear summary of the current managerial approaches used for solving queueing-
related problems in EDs and the scientific methodologies used for investigating 
these problems.

In Fig. 1, we show a diagram of the ED process flow and the relevant issues that 
address it. The figure presents the patient flow through the healthcare system and 

Fig. 1   ED’s process flow diagram and its relevant queueing theory aspects
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emphasizes the need for coordination between interacting departments. At each 
phase of the process, we show the relevant corresponding queueing theory aspect.

The present paper conducts a systematic literature review to answer the primary 
question of which theories and models can provide efficient solutions and tools to 
maintain and improve ED performance. Answers to this question allow detecting 
and classifying the scope and topics of the current state-of-the-art, gaps and limita-
tions, managerial implications, and future research directions.

Ultimately, our review is intended to serve as an efficient guide for navigating 
through the extensive research literature in those diverse aspects that are related to 
queueing applications in the EDs.

2 � Methodology

The main purpose of the study was to answer the following research questions: 
What are the applications of queueing theory to healthcare and especially to prob-
lems related to the EDs? What managerial approaches help improve the efficiency of 
these EDs? What are the scientific methodologies used to analyze and optimize the 
organizational methods? Since we aimed for relevant high-quality literature that fits 
the above purposes and topics, we used a systematic method for collecting potential 
literature. The papers were first retrieved by identifying search keywords and explor-
ing various electronic journal databases, such as Google Scholar, PubMed, Science 
Direct, JSTOR, ProQuest, Emerald, Elsevier, SpringerLink, and Wiley. To ensure 
that we collect as much data as possible, those databases were explored both using a 
Python script and manually for applications of queueing problems, healthcare, oper-
ations research, simulations, and modeling. The main keywords and their frequency 
of occurrence are presented in Fig. 2. The letters’ size and boldness illustrate their 
dominance and occurrence in published papers. This gives the reader a wide look on 
the queueing-related frequency of topics in the ED environment.

The search process yielded many references, including referred journal articles, 
conference proceedings, dissertations, unpublished works, and books, which we sys-
tematically investigated for inclusion in the review. Relevant works were extracted 
by carrying out a comprehensive search of various databases. Figure 3 emphasizes 
the distribution and frequency throughout the years of published articles on ED 
queueing problems that have been considered for this literature review.

As shown in Fig.  3, the number of studies has grown significantly as the 
addressed fields are expanding greatly, mainly in the last decade, and there was a 
need to perform a deep verification of the studies. Therefore, we checked each paper 
or work manually and studied it to verify its quality and relevance to the literature 
review and ignored works that did not meet the criteria. Eventually, we reviewed 
229 peer-reviewed works, papers, and books from the last seven decades dealing 
with queueing theory or related healthcare and operations research topics. We iden-
tified keywords corresponding to research methodologies such as discrete-event 
simulation (DES), algorithms, queueing models, and priority models; keywords cor-
responding to ED operational concerns such as overcrowding, patient flow, length of 
stay (LOS), and waiting time; and general keywords such as hospital and emergency 
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department. In selecting studies for inclusion in this review, we sought to cover both 
the origins of research on ED queueing and state-of-the-art research and methods. 
Hence, we read each study, arranged its data (authors, title, date, and keywords), and 

Fig. 2   Illustration of key words frequency in the review

Fig. 3   Frequency of published studies related to the field of queueing theory with emphasis to ED envi-
ronment
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summarized its contents into a Microsoft Excel 365 table. We subsequently grouped 
the studies according to specific topics to organize the information in a straight-
forward manner that would enable researchers to access the specific information 
they need. Papers were excluded based on their irrelevance to the study. We only 
included articles that were written in English and focused on queueing methods. Our 
study method was as follows: we performed a general literature survey including 
all the leading publications and conference proceedings. The literature survey was 
conducted by search using keywords that include words such as queueing, emer-
gency department, scheduling, discrete-event-simulation, length-of-stay, waiting 
time, patients flow, hospitals, and more. The data were arranged in a final Microsoft 
Excel 2016 table that includes the title, authors, journal, date of publication, num-
ber of citations, keywords (given by the authors of the papers or us), and a sum-
mary. A review of this initial survey was concluded to fill possible holes and make 
it more comprehensive. In the last step, we searched for the relevant DOI (Digital 
Object Identifier) assigned to each publication that will provide a continuous link to 
its location on the web and allow its quick availability to the searcher. Since the DOI 
link is assigned by the publisher only at the time of publication of the article, activa-
tion of each of the links has resulted in a final update of the data previously collected 
in the electronic databases mentioned above.

This review is organized as follows: We first present a historical survey of early 
research (1950s–1980s) on queueing-related problems in healthcare systems in gen-
eral and in EDs specifically. We then discuss methods used in practice to manage 
patient flow and workflow in EDs and related to queueing theory. Next, we present 
scientific methods applied to the investigation of queueing-related problems in EDs.

3 � Early Applications of Queueing Theory in Research of Healthcare 
Systems

Research related to queueing in healthcare systems dates back to the early 1950s, 
beginning with the works by Bailey [4, 5] who examined queues and appointment 
systems in hospital outpatient departments, focusing on patient waiting times as an 
outcome of interest. Bailey was the first to simplify the patient flow problem into a 
problem description that could be modeled using queueing theory and to use this 
approach to evaluate appointment systems and emergency bed allocations. In 1952, 
Welch and Bailey [6] carried out a study on appointment systems (an extension was 
published by Welch in 1964, after his death [7]). They offered recommendations to 
reduce patient waiting time while ensuring that medical staff’s time would not be 
wasted. The researchers’ suggestions, which took into account the punctuality of 
the patients and medical staff, included dividing appointment intervals into periods 
equal to the average time spent on each patient and calling two patients to arrive at 
the clinic’s opening time.

In 1969, Bell and Allen [8] used queueing theory to investigate emergency ambu-
lance service planning with a constraint to fulfill 95% or 99% of the demand. A 1969 
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study by Taylor et  al. [9] was the first to adopt a pure queueing theory approach 
to examine emergency services. Specifically, the authors gathered 8 weeks of data 
regarding emergency anesthetic services in a hospital in Northampton. They used a 
queueing theory approach to make predictions regarding the outcomes (in terms of 
patient waiting times) of various alternative scenarios (e.g., one versus two anesthe-
tists on-call). They highlighted the potential benefits of this prediction approach for 
decision-making regarding the number of staff members on-call and the allocation 
of duties among them.

In the 1970s, the foundations for most current research on queueing in health-
care systems began to be established. During this time, studies began to apply 
queueing theory to diverse healthcare-related problems while considering patient 
waiting time as the primary index for quality of care. For example, Haussmann 
[10] modeled patient care processes in a burn unit and, in line with prior studies on 
queueing in healthcare systems, used empirical data to define the model’s param-
eters. He used the model to predict how staffing or inpatient load changes would 
affect the quality of nursing care (as measured by waiting time). Gupta et al. [11] 
considered allocating workforce for messenger services in a hospital. Milliken et al. 
[12] developed a queueing theory model to predict hospital delivery rooms’ utili-
zation. Keller and Laughhunn [13] proposed an application of queueing theory to 
a congestion problem in an outpatient clinic, and Cooper and Corcoran [14] and 
McClain [15] addressed bed planning models in hospitals. Larson [16] designed 
efficient algorithms for facility location and redistricting in urban ambulance ser-
vices. Moore [17] used queueing theory to address a problem of dissatisfaction due 
to waiting time for healthcare services in Dallas, TX, and Scott et al. [18] addressed 
reducing the response time of ambulance systems.

Notably, preliminary simulation- and algorithm-based studies of ED queueing 
were published during this period as well. In 1976, Collings and Stoneman [19] were 
the first to present a general queue approach that can be applied in an ED environ-
ment. They studied the M/M/ ∞ queue with varying arrival and departure rates in 
a hospital ICU (intensive care unit) and showed that their model is well-suited to 
the ED environment, where it is important to meet nearly all demands immediately. 
The authors showed that it is unlikely that the hourly variation in patient arrival rates 
to the unit will significantly affect the number of occupied beds. In 1978, Ladany 
and Turban [20] developed a pioneering simulation model for operational planning 
and staffing of EDs, which they used to identify optimal numbers of service stations 
and their staffing patterns under various conditions. The authors suggested that their 
simulation framework could serve as a tool for planning, budgeting, decision-making, 
and managerial control since it provided decision-makers with the capacity to make 
predictions about costs, patient waiting times, and facility idleness.

By the 1980s, queueing theory had become a well-established approach to vari-
ous problems encountered in healthcare settings. Researchers and managers, such 
as Kao and Tung [21] and Worthington [22, 23], began to build on this knowl-
edge to solve straightforward queueing problems (e.g., optimizing the number of 
staff members allocated to a department, given data on the typical rate of incom-
ing patients), and devising new means of addressing queueing-related challenges 
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in practice. In parallel, researchers began to develop increasingly sophisticated 
methodologies to understand these challenges and identify means of improving 
healthcare systems’ capacity to handle them. We address these developments in 
what follows, with a specific focus on EDs.

4 � Practical Approaches to Managing ED Queueing

As noted above, in recent decades, researchers and practitioners have developed 
creative new methods to improve ED performance. In Fig.  4, we present the 
distribution of such managerial studies over the years; we can observe a drastic 
increase in the number of studies during the years which shows the interest and 
importance of such studies. Extensive research has sought to provide guidance 
on how such practices should be implemented and identify which infrastructure 
changes ED managers might need to initiate in their departments. In what fol-
lows, we review these methods, addressing their history, development, and cur-
rent potential research opportunities. Mainly, we shed light on the following 
techniques: triage approaches, bed management, dynamic resource allocation, the 
grouping of patients and prioritization of specific groups, and fast-track.

Fig. 4   Frequency of published queueing-related studies on the managerial approaches applied to the ED 
environment
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4.1 � Triage Approaches

The word “triage” comes from the French word “trier,” which means “to sort.” The 
medical usage of the term dates back to the 1800s when medical officers on the 
battlefield realized that sorting wounded soldiers according to their medical needs 
(unsalvageable; in need of immediate attention; less urgent) could improve the effi-
ciency of their treatment. The formal concept of triage was first introduced in EDs in 
the late 1950s and early 1960s when a significant patient volume increase occurred. 
During this time, triage was carried out by triage nurses, whose competence had to 
be tested.

Brillman et al. [24] and Gilboy et al. [25] were among the first to point out the 
problematic nature of this type of triage. Brillman et al. examined agreement among 
observers regarding the need for ED care and the ability to predict at triage the need 
for admission to the hospital. They used a crossover design in which each subject 
was subjected to three types of triage: nurse-guided triage first, computer-guided 
triage second (or vice versa), and physician triage last. The authors found signifi-
cant variability among physicians, nurses, and the computer program regarding tri-
age decisions. Gilboy et al. emphasized the need for standardization and quality to 
ensure reliable, reproducible triage nurse decisions. Additional researchers began to 
question the reliability of triage methods: Wuertz et  al. [26] and Fernandes et  al. 
[27], for example, measured inter-rater and intra-rater agreement within existing ED 
triage systems. Wuertz et al., who based their study on five standardized patient sce-
narios of complaints, concluded that triage assessments (both inter-rater and intra-
rater) by experienced personnel are inconsistent. These results challenged the reli-
ability of current ED triage practices. Fernandes et  al. conducted an experimental 
study using standardized patient scenarios with emergency triage nurses and attend-
ing emergency physicians. They found fair intra-rater agreement among the nurses 
rating the severity of patient conditions and a consensus in inter-rater assessment 
(between nurses and physicians) of triage classification.

In light of these concerns, subsequent studies sought to improve the triage pro-
cess using a combination of nurse and doctor triage, referred to as team triage. 
Subash et al. [28] observed a scenario of 3 h of combined doctor and nurse triage 
within 8 days. They found that this type of triage led to earlier medical assessment 
compared with nurse triage and that the benefit would carry on for the rest of the 
day, even after standard nurse triage had resumed. The authors concluded that the 
implementation of team triage has the potential to improve ED efficiency substan-
tially. In 2006, Choi et al. [29] evaluated how stationing a senior ED doctor in tri-
age instead of a separate consultation room influenced the waiting time and pro-
cessing time of an ED without extra staff. The approach, called Triage Rapid Initial 
Assessment by a doctor (TRIAD), was implemented in an ED for seven shifts of 
9 h each. The authors found that TRIAD use substantially reduced the waiting time 
and processing time of the ED. Two systematic literature reviews of triage-related 
interventions were done by Wiler et  al. [30] who dealt with triage strategies that 
may improve front-end operations in EDs, and Oredsson et al. [31] who showed that 
team triage is likely to result in a shorter waiting time and shorter LOS; furthermore, 
it is most likely to result in fewer patients leaving without being seen, compared 
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with triage processes that do not involve physicians. Burström et al. [32] compared 
the performance of different triage models (physician-led team triage, nurse first/
emergency physician second, and nurse first/junior physician second) used in three 
Swedish EDs. They observed that physician-led team triage seemed advantageous in 
efficiency and quality indicators compared to the other two models. In a subsequent 
study, Burström et  al. [33] compared efficiency and quality measures before and 
after the replacement of a nurse triage model in an ED with physician-led team tri-
age (implemented during the daytime and early evenings on weekdays). Physician-
led triage was shown to improve the efficiency and quality of EDs.

Additional recent studies concerning team triage methods include the work of 
Traub et al. [34], who proposed that the mechanism by which team triage improves 
ED throughput is that of Rapid Medical Assessment (RMA). Namely, a physician’s 
presence enables patient medical needs to be assessed and processed more quickly. 
The authors observed that implementing an RMA system in the ED of their insti-
tution (the Mayo Clinic) improved patient LOS but did not reduce the number of 
patients left without being seen. Lauks et al. [35] introduced the concept of the Med-
ical Team Evaluation (MTE), encompassing team triage, quick registration, redesign 
of triage rooms, and electronic medical records. The authors carried out an obser-
vational study investigating how the implementation of such a method affects door-
to-doctor (waiting) time and ED LOS. Notably, the authors observed an improve-
ment in LOS only among the least urgent patients. Jarvis [36] performed a literature 
review to identify evidence-based strategies to reduce the amount of time spent by 
patients in the ED. The author noted that the use of doctor triage, rapid assessment, 
streaming, and the co-location of a primary care clinician in the ED have all been 
shown to improve patient flow.

Several studies based on queueing principles have sought to evaluate and com-
pare various triage approaches. Connelly and Bair [37], for example, showed that 
DES could be used to assess the efficacy of triage operations and used the approach 
to compare two triage methods. Ruohonen et  al. [38] used a simulation model to 
evaluate a team triage method (in their study, the triage team comprised a nurse and 
a doctor, in addition to a receptionist). He et  al. [39] also proposed a simulation 
approach to examine different triage strategies.

Finally, several studies have examined specific characteristics of the triage pro-
cess to identify potential areas for improvement. Farrohknia et al. [40] evaluated the 
reliability of several triage scales designed as decision support systems to guide the 
triage nurse to a correct decision. Similarly, a study by Claudio et  al. [41] evalu-
ated the ESI’s (Emergency Severity Index) usefulness as a clinical decision support 
method for prioritizing triage patients, and more recently, Hinson et al. [42] checked 
the influence of its accuracy on nurse triage. Olofsson et  al. [43] investigated the 
influence of staff behavior during triage on ED elderly patients’ feelings and satis-
faction. O’Connor et al. [44] evaluated the effect of ED crowding on triage destina-
tion and waiting times. In 2018, Gardner et al. [45] studied a revised triage approach 
identifying eligible patients at triage based on complaint and illness severity and 
reallocating a nurse practitioner (NP) into the triage area of an urban ED. This pro-
cess was shown to improve the ED throughput and reduce the number of patients 
left without being seen.
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A more recent paper by Hodgson and Traub [46] deals with diverse variations of 
patient assignment systems, including provider-in-triage/team triage, fast-tracks/ver-
tical pathways, and rotational patient assignment. The authors discussed the theory 
behind such system variations and reviewed potential benefits of specific models of 
patient assignment found in the current literature.

It results from the above review, and is shown in Fig. 5, that triage approaches 
in healthcare and more specifically in the EDs have been studied and applicated 
throughout the years, with a massive increase in the recent decade. This is due to the 
technological improvements over those years, from both academic and managerial 
points of view. As noted above, in the early years, the medical triage methods were 
rather simple and even intuitive, and the breakthrough in that field occurred in the 
1990s with studies regarding the usefulness of the triage methods and their reliabil-
ity. Since the first decade of the twenty-first century, additional methods could be 
developed thanks to the increasing computation capacity and availability of data in 
hospital systems. A large amount of information is continuously gathered into those 
systems and is now available, not only to medical decision-makers but also for aca-
demic use. As online data are available, more than ever, to the triage staff, real-time 
decisions are now made possible that considerably improve the ED triage process. It 
is also expected that future technological developments will make this process more 
and more effective and increase its importance in resolving queueing problems in 
the EDs.

Fig. 5   Frequency of published queueing-related studies in the managerial field of triage in the ED envi-
ronment

2   Page 10 of 46 Operations Research Forum (2022) 3: 2



1 3

4.2 � Bed Management

ED departments have always dealt with bed management problems, well before the 
problem was formally defined. Broadly, bed management refers to the allocation 
of beds to incoming patients in a manner that ensures that enough beds are avail-
able for emergency patients while not “wasting” bed space, i.e., leaving too many 
beds empty for too long. Traditionally, bed management decisions have been the ED 
staff’s responsibility (sometimes, but not always, formally referred to as bed manag-
ers): the shift manager, triage staff, or the nurses/physicians who received patients. 
Until recently, these decisions were not necessarily made systematically but rather 
were based on the decision-maker’s experience.

In 1994, Green and Armstrong [47] formally defined the problem of bed manage-
ment as “keeping a balance between flexibility for admitting emergency patients and 
high bed occupancy” and outlined the bed manager’s responsibilities. Boaden et al. 
[48] adopted a similar definition of the problem while emphasizing that a bed man-
ager’s decisions should take into account operational (immediate) considerations 
and strategic factors that affect the flow of patients. They also identified several key 
criteria that bed managers must fulfill to be effective in their roles: For example, the 
bed manager should be able to deal with crisis scenarios and resource shortages. To 
do so, the bed manager should have knowledge about the specific ED and its work 
methods, as well as familiarity with the patients in it; he or she should be able to 
exercise authority over the staff and patients and should possess the ability to obtain 
relevant information and send data to other parts of the hospital if needed (for exam-
ple, information relating to occupancy in other departments).

Several field studies published in the 2000s have shown that effective bed manage-
ment can indeed improve ED efficiency. Proudlove et al. [49] claimed that efficient 
bed management can play a key role in resolving overcrowding in EDs and acci-
dent departments. In their work, the authors provided a clear scheme of the patient’s 
“journey” through the hospital and bed management’s role in that journey. In 2008, 
a study by Howell et al. [50]  empirically showed that “active” bed management — 
in which a designated bed manager assesses bed availability in various departments 
and “reshuffles” bed assignments according to the needs — can substantially reduce 
patient waiting times. A study by Ben-Tovim et  al. [51] showed that applying the 
managerial approach of “lean thinking” to hospital processes such as bed manage-
ment enabled a hospital in Australia to cope with increasing demand. Notably, the 
approaches adopted in these studies were not based on queueing theory principles but 
rather on managerial expertise.

The study of bed management from a queueing theory perspective is still in rela-
tively early stages of development, suggesting that there is a great deal of room for 
researchers to improve and optimize bed management procedures. The first stud-
ies in queueing theory that began to address bed management were published in 
the 1980s and early 1990s. These included the papers by Kao and Tung [21] and  
Worthington [23, 24] which referred to waiting lists for healthcare services, in which 
patients effectively queued for available beds.

In 2001, Mackay [52] proposed quantitative models for bed occupancy man-
agement and planning (the bed occupancy management and planning system and 
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Sorensen’s multi-phased bed modeling) and elaborated on his experiences applying 
these models to healthcare systems in Australia. Mackay noted that these models 
could provide healthcare planners and managers with important information about 
patient flows and bed numbers suitable for different resource planning strategies. 
However, they cannot yet replace the information obtained through the day-to-day 
process of bed management. In 2002, Gorunescu et al. [53, 54] published two of the 
best-known papers addressing queueing theory and bed management combined. In 
the first paper [53], they used an M/PH/c queueing theory model to describe patient 
movement through a hospital department and proposed an optimization approach to 
improve the use of hospital resources. Their model was based on the premise of bal-
ancing the cost of empty beds against the cost of turning patients away. In their sec-
ond paper, Gorunescu et al. [54] checked how changing admission rates, LOS, and 
bed allocation affects bed occupancy. They found that 10–15% of the beds should 
stay empty to ensure high responsiveness and cost-effectiveness.

In the last 10 years, bed management studies using operation research and queue-
ing theory have gained momentum. In 2012, Hall [55] devoted a chapter of his 
Handbook of Healthcare System Scheduling to an overview of bed management 
from an operations research perspective. He defined the need for beds as a function 
of the population’s health and age, technology (e.g., the capacity to serve patients in 
an outpatient setting rather than to hospitalize them), efficiency and quality of serv-
ing patients, and, finally, efficiency in bed management (e.g., capacity to coordinate 
and predict patient flow). The purpose of bed management, according to Hall, is 
to reduce the time when beds are unoccupied and thus unproductive. He noted the 
importance of acknowledging that not all beds are alike and provided a classification 
of hospital beds according to their availability and purpose (adult/young care, surgi-
cal, etc.). Finally, he proposed a few indices for measuring the performance of bed 
management processes: e.g., throughput per bed, waiting time for beds, and occu-
pancy level.

Recent operations-focused modeling studies of bed management include the work 
of Mackay et  al. [56], who built a simulation model aimed at facilitating collab-
orative decision-making in hospitals with regard to patient flow and bed manage-
ment. Tsai and Lin [57] proposed a multi-attribute-value theory application for bed 
management using preference-based decision rules. Building on previous research 
in queueing theory, they developed and solved a mathematical programming model 
that used empirical data from EDs and took into account patient preferences. Their 
simulations suggested that it is possible to significantly improve bed assignment 
quality in the ED regarding resource utilization and patient satisfaction. Recently, 
an interesting simulation study of bed allocation to reduce blocking probability in 
EDs has been performed by Wu et al. [58] using a case study in China. They dem-
onstrated that the blocking probabilities can be significantly reduced under different 
priority assignment cases and total number of beds.

Wargon et al. [59] proposed a queueing model and a DES approach to optimize 
bed management in the ED, with the ultimate aim of reducing transfers from the 
ED to other institutions. Like Mackay et al. [56], they suggested that simulation is 
a powerful tool for bed management decision-making. Their model’s key benefit is 
its simplicity, making it very flexible and easy for ED staff to adapt to their needs. 
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In 2015, Belciug and Gorunescu [60] proposed a complex “What-if analysis” of 
resource allocation by creating a framework that integrated (1) an M/PH/c/N queue-
ing system (N is the maximum capacity of patients in the ED); (2) a compartmen-
tal model; and (3) an evolution-based optimization approach. The efficiency of the 
combination of queueing theory and evolutionary optimization was proven on the 
task of optimizing patient management and healthcare costs. They illustrated their 
model’s applicability using data from a geriatric department of a hospital in Lon-
don, UK. Most recently, Folake et al. [61] analyzed the use of queueing models in 
healthcare with an emphasis on accident and emergency department (AED) of a city 
hospital. They determined the optimal bed count and its performance measure for 
improving the patient flow.

As noted above, and is shown in Fig.  6, bed management was already an 
addressed issue, even before its formal definition in the 1990s and has undergone 
a steady increase in interest since then. Since 1980 and also during the first decade 
of the current millennium, its importance was shown by researchers to help with 
the crowding, waiting times, and utilization of the hospital’s resources. At the same 
time, a new stream of literature began to improve this important task: the queue-
ing models for bed managing. Using theoretical models of increasing complex-
ity, researchers were able to design various real-life case studies and to optimize 
them analytically, by heuristics and simulations. Those models remain in place, but 
as already available resources continuously experience wear and tear and new or 
improved resources are brought into the hospitals, they can still be improved and 

Fig. 6   Frequency of published queueing-related studies on bed management in the ED environment
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modified to suit real-life scenarios. This could be done, for example, by dividing the 
various resources into servers and sub-servers, for various beds and armchairs etc.; 
that in addition to applying those models to various and specific EDs with different 
settings.

4.3 � Dynamic Resource Allocation

About two decades ago, researchers and practitioners began to propose flexibility in 
resources such as the number of beds (and the number of patients occupying them), 
nurses, physicians, and even patients as a means of reducing crowding in hospital 
departments. Baschung et  al. [62], for example, described a concept of “floating 
bed,” in which individual clinic departments only have the minimum of fixed beds 
and the other beds are shared among the different departments in a flexible way. The 
method was implemented successfully in a Swiss hospital; however, the authors did 
not specify how it influenced ED processes. Notably, no further practical application 
of the specific method was reported.

In 2005, Bard and Purnomo [63] designed a branch-and-price algorithmic 
methodology for dynamic nurse scheduling based on fix shifts and floating nurses 
according to the needs. The computational results showed that a daily adjustment 
problem can be solved efficiently for up to 200 nurses. Another example of the 
“floating nurses” method can be found in the study from 2012 by Wang et al. [64]. 
The authors constructed a simulation-based research at a large community hospi-
tal and showed, among other findings, that adding a floating nurse can substantially 
improve the LOS in the ED, and it can lead to a 33% reduction in LOS, which is 
substantial. Zlotnik et al. [65] used support vector regression and M5P trees to fore-
cast visits and to create dynamic nursing allocation. Their results showed that ED 
visits can be potentially managed with dynamic nurse staff allocation, resulting in 
improvements in both understaffing risk reduction and direct personnel cost savings. 
The aim of a research by Bornemann-Shepherd et al. [66] was to improve safety, as 
well as patient and staff satisfaction. They found a significant improvement of that 
satisfaction when creating an inpatient unit within the ED in which floating nurses 
from the hospitalization department work when the ED’s crowding demands that.

Another use of flexible resources can be found in the paper of Tan et al. [67] who 
considered the dynamic allocation of physicians at the ED. They proposed an online 
and historical data-driven approach and showed by simulation that their approach 
allows the ED to better cope with the demands and service levels needed. In 2017, 
Bakker and Tsui [68] proposed a dynamic allocation method of specialists for effi-
cient patient scheduling using a data-driven approach and a DES. The authors were 
able to show that their method improves patient service quality as well as waiting 
times without change in resource capacity. In a more classical aspect of resources, 
Luscombe and Kozan [69] proposed a dynamic scheduling framework to provide 
real-time support for managing resources in the ED. The authors used the settings 
of parallel machine and flexible job shop environments to schedule beds and task 
resources allocation in a dynamic way. The heuristic solution method was imple-
mented as a dynamic algorithm that receives information about patient arrivals and 
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treatment tasks and incorporates the new data into an efficient resource allocation 
schedule.

A novel definition of dynamic resource allocation was made in 2015 by Elalouf 
and Wachtel [70], who studied the use of dynamic patient allocation for the ED and 
patient benefits. In this article, the authors proposed an algorithmic approach for 
optimizing the implementation of the so-called floating patient method and assessed 
the approach using empiric observations. They showed that they could thus amelio-
rate the work rate and crowding balance between the ED and the other departments. 
In subsequent work, Elalouf and Wachtel [71] incorporated the method into an algo-
rithm aimed at optimizing the scheduling of patient examinations, assuming a con-
straint on the maximal LOS allowed in the ED. In 2017, they analyzed a holistic 
approach to the dynamic patient allocation method, considering crowding in the ED 
and other hospital departments [72]. They also considered the extent to which infor-
mation has been made available about the patient’s condition in addition to other 
factors such as its severity and the effect of crowding on treatment time. They sug-
gested that their tool can enhance decision-makers’ capacity to balance crowding in 
the ED with crowding in other hospitalization departments.

In contrary to other fields, the dynamic resource allocation field is relatively a 
new one in the EDs, as research in this area has gained momentum only in the last 
decade. Although the field has not been studied in depth before and therefore no 
research literature is available, the term “floating” applied to nurses and beds was 
familiar and used in practice with respect to ED teams. The resources previously 
considered were beds and nurses as they were available and flexible for allocation. 
In the last decade, additional resources have been taken into account as the need for 
limited budget solutions has arisen and the quantity and availability of online data 
from hospital information systems are constantly increasing. Thanks to advances in 
information availability, these resources can now be managed in the same way as in 
other industries to improve the efficiency of the ED queuing system. As shown in 
Fig. 7, the massive growth in the number of relevant publications involving dynamic 
allocation in EDs began in the second decade of the present century with the men-
tioned increase in availability of data and the possibility to “float” physicians, spe-
cialists, and even patients themselves for the benefit of the system and patients. 
Future research may address those new areas and look for the best strategies to 
assign them.

4.4 � Grouping of Patients and Prioritization of Specific Groups

The concept of grouping and prioritizing patients in the hospital is not a new one. It 
entails giving shift managers/ED managers the ability to group patients with simi-
lar conditions together or prioritize specific treatments when resources are limited. 
The most widely known patient classification system is the diagnosis-related groups 
(DRG) system. This classification system was first introduced by McGuire [73] and 
has undergone considerable modifications over the years. Sanderson and Mountney 
[74] reviewed the concepts on which patient groups are based in order to identify 
means of better adapting healthcare grouping designs to the needs of the population. 
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They emphasized the potential of appropriate group design to facilitate data analy-
sis and, consequently, contribute to effective planning and management of health-
care resources. King et al. [75] applied lean thinking concepts to show the impact 
of streaming on waiting times and total durations of stay in the ED. El-Darzi et al. 
[76] proposed a novel grouping methodology based on the premise that identifying 
groups of patients with common characteristics and detecting the workload associ-
ated with each group might help predict resource needs and improve resource uti-
lization. The methodology involved grouping patients according to their LOS, by 
fitting Gaussian mixture models to empirical LOS observations. Gorunescu et  al. 
[77] further developed this method and used surgical data to assess the models they 
proposed. Xu et al. [78] proposed a patient grouping method based on their required 
medical procedures and compared several grouping techniques applied to real ED 
data.

In recent years, a group at Pennsylvania State University has produced extensive 
research on methodologies for prioritizing ED patients, though not with a queue-
ing-related focus. Claudio and Okudan [79], for example, used a hypothetical case 
study to investigate the use of multi-attribute utility theory in the prioritization of 
ED patients. Their method addressed cases where it is necessary to prioritize multi-
ple patients who present the same acuity level (implying that treatment prioritization 
is not a straightforward task) but with different vital signs. Fields et al. [80] subse-
quently carried out a study that acknowledged the reality in which multiple decision-
makers (e.g., nurses and other staff members) disagree on the priority rankings of 

Fig. 7   Frequency of published queueing-related studies on dynamic resource allocation in the ED envi-
ronment
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different patients, a problem called the rank aggregation problem. Ashour and 
Okudan Kremer [81] developed an algorithm based on a management philosophy 
called Group Technology (GT), which is grounded on the premise that knowledge 
about groups leads to efficient problem-solving. The authors applied the algorithm to 
triage analysis in an ED system. In a subsequent study [82], they extended this idea to 
develop a Dynamic Grouping and Prioritization (DGP) algorithm that identifies the 
appropriate criteria for grouping patients and prioritizes them according to patient- 
and system-related information. This approach’s simulation demonstrated its superi-
ority to a baseline grouping and prioritization method (based on the ESI) in terms of 
patient average LOS in the ED.

Recently, several grouping and prioritization methods have emerged that explic-
itly address queueing problems in the ED. Tan et al. [83] proposed using a dynamic-
priority queue to dispatch patients to consultations with doctors. They tested the 
proposed model using a simulation and observed that it effectively reduced patient 
LOS and improved patient flow. In 2019, Ding et al. [84] analyzed the patient rout-
ing behaviors of ED decision-makers in four EDs of metro Vancouver. They pro-
posed a general discrete choice framework, consistent with queueing literature, as 
a tool to analyze prioritization behaviors in multi-class queues. They observed that 
decision-makers in all four EDs applied a delay-dependent (dynamic) prioritization 
approach across different triage levels. In the same year, Zhang et al. [85] proposed 
a new patient queueing model with priority weight to optimize the ED management 
and analyze the impact of prioritization on the outpatient queueing system in an ED 
with limited medical resources.

Since it was first formally introduced, the concept of grouping patients changed 
drastically. Although it is proven, and well known, that efficient implementation of 
patient grouping can improve patient care and workload management in the ED, 
the optimal way to apply the concept is still not found. Since the ESI was devel-
oped in 1999 by Gilboy et al. [25] who brought the idea of grouping to all EDs, the 
grouping and prioritization methods have been addressed in studies whose number 
has increased significantly in the recent years as shown in Fig. 8. Grouping criteria 
evolved, since the initial one defined by the first use of the ESI, i.e., the character-
istics of patients such as symptoms and risk situation and now commonly involve 
the required medical procedures. Other streams attacked the prioritization of patient 
groups when using the entire hospital’s information systems and the real-life cases 
that can arise from such use. From the perspective of queueing theory, this field is 
still very open for improvement as it can be well combined with other managerial 
methods with various definitions and models.

4.5 � Fast‑Track

The fast-track method is one of the best-known and most commonly used meth-
ods for directing patient flow in EDs. In effect, this method’s premise is similar to 
that of the grouping and prioritization approach discussed above. It entails treat-
ing acutely ill patients separately from minimally ill patients in the ED, such that 
the latter can be seen and discharged rapidly. The fast-track method originated in 
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the EDs themselves during the 1980s. Researchers in medicine and management 
began to write about it in the late 1980s and 1990s; they studied its usefulness and 
explored means of improving its implementation. Meislin et al. [86], for example, 
tested a fast-track method for 10  weeks in a teaching hospital and showed that it 
decreased patient waiting times (as compared with the previous system the hospital 
had in place) and increased patient satisfaction. In 1992, Wright et al. [87] reviewed 
a 1-year implementation of this method and reported high satisfaction levels among 
patients and medical staff. Cardello [88] studied the introduction of nurse practi-
tioners to help reduce waiting time for ambulant nonurgent cases in fast-track pro-
gram. Fernandes et al. [89] applied a managerial approach called Continuous Qual-
ity Improvement (CQI) to improve fast-track care in a hospital ED; the authors 
observed that the approach reduced patient LOS. They continued [90] to explore 
the outcomes of their hospital’s fast-track approach; they observed that (1) reducing 
patient LOS was associated with a decrease in the number of ED patients who left 
without seeing a physician; and (2) many patients leaving the ED without being seen 
had been classified as urgent (opposed to nonurgent) at presentation. Cooke et  al. 
[91] investigated the influence of the use of a fast-track on waiting times within acci-
dent and emergency (A&E) departments in the UK. They assessed that it decreases 
the number of patients enduring long waits without delaying the care of those with a 
more severe injury.

Subsequent field studies on the implementation of the fast-track method include the 
work of Sanchez et al. [92], who studied the influence of the opening of a fast-track 

Fig. 8   Frequency of published queueing-related studies in the managerial field of grouping and prioriti-
zation in the ED environment
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area in an ED in a US hospital. They concluded that the opening of the fast-track area 
improved ED effectiveness, as measured by a decrease in waiting times and LOS, with-
out leading to deterioration in the quality of care provided, as measured by rates of 
mortality and revisits. Darrab et al. [93] examined the use of a fast-track method in a 
Canadian hospital; they showed that fast-tracking lower-acuity patients reduced overall 
LOS and the left-without-being-seen rate without affecting higher-acuity patients in the 
ED. A study by Nash et al. [94] evaluated the efficacy of a newly developed fast-track 
area in a university-affiliated ED and concluded that patients did move more quickly 
through the department after adding the fast-track unit. Combs et al. [95] evaluated the 
outcomes of adopting a fast-track approach in an Australian hospital. They determined 
that the fast-track reduced congestion in the ED waiting area and improved staff morale. 
Considine et al. [96], who also studied a fast-track program in Australia, concluded that 
the fast-track decreased LOS in the ED for non-admitted patients without compromis-
ing waiting times and LOS for other ED patients. Oredsson et al. [31], discussed above, 
carried out a systematic review of studies on interventions aimed at improving flow 
processes in EDs. They showed that introducing a fast-track for patients with less severe 
symptoms consistently results in shorter waiting time, shorter LOS, and fewer patients 
leaving without being seen.

Recent field studies evaluating adjustments to fast-track processes include a con-
trolled study by White et  al. [97], who showed that a Lean-based reorganization 
of fast-track process flow improved fast-track ED performance (in terms of LOS, 
percent of patients discharged within 1 h, and room use), without adding expense. 
Manno et al. [98] examined a fast-track system in which lower-acuity patients were 
streamed to specialized care areas and determined that they were seen quickly 
by specialists and safely discharged or admitted to the hospital without diverting 
resources from patients with high-acuity illness or injury.

During the 1990s, owing to advancements in technology and processing power, 
many researchers began to use simulation models (as will be discussed in detail 
in the section dealing with scientific modeling) to evaluate and seek methods of 
improving the implementation of the fast-track method. Kraitsik and Bossmeyer 
[99], for example, developed a simulation to evaluate the establishment of a fast-
track lane adjacent to the main ED and a large-capacity lab to improve patient flow. 
McGuire [100] carried out a simulation study for improving patient flow in the ED 
of a specific hospital that implemented a fast-track system. Their simulations yielded 
several recommendations, including adding an additional registration clerk during 
peak hours, adding a holding area for waiting patients, extending the fast-track lane 
hours, and using more senior physicians instead of residents in the fast-track area. 
Garcia et al. [101] used a simulation approach to determine whether a specific hospi-
tal would benefit from implementing a fast-track method; they found that a fast-track 
system using a minimal number of resources would indeed greatly reduce patient 
waiting times. Kirtland et al. [102] examined 11 alternatives to improve patient flow 
in an ED in Maryland and found that the use of a fast-track method, combined with 
treating the patients at the same place in which they wait and using point-of-care 
lab testing procedures, could substantially reduce the average patient’s LOS. In the 
early 2000s, Sinreich and Marmor [103–105] developed simulation tools to assist 
ED decision-makers; these tools divided patients into categories—one of them 
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was a “fast-track” category—and used these categories to predict patient LOS (see 
“Sect. 5.3” for additional details). Marmor et al. [106] also developed a methodol-
ogy for ED design to help the ED managers and used it to compare triage and fast-
track operational models in different hospitals. La and Jewkes [107] used DES to 
model an ED’s fast-track system and determined an optimal fast-track strategy to 
improve performance measures. They used real data to evaluate the effectiveness of 
several fast-track strategies within a hospital ED and showed practical implications 
for reducing patient wait times in EDs.

Additional queueing theory-based approaches to the analysis of fast-track appli-
cations include the works of Roche and Cochran in 2007 [108] and 2009 [109], who 
developed a queueing network model to describe a scenario in which acute patients 
are treated in specific areas of the ED and “fast-tracked” patients are flexible in 
terms of where in the ED they can be treated. Their model can be used to derive 
recommendations to increase ED utilization and minimize the number of “walk-
aways,” i.e., patients who leave without receiving treatment, with the help of opera-
tion research methods. Recently, Fitzgerald et al. [110] used a queue-based Monte 
Carlo analysis to support decision-making for implementing an ED fast-track. They 
expanded the simple queueing model with a DES that enabled them to calculate 
waiting times. Their results indicated that implementing a fast-track can reduce 
patient waiting times without increasing demand for nursing resources.

In conclusion, the fast-track is one of the most intuitive method for reducing the 
average LOS in the ED, and therefore, it has been well studied during the years since 
the late 1980s, as shown in Fig. 9, and proved to be very effective in terms of both 
LOS and patient satisfaction. Two major streams of literature are strongly recogniz-
able for this method: one includes the field studies, which are most common as the 
fast-track method is applied in many places around the world and with many set-
tings. The other stream is the simulation-based research that increased drastically 
since the early years of the millennium, with the growing availability of data from 
the hospital information systems. Although case studies with specific implementa-
tion are still used commonly, most of the current research in the field is based on 
simulations whose effectiveness varies with the data availability of the specific hos-
pital or ED.

5 � Scientific Modeling Methods

This section focuses on the diverse scientific modeling methods and approaches 
used to investigate ED applications of queueing-related problems in operations 
research. In 2010, Eitel et  al. [111] described the ED as a service business and 
then discussed specific methods, such as triage, bedside registration, Lean and 
Six Sigma management methods, statistical forecasting, queueing systems, 
discrete-event simulation modeling, and others, to improve the ED quality and 
flow. In 2011, Wiler et  al. [112] reviewed and compared modeling approaches 
to describe, and at times predict, ED patient load and crowding and evaluated 
their limitations. Saghafian et al. [113] reviewed many papers to demonstrate the 
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contribution of operations research and management science to ED patient flow 
problems. More recently, Palmer et  al. [114] performed a systematic literature 
review of operations research methods for modeling patient flow and outcomes 
within community healthcare. Ahsan et  al. [115] reviewed various analytical 
models utilized to optimize ED resources for the improvement of patient flow 
and highlighted the benefits and limitations of these models. A range of modeling 
techniques including agent-based modeling and simulation, discrete-event simula-
tion, queueing models, simulation optimization, and mathematical modeling have 
been reviewed in their work. In the present work, we built on Wiler et al. [110] 
classification, presenting a similar one and expanding it to accommodate addi-
tional approaches and more recent research. The methods included in our work 
are presented in the following order: queueing, priority and simulation models, 
statistical methods, and additional algorithms and computational methods.

The total number of relevant articles reviewed in this section as function of 
the year of publication is shown in Fig. 10. Its growth in recent years emphasizes 
the interest and importance of further research and development of such mod-
eling methods. It is expected that the continuously growing technological devel-
opments and the increasing availability of data as previously mentioned in “4.1” 
change the way that the EDs (and healthcare systems) work, and therefore can 
change the models needed.

Fig. 9   Frequency of published fast-track studies in the ED environment
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5.1 � Queueing Models

Computational queueing models arise directly from general queueing theory. Lead-
ing textbooks on fundamentals of queueing theory and modeling that can contrib-
ute to general knowledge are those of Gross et al. [116] and Bhat [117]. According 
to Green’s chapter (“Queueing Theory and Modeling”) [118] in the Handbook of 
Healthcare Delivery Systems: “A queueing model is a mathematical description of 
a queueing system which makes some specific assumptions about the probabilistic 
nature of the arrival and service processes, the number and type of servers, and the 
queue discipline and organization.” A basic queueing system is defined in the same 
chapter as “a service system where ‘customers’ arrive at a bank of ‘servers’ and 
require some service from one of them.” As noted in “Sect.  3” above, one of the 
first prominent works to be published in this field was Keller and Laughhunn’s [13] 
discussion of a queueing model addressing physician capacity in an outpatient clinic 
and its influence on clinic efficiency. A good review of queueing models in the field 
of healthcare may be found in the above chapter by Green [118]. Fomundam and 
Herrmann [119] also reviewed queueing models in healthcare systems, focusing on 
waiting time and utilization analysis, system design, and appointment systems.

Later on, Mehandiratta [120] attempted to analyze in his paper the theory and 
instances of use of queueing theory in healthcare organizations around the world and 
the benefits acquired from the same. Palvannan and Teow [121] applied queueing 

Fig. 10   Frequency of published queueing-related studies on the scientific modeling methods used in the 
ED environment
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theory to healthcare, using queueing models in two hospitals to estimate and analyze 
service capacity. Some additional papers, such as that of Bain et al. [122] and more 
recent ones by Cho et al. [123], Bittencourt et al. [124], and Lin et al. [125], deal 
with the application of queueing theory and modeling to healthcare in general.

This area has been continually studied over the years since the 1990s, although 
it has received much attention during the last 2 decades, as shown in Fig. 11. Even 
before that, there were works referring to queueing models specifically in the ED envi- 
ronment. One of the first works in this area was presented by Collings and Stoneman  
[19]. They derived an M/M/∞ queue with varying arrival and departure rates to 
study the influence of patient arrival rates on bed occupancy levels. However, the 
most significant works involving ED queueing models began to appear around the 
beginning of the twenty-first century. Gorunescu et al. [53, 54], for example, used 
a queueing approach to model bed occupancy in EDs as well as in other hospital 
departments. In 2004, McManus et  al. [126] constructed a queueing theory-based 
model for resource allocation in various hospital activities, including EDs, and vali-
dated it in an intensive care unit. Green et al. [127] evaluated the effectiveness of a 
queueing model in identifying ED staffing patterns to reduce the fraction of patients 
who leave the ED without being seen. De Bruin et al. [128] used a queueing model 
to analyze congestion in the flow of emergency cardiac patients and to allocate num-
bers of beds, given a required service level (operationalized as percentage of refused 
admissions). Creemers et al. [129] showed how queueing models could quantify the 

Fig. 11   Frequency of published studies on computational queueing models arising directly from general 
queueing theory, with emphasis to the ED environment
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relationship between capacity utilization, waiting time, and patient service, thus ena-
bling decision-makers to improve the performance of healthcare systems, including 
that of EDs. Mayhew and Smith [130] used a queueing model to analyze patient 
flow in accident and emergency departments to evaluate government-imposed tar-
gets’ feasibility for treatment completion times. Laskowski et al. [131] utilized both 
agent-based and queueing models to investigate patient access and patient flow 
through EDs towards identifying means of reducing waiting times. Further examples 
of application of queueing models to ED systems and their improvement in the first 
decade of the twenty-first century may also be found in the publications of Morton 
and Bevan [132], Au et al. [133], and Tseytlin [134].

More recently, Tan et al. [83] presented a hospital ED case where the queueing 
process can be modeled using a time-varying M/M/s queue with re-entrant patients, 
and tested this model using simulation. Hagen et  al. [135] dealt more specifically 
with priority queueing models applied to ICUs and EDs; these specific models 
deserve special attention and will be referred to in a separate section. Wiler et al. 
[136] derived an ED patient flow model based on queueing theory that predicts the 
effects of various patient crowding scenarios on the number of patients who leave 
the ED without being seen. Yom-Tov and Mandelbaum [137] analyzed — in a paper 
based also on a previous work by Yom-Tov from 2010 [138] — a queueing model 
called Erlang-R that helps answer questions such as how many servers (physicians/
nurses) are required to achieve predetermined service levels. Batt and Terwiesch 
[139] reviewed a number of queueing models and focused on the so-called Erlang-
A model when studying queue abandonment from an ED. Vass and Szabo [140] 
applied M/M/3 queueing model to ED patient data collected over 1 year to evalu-
ate the ED’s performance. Additional publications of interest by Alavi-Moghaddam 
et  al. [141], Cantero and Redondo [142], Mohseni [143], and Huang et  al. [144] 
deal to some extent with potential contribution of queueing theory and models to the 
improvement of that performance and will not be expanded here.

Rotich [145] used M/M/s queueing model to determine the optimum waiting and 
service cost in a hospital ICU emergency service. Xu and Chan [146] used queue-
ing models which accurately predict the number of patient arrivals to the ED for the 
purpose of reducing waiting times in the ED via diversion and analyzed the qual-
ity of those models. Jáuregui et al. [147] analyzed the emergency service of a pub-
lic hospital in Mexico by applying the concepts and relations of queueing theory. 
They evaluated the minimum number of doctors necessary to satisfy the current and 
future emergency service demands for different scenarios and added recommen-
dations to the managerial staff. Recently, Hu et al. [2] evaluated the contributions 
of queueing theory in modeling EDs and assessed the strengths and limitations of 
this application. They concluded that queueing models tend to oversimplify opera-
tions but that combining these models with simulations (as further discussed in the 
specific subsection on simulation modeling) should be a powerful approach. Joseph 
[148] reviewed and analyzed the use and benefits of the application of queueing the-
ory and modeling to ED resources and operations in general.

Additional noteworthy queueing models include priority queueing models such 
as those of Siddharthan et al. [149] and more recent ones in the 2000s; they will be 
discussed separately in the following subsection.
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5.2 � Priority Models

Priority models (sometimes called priority queueing models) are a family of queue-
ing models developed to be goal-oriented and deserve special mention. Here we 
address a field of models that uses pure queueing theory models and definitions and 
is different from the grouping and prioritization field that arose in parallel. As such, 
this field is rather new in the ED environment as shown in Fig. 12.

Green [150] referred to the triage system in an ED as a classic example of a pri-
ority queue. In their review of methodologies for modeling ED patient flow (dis-
cussed above), Wiler et al. [110] suggested that models based on priority principles 
are appropriate for ED settings, where acuity, in addition to the time of presenta-
tion, determines the order in which patients are serviced (i.e., the sickest patients 
are prioritized over less-acute patients). Already in 1996, Siddharthan et  al. [149] 
classified patients into emergency and non-emergency care and provided evidence 
that non‐emergency patients contribute to lengthy delays in the ED for all classes of 
patients. They proposed a priority queueing model to reduce average waiting times. 
Two additional works of Au-Yeung et al. are of interest: In the first one dated 2006 
[151], they used a simulation modeling to provide some insights into the effects of 
prioritizing different classes of patients in a real accident and emergency unit based 
in London, UK. In the second one from 2007 [152], they developed an Approxi-
mate Generating Function Analysis (AGFA) technique, experimenting it with differ-
ent patient-handling priority schemes and comparing the AGFA moments with the 
results from a discrete-event simulation.

Fig. 12   Frequency of published priority models studies in the ED environment
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Additional examples of studies using priority queueing models include the work 
of Laskowski et  al. [131], who developed a framework of multiple-priority queue 
systems as a means of forecasting patient waiting times. Tan et al. [83] developed 
a dynamic-priority queue model in which the priority levels are assigned to queue-
ing patients in the ED shift with staff availability. The authors modeled the queue-
ing process using a time-varying M/M/s queue with re-entrant patients and tested it 
using simulation. Hagen et al. [135] used a priority queueing model to analyze the 
differences between prioritizing admissions by expected LOS or patient severity. An 
interesting conclusion of this work was that prioritizing patients by severity not only 
considerably reduced delays for critical cases but also increased the average waiting 
time for all patients. Lin et al. [153] developed a priority queueing model to describe 
the flow and waiting times of patients waiting for ED service and subsequently for 
hospitalization in an inpatient unit. The model assumed that emergency patients are 
characterized by different priority levels and incorporated priority-specific waiting 
time targets.

More recently, a paper by De Boeck et al. [154] dealt with confronting the phy-
sicians with the challenging task of prioritizing between boarding patients and 
patients currently under treatment in the ED. Their case study showed that system 
performance is optimized by applying a policy that gives priority to patients cur-
rently under treatment in the ED. In 2020, Hou and Zhao [155] presented a prac-
tical approach to estimate the waiting times for multi-class patients and applied it 
to reduce the waiting time for high priority patients. Using a case study from an 
ED, they found that the proposed approach can efficiently prioritize patient flows in 
decreasing waiting times.

5.3 � Simulation Models

Simulation is a very popular approach for describing complex processes and the ED 
environment as such is not different. As visible in Fig. 13, this area has been well 
studied since the 1990s with massive growth in the 2000s due to the availability of 
data and computational power. We see on the figure a peak in the occurrence of such 
studies at the end of the first decade of the present century. It can be explained by the 
fact that their use has been very effective since then, thus reducing to some extent 
the demand for further theoretical research. A vast number of ED studies using com-
puter simulations have been published over the years; thus, we will review in detail 
only the most important ones.

Ladany and Turban [20] were among the first to use a queueing simulation model 
to provide a framework for the planning and staffing of an ED. They emphasized 
the benefits of a simulation approach as a means for ED managers to obtain infor-
mation about costs, waiting times of patients, and idleness of facilities. Saunders 
et al. [156] used simulation software to develop a computer simulation model of ED 
operations. The authors varied selected input data systematically to determine the 
effects of various (simulated) factors on patient throughput time, queue sizes, and 
resource utilization rates. Lopez-Valcarcel and Perez [157] claimed that simulation 
is an effective tool for the analysis of the complex problem of scheduling in the ED 
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and that the result can be used to improve its quality care and efficiency. In the same 
year, McGuire [100] also used simulation software to identify means of reducing 
patient LOS in EDs. Nearly a decade later, Samaha et al. [158] published a similar 
model based on empirical data that proved to be very helpful in the ED of their 
hospital. Ruohonen et  al. [38] used a simulation approach — that was previously 
discussed in “Sect. 4.1” — to demonstrate the capacity of a team triage method to 
improve ED operations.

The increasing availability of powerful computers has led to the development and 
extensive use of DES, a computerized simulation approach in which discontinuous 
systems are modeled as networks of interdependent discrete events. DES has proven 
to be effective for representing queueing systems in general and ED systems in par-
ticular and has become a preferred simulation method over the years. Indeed, a lit-
erature review by Günal and Pidd [159] noted that the number of studies of DES 
applications to EDs has increased since the beginning of the twenty-first century.

Jun et al. [160] reviewed applications of DES modeling to healthcare clinics and 
systems (including EDs), primarily in areas of patient flow and resource alloca-
tion. Connelly and Bair [37] explored the potential of DES methods as a tool for 
analyzing ED operations and illustrated its potential by comparing the efficacy of 
two alternative triage methods (as discussed above in “Sect.  4.1”). Komashie and 
Mousavi [161] also developed a DES approach to model the operations of an ED. 
They used their model to provide ED managers of a London hospital with new 
insights and system improvement recommendations. Duguay and Fatah [162] used 

Fig. 13   Frequency of published simulation-based studies in the ED environment
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Arena software to carry out a DES study of a Canadian ED in order to derive rec-
ommendations to reduce patient waiting times and improve overall service delivery 
and system throughput. Hoot et al. [163] drew from theoretical studies to develop a 
DES of patient flow and used it to forecast overcrowding occurrences in an ED in 
real-time; they subsequently used observational data to validate the model’s fore-
casts [164]. Bair et al. [165] used a DES model of ED patient flow to investigate the 
effect of inpatient boarding on ED efficiency in terms of the US National Emergency 
Department Crowding Scale (NEDOCS) score and the rate of patients who leave 
without being seen. The results of their analysis helped to quantify the impact of 
patient boarding on ED crowding. Further papers that use DES modeling for solv-
ing queueing issues in EDs have been published in the same years, among them 
we notice those of Brailsford and Hilton [166], Davies [167], Kolker [168], Khare 
et al. [169], and Fletcher and Worthington [170]. Between 2009 and 2011, we also 
identify the works of Marmor et al. [171], Tseytlin [133], Marmor [172], and Zeltyn 
et al. [173], who belong to a common research group that specializes in the develop-
ment of DES modeling techniques and their application to decision support for ED 
issues like staffing.

Lim et al. [174] used DES analysis to model interactions between physicians and 
“delegates” they supervise (such as residents, nurse practitioners, and assistants). 
They compared their model with a simulation model that did not incorporate such 
interactions and showed that the formerly produced recommendations yielding 
substantially better outcomes (e.g., in terms of patient LOS) than the latter did. In 
the same year, La et  al. [107] used DES to model an ED’s “fast-track” system to 
derive recommendations for improving performance measures. Hurwitz et al. [175] 
developed an event-driven flexible simulation platform to quantify and manage ED 
crowding. In a further work [176], they demonstrated the ability of such a simulation 
model to recreate and predict site-specific patient flow in two very different EDs. El-
Rifai et al. [177] focused on human resources organization in an ED and developed 
a stochastic optimization model for shift scheduling in it. Then they evaluated the 
resulting personnel schedules using a DES model and performed numerical analyses 
with data from a French hospital to compare different personnel scheduling strate-
gies. Ahalt et al. [178] used DES to address ED crowding problems when the identi-
fied need for emergency services exceeds available resources for patient care in the 
ED, hospital, or both. Using data from a large academic hospital, they evaluated and 
compared three metrics commonly used in practice as future crowding indicators. 
More recently, Gulhane [179] presented a study that aimed to manage queues in hos-
pital using DES simulation. He concluded that issues in hospital were well resolved 
through that simulation and modifications in queueing have been done. Castanheira-
Pinto et  al. [180] presented a methodology to assist the design process of an ED 
using a DES simulation technique. The ED of a hospital in Portugal was considered 
for testing that technique. The methodology proved to be very useful in determining 
an optimized operation for complex and non-linear systems.

Although DES has proven to be a beneficial simulation approach for ED contexts, 
several additional simulation approaches have been used successfully in these settings 
and warrant a mention here. Some of these are discussed in the work of Mohiuddin 
et al. [181], who undertook a systematic review to investigate the different computer 
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simulation methods and their contribution to the analysis of patient flow within EDs 
in the UK. One of these approaches is the system dynamics approach (SD), which 
is used to understand complex healthcare systems’ behavior over time by capturing 
aggregate (instead of individual) patient flows. Brailsford et al. [182], for example, 
applied a system dynamics simulation to an extensive complex ED distribution sys-
tem in the UK city of Nottingham and used it to identify potential bottlenecks and 
points that might benefit from intervention. Thorwarth et al. [183] used a simulation 
model within structured modeling methods, to investigate flexible workload manage-
ment for an ED environment. They applied the results to derive a generalized analytic 
expression describing settings that lead to an instable queueing system and affected 
service quality; they provided thus the decision-makers with a tool which allows 
identifying and preventing such conditions.

In 2010, Van Sambeek et  al. [184] carried out a literature review of decision-
making models according to healthcare problems and showed that 46% of the stud-
ies used computer simulation. Paul et  al. [185] performed a systematic review of 
ED simulation literature from 1970 to 2006 to highlight these simulation studies’ 
contributions to their understanding of ED overcrowding and to discuss how simu-
lation can be better used as a tool to address this problem. Their review did not 
include a more recent simulation technique — the so-called agent-based simulation 
(ABS) approach, commonly used to model complex systems composed of interact-
ing, autonomous “agents.” Laskowski and Mukhi [186] used this approach to sim-
ulate the performance of a stand-alone ED and multiple interacting EDs through-
out a Canadian city. Jones and Evans [187] used an agent-based approach to model 
the influence of ED physician scheduling on patient waiting times. Liu et al. [188] 
identified ABS modeling as an excellent tool to deal with complex system like an 
ED and introduced such a generalized computational model for simulating ED per-
formance. More recently, Yousefi and Ferreira [189] presented a pure agent-based 
simulation combined with a group decision-making technique to improve the perfor-
mance of an ED.

Additional simulation studies in ED queueing use multiple simulation methods 
or simulations combined with a simple queueing model. The recent review by Hu 
et al. [2] provides a detailed discussion of such combinations and their advantages. 
To avoid model complexity and requirement of large amount of data collection, 
Ceglowski et  al. [190] described a unique approach of simulation by combining 
data mining with discrete-event simulation and could thus provide insight into 
the complex relationship between patient urgency, treatment and disposal, and 
the occurrence of queues for treatment in the ED. Saghafian et al. [191] separated 
patients (and resources) into different streams and used various analytic and simu-
lation models to determine that this streaming policy will improve ED performance 
in some situations. Uriarte et  al. [192] used a combination of DES with multi-
objective optimization to help decision-makers reduce ED patient LOS and waiting 
times. Fitzgerald et al. [110] supplemented DES with a queue-based simulation to 
demonstrate the impact of implementing a fast-track method in an ED on patient 
waiting times and service quality.

Finally, a new literature review of simulation modeling applied to EDs by Salmon 
et  al. [193] covering all English language papers from the year 2000 expanded 
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previous reviews on simulation models in EDs such as the systematic review by Paul 
et al. [185]. They showed that most of the works are academic, based essentially on 
DES, and focused on capacity, process, and workforce issues at an operational level.

5.4 � Statistical Methods (Regression Analysis and Forecasting)

Statistical methods can provide robust mathematical tools for forecasting crowding 
in EDs. As such, and in a similar way to other fields that address the ED environ-
ment, we can observe a big and increasing interest in this field in the present cen-
tury, as shown in Fig. 14. As noted in a review by Wargon et al. [194], two of the 
most commonly used mathematical approaches for predicting patient attendance at 
EDs or walk-in clinics are regression analysis and time series analysis. (The authors 
noted that these models tend to achieve good performance, with errors ranging from 
4.2 to 14.4%.) Regression and time series analyses applied to ED issues are dis-
cussed comprehensively in the paper of Wiler et al. [112]. A thorough description of 
regression techniques to be used in EDs can be found in that of Jones et al. [195] and 
will not be expanded here.

Notable examples of applications of these methods to ED settings are included 
in the works of Krochmal and Ryley [196], who analyzed the increase in LOS and 
its resultant costs in a given ED using a two-tailed t-test regression method, and 
of Forster et  al. [197], who used a time series method to investigate the effect of 

Fig. 14   Frequency of published statistical models studies in the ED environment
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hospital occupancy on ED LOS and patient disposition. Asaro et al. [198] applied 
regression methods to data from a large urban academic hospital to analyze the fac-
tors influencing ED patients’ likelihood of leaving the ED without being seen. In 
2008, McCarthy et al. [199] evaluated the appropriateness of prediction models by 
whether the data met key Poisson regression assumptions, for predicting demand for 
ED  services in an academic hospital. They found that the demand at that facility 
was well approximated by a Poisson regression model. Jones et al. [200] presented 
a multivariate time series approach to modeling and forecasting demand in the ED. 
They concluded that this approach provides an adequate ED census forecast but is 
insufficient for predicting and managing ED resource availability. Schweigler et al. 
[201] investigated whether models using time series methods can generate accurate 
short-term forecasts of ED bed occupancy. Two of the models the authors exam-
ined were found to robustly forecast ED bed occupancy 4 and 12 h in advance at 
three different EDs. Further applications of those statistical methods to ED issues in 
the first decade of the twenty-first century may be found in papers by Steindel and 
Howanitz [202], Liew et al. [203], Rogers et al. [204], and Jones et al. [205]. Jones 
and Olsen [206], Oskaynak and Brennan [207], and Mandelbaum et al. [208] also 
published papers that apply methods of statistical data analysis to queueing and LOS 
studies in diverse EDs. Cote et al. [209] created a tutorial for ED medical directors 
in which they applied regression-based forecasting models to data obtained from a 
large teaching hospital’s ED; the versatility of the regression analysis was shown to 
accommodate a variety of forecasting situations readily. Shanmugam [210] demon-
strated by an analysis and interpretation of real data from a hospital ED in Malta that 
queueing concepts and tools using probabilistic- and statistical-based approach help 
to efficiently manage the ED in the presence of impatient waiting patients. Afilal 
et al. [211] proposed a new approach to classifying ED patients in addition to time 
series-based models to forecast long- and short-term daily census in a city hospital 
in France. These models showed outstanding performance in terms of their capacity 
to predict the annual total flow of ED patients (accuracy of up to 91.24%) and their 
robustness to epidemic periods. Whitt and Zhang [212] developed an aggregate sto-
chastic model of an ED based on a careful study of data on individual patient arrival 
times and length of stay in a specific hospital. In 2019, Das et al. [213] proposed a 
functional regression model based on customer arrival and departure time instances 
from an in-control ED system in a major academic hospital, and validated it using 
simulation and real data case studies. In 2020, Wachtel and Elalouf [214] proposed 
an algorithm based on a statistical analysis that considered combination of data from 
the hospital’s information systems and field observations to identify known and new 
influential factors on LOS and crowding at the ED and to treat them.

5.5 � Additional Algorithms and Computational Methods

According to Wiler et  al. [112], implementation of complex mathematical mod-
els aims to forecast or optimize various ED outcomes. Larson [13] was one of the 
first to develop a computationally efficient algorithm to analyze queueing problems 
related to emergency healthcare services; his model was designed for vehicle location 

Page 31 of 46    2Operations Research Forum (2022) 3: 2



1 3

and response district design problems. Panayiotopoulos and Vassilacopoulos [215] 
approached sophisticated operational problems related to a hospital ED using a gen-
eral simulation algorithm that could be implemented on a small computer. However, 
algorithmic methods acquired strong momentum only at the beginning of the present 
century with the increasing use of large computers in healthcare systems, as shown in 
Fig. 15.

Topaloglu [216] presented a multi-objective goal programming model for sched-
uling work hours for emergency medicine residents. The model was tested in the ED 
of a prominent local university hospital and allowed good quality scheduling at rea-
sonable times. Yeh and Lin [217] used a genetic algorithm coupled with simulation 
techniques to derive a nurse schedule that optimized the quality of service at a hospital 
ED. El-Darzi et al. [76] and Gorunescu et al. [77] applied various clustering algorithms 
to evaluate LOS-based methods of grouping and prioritizing patients (see discussion 
in “Sect. 4.4 ,” above). Wang et al. [218] utilized the expectation–maximization (EM) 
algorithm for modeling the throughput of EDs via available time series data. Real-world 
data from an ED in London helped to demonstrate the effectiveness of the introduced 
algorithm. Lin et al. [153] used two numerical algorithms to estimate patient waiting 
time in the ED.

Elalouf and Wachtel [70, 71] developed fully polynomial-time approximation 
scheme (FPTAS) algorithms to assist ED decision-makers in optimally scheduling 
evaluations for waiting patients. The authors used these algorithms in combination 

Fig. 15   Frequency of published algorithmic-based models studies in the ED environment
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with the “floating patients” method discussed above and evaluated their efficacy in 
simulations with real-life data [71, 72]. Memari et al.  [219] used genetic algorithms 
to optimize service allocations and patient flow in EDs. Ashour et al. (2016) [82] 
developed a dynamic algorithm that optimizes patient classification and prioritiza-
tion to minimize patient LOS. Luscombe and Kozan  [69] also used a dynamic algo-
rithm to provide real-time support for managing resources in the ED. Their  algo-
rithm was tested against several test instances based on data from a real ED and 
achieved solutions within 5% of the optimal. Allihaibi et al. [220] developed a novel 
blocking patient flow (BPF) heuristic algorithm for predicting waiting times in the 
ED. Kuo et al. [221] applied machine learning algorithms for real-time and person-
alized waiting time prediction in EDs. At last, a most recent study by Pak et al. [222] 
uses such machine learning (ML) algorithms to optimize waiting times and signifi-
cantly improve their forecasting. We are aware that this domain is a very promising 
one and therefore a serious candidate for intensive future research.

Finally, some researchers have experimented with alternative scientific approaches 
to solving ED queueing problems which have not yet been widely adopted. Examples 
include a game theory approach (Nash equilibrium) introduced by Hamilton et  al. 
[223] to characterize ED overcrowding as an equilibrium state, optimal control meth-
ods described by Chockalingam et al. [224] for solving resource allocation problems, 
and additional studies by Do and Shunko [225] and Wang et al. [226]. A review of 
ED computational methods that are “not classified elsewhere” can be found in the 
work of Armony et al. [227]. Chaou et al. [228] and Li et al. [229] also used such 
interesting approaches in EDs systems analysis.

6 � Conclusion

This study constitutes a systematic review of literature related to queueing-related 
problems in ED (and other healthcare) settings. We have sought to provide an over-
view of practical approaches used by ED decision-makers to manage patient flow, in 
addition to an in-depth discussion of the scientific methodologies used to study and 
improve ED operations. The increasing number of studies addressing the ED queues 
makes it beneficial and crucial to combine state-of-the-art queueing theory methods 
with managerial methods that are already applicable in practice.

Our primary goal was to provide researchers with an accessible and well-organized 
tool for extracting information on specific topics of interest, and our efforts concen-
trated throughout this work on its achievement. We reviewed 229 articles and books, 
from 1952 to 2021, all addressing queueing theory models and managerial methods 
applicable in the ED. As a result, we have been exposed to the fact that the number of 
studies has increased significantly as the addressed fields are expanding greatly, espe-
cially in the last decade. Our paper categorizes ED crowding into two parts: queue-
ing theory and managerial techniques. This approach allows researchers from both 
aspects to find the most relevant models for their interests easily. As explained above, 
finding the proper model for a specific scenario is crucial for applying it in real life. 
This categorization can also help researchers that are new to queueing theory in EDs 
to get a good insight into the historical and more recent developments of this area.
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As for the managerial point of view, we aimed that the methodology and detailed 
literature review will improve the availability of needed queuing concepts and tools 
to decision-makers who continuously face queueing issues in EDs. We hope also 
that the use of the present paper will help them to make their work more efficient 
and to achieve better performance in their systems.

It is a challenging task to introduce changes in an ongoing system without hav-
ing a significant, and eventually bad, influence on the system and the patients. 
Using queueing theory models as a tool helps ED decision-makers to observe 
solutions and changes before their application becomes mandatory. It is even 
more important to combine the managerial method with the corresponding queue-
ing model and ensure that this model fits the real-life settings. The present review 
aims to be an efficient tool for queueing theory scientists and healthcare managers 
to help them achieve the best fit between the managerial method and the scientific 
model.

Furthermore, some specified methods are still evolving and advancing, and the 
amount of data is growing continuously. Hence upcoming works that are still needed 
to reduce the remaining gaps between the current study and the ED needs can rely 
on newer approaches. Modern optimization methods such as machine learning ones 
have shown to be promising and we feel they justify future research. New manage-
rial approaches like “floating” physicians, specialists, and patients are also promis-
ing and have the potential for further deliberations.

Although the present literature review examined an abundance of papers and iden-
tified multiple queueing methods for improving performance in the EDs, it could not 
fully address the whole scope of the domain. For example, key modeling methodolo-
gies that analyze and predict ED patient load and crowding, such as formula-based 
equations and other mathematical models, are expected to improve significantly in 
further studies. Future research should focus on those effective models and tech-
niques that still require more development or are absent from this research.

Also, any future research from the managerial or the mathematical side should 
address the real life, changing environments of EDs in recent years. Until two dec-
ades ago, most studies aimed to evaluate and describe the managerial methods. 
With the technological developments since the early 2000s and the increasing avail-
ability of data and methods to analyze them, researchers are now able to evaluate 
mathematical and managerial models accurately and efficiently with greater ease. 
Technological advances in recent years seem to be bringing the next breakthrough 
in this field with more frequent use of the Internet of Things, high distribution of 
cellphones, radio-frequency identification (RFID), Bluetooth and Wi-Fi sensors, and 
strong hardware. These new technologies change the way that EDs (and healthcare 
systems) work, and therefore can change the models needed. For example, dynamic 
and online data regarding patients in the ED and even the hospitalization depart-
ments can now be considered and influence grouping, prioritization and resource 
decisions, and staff allocation. Hence, future studies can focus on technological 
developments that have the potential to improve and solve queueing problems in 
EDs.

Another aspect, that should be considered in future research, is the dynamic and  
hybrid structure of healthcare systems in recent years, which emphasizes the impor- 
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tance of combining the mathematical and managerial models with the technologi-
cal aspects. This may open the door to new field studies and completely innova-
tive methods. The COVID-19 pandemic had stressed the significance of a rapid and 
dynamic response in EDs. Even in a time of “no crisis,” with population growth, the 
need arises for a quick response in a time of high uncertainty and a limited budget, 
emphasizing the importance of effective implementation of queuing methods; even 
under these conditions, the proposed techniques as well as future ones are expected 
to increase efficiency and aid medical teams in providing adequate care for patients 
in the ED.
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