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Abstract
When patients visit primary care clinics, they can be subject to long wait times due 
to operational inefficiencies and bottlenecks, decreasing patient satisfaction and 
sometimes leading to worse health outcomes. The existing literature models pri-
mary care clinics primarily as agent-based models, which are excellent at tracking 
individual patients and their movements in a model of a clinic. While agent-based 
models can detect bottlenecks, a network flow model better detects bottlenecks in 
the model by correlating changes in patient flow and wait times in the healthcare 
network. In this paper, a network flow model is constructed, where patients flow 
along the capacitated edges of a network while receiving treatment at the nodes. 
This configuration easily identifies bottlenecks by analyzing the flow in and flow out 
of nodes through metrics such as efficiency and patient wait times. The capacities of 
the edges for this model are taken from an agent-based model of a case study of a 
primary care clinic and sampled as random variables. Ensemble runs of the network 
flow model are created to account for uncertainty in the synthetic data. By changing 
the topology of the network flow model, bottlenecks are removed, increasing the 
model efficiency and decreasing patient wait times. Finally, the model is subjected 
to a sensitivity analysis. The focus in this work is on the method rather than the 
results per se.

Keywords  Primary care clinic · Network flow model · Efficiency · Patient wait 
times · Synthetic data

Highlights 
• A network flow model can be optimized to minimize each individual patient’s wait time, or to 

minimize all of the patient wait times in the network.
• By changing how patients move through a primary care clinic, patient wait times can be reduced.
• Synthetic data can be used to model a primary care clinic under a variety of circumstances.
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1 � Frame of Reference

When patients visit primary care clinics, they may be subject to long wait times due 
to bottlenecks or other operational inefficiencies. These long wait times decrease 
patient satisfaction and patient happiness, and in some cases can lead to worse 
patient health outcomes. There are many methods to model healthcare networks: the 
most common are agent-based models and network flow models. Potential solutions 
to long wait times in healthcare networks are identified in these models, such as 
redesigning a process or changing patient flow to eliminate bottlenecks within the 
healthcare network. The surrounding literature encompasses a wide variety of mod-
eling techniques and measurements not just within a healthcare context, as shown in 
Table 1.

There are three broad clusters of papers: in the first, the focus is on agent-based 
models of healthcare networks at smaller timescales [1, 2]; in the second cluster, 
network flow models at longer timescales are used [3, 4]; and in the third, various 
modeling techniques are used which are adapted in this paper [5, 6], including sto-
chastic models [7, 8].

The authors of the first cluster of papers use agent-based models to explore low-
level patient processes, such as patient check-in or patient scheduling. Bobbie [1] 
uses an agent-based model to look at how various scheduling practices affect patient 
wait times at a primary care clinic where walk-in patients are plentiful. They note 
that modifying the scheduling of patients has a “significant impact on the wait time 
of scheduled patients when walk-in patients are present,” decreasing average patient 
wait times by about 22.6% [1]. Su et al. [2] use business process redesign coupled 
with an agent-based model to decrease patient wait time while checking in to hos-
pitals. They find that “simulation modeling can provide essential assistance in the 
healthcare service process evaluation and reengineering” while drastically reducing 
patient wait time from “50 min to 8 min.” Furthermore, the authors use two differ-
ent types of wait times in their analysis, maximum total wait time, and average total 

Table 1   Papers of significance [1–8]

Group Cluster 1
Agent-based 
models

Cluster 2
Network flow 
models

Cluster 3
Various modeling techniques

Reference [1] [2] [3] [4] [5] [6] [7] [8]

Agent-based model X X
Network flow model X X X X
Stochastic model X X
Integer model X X
Ensemble models X X X
Wait time measurement X X X X X X
Efficiency measurement X X
Model modification X X X
Healthcare context X X X X X X
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wait time. Agent-based models can identify bottlenecks in healthcare networks, and 
modifications to the model are effective at reducing patient wait times and increas-
ing patient satisfaction.

The authors of the second cluster of paper use network flow models to explore 
higher-level patient processes at longer timescales. Akcali et al. [3] use a network 
flow model to “simultaneously determine the timing and magnitude of changes in 
bed capacity that minimizes capacity cost… while maintaining a desired level of 
facility performance… over a finite planning horizon.” This time horizon is meas-
ured in quarters, unlike the time horizon in minutes that characterizes the agent-
based models. Furthermore, the authors design this model with parameters that 
could be adjusted under slightly different scenarios, creating ensemble models to 
determine bed capacity. Bean et al. [4] considered a hospital as a collection of wards 
and used a network flow model to analyze the efficiency of moving patients among 
the different wards. The authors found that the ward flow has a “core” sub-network 
that “constitutes 83–90% of all flow” through the network, but the remaining flow 
went through a larger number of edges. The authors furthermore found that changes 
to the patient flow through a hospital “separate the best and worst-performing days 
in each hospital site,” although the authors caution that this change in flow may not 
cause longer wait times [4].

The authors of the third cluster of papers introduce techniques of modeling from 
outside a healthcare context that may be of use in designing a network flow model 
of a primary care clinic. Zawack and Thompson [5] introduce two concepts relat-
ing to network flow models of traffic networks, user optimal wait time, and system 
optimal wait time. In the context of a healthcare network, a network is user optimal 
if each patient minimizes their wait time, and a network is system optimal if the 
total wait time is minimized. Skurichina and Duin [6] introduce three methods of 
building ensemble models from a limited data source: bagging, boosting, and the 
random subspace method. The random subspace method allows for the construction 
of ensemble models with parameters taken from a constrained solution space. Fu 
and Banerjee [7] use a stochastic integer model to manage the fluctuations of ser-
vice time and increasing urgent requests brought by COVID-19, taking into account 
uncertainties such as no shows, cancelations, punctuality of patients, or overtime 
treatment. Yang and Rajgopal [8] formulate a multi-period integer stochastic model 
to design clinic outreach networks for vaccination and determine the worst-case 
solutions to address uncertainties.

These papers are not the only methods of generating stochastic parameters. 
In 1976, Box and MacGregor [9] proposed estimating parameters using closed-
loop operating data. Bhatnagar and Patel [10] propose a method to use stochastic 
approximation to tune parameters for active queue management. In addition, Lee 
et  al. [11] schedule physicians under different scheduling algorithms with vari-
ous levels of pre-emption. Unlike this paper, the authors give additional tasks to 
physicians, including paperwork. For the parameters of the model, Lee et al. use 
a Poisson distribution to measure inter-arrival times, which is also used in this 
paper. Finally, the authors use the coefficient of variation to measure the sensitiv-
ity of their model to the underlying parameters, an approach that is replicated in 
Sect. 4.3. In this paper, we focus on the feasibility of incorporating stochasticity 
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and how it affects the wait times of the patients and the locations of bottlenecks 
in the network, instead of stochastic technology. Therefore, in this paper, we only 
incorporate one method to illustrate the stochasticity in a test problem.

As Ajorlou et al. [12] point out, the supply of healthcare is deterministic and 
can be calculated easily, “based on headcounts and available service hours,” 
whereas the demand for healthcare is not so easily calculated and depends upon 
factors such as the age and gender of a patient, as well as possible comorbidities. 
These variances in patient demand should be captured within the model, as doc-
tors may take longer on some days to treat the same number of patients. Moreo-
ver, Fletcher and Worthington [13] distinguish between generic hospital models, 
which can be adapted with different data to different hospitals, and specific hospi-
tal models, which are designed to work only at one hospital.

Agent-based models and network flow models provide different analysis of the 
same system, and both types of models are useful. While agent-based models can 
identify bottlenecks in the healthcare network, network flow models can easily 
correlate changes in patient flow and waiting times, indicating that bottlenecks 
are present in a system. Because it is assumed that all patients have the same 
priority and differences in treatment are not discussed, a network flow model may 
give an appropriate level of detail and a better understanding of network effi-
ciency. Many agent-based models use patient wait times as a metric, but few use a 
measure of technical efficiency. In this paper, a network flow model is constructed 
to evaluate and, as appropriate, to predict network performance and efficiency 
is presented, allowing healthcare management to implement changes to reduce 
patient wait time and increase efficiency. In more complex networks with multiple 
bottlenecks, management can use this technique to explore multiple solutions that 
increase efficiency.

In Sect. 2, the attributes and equations of the network flow model of the pri-
mary care clinic are introduced. Then, various metrics that measure the efficiency 
of the network and the wait time of patients are introduced. Because data is una-
vailable, synthetic data is generated for a primary care clinic using the random 
subspace method with suggestions for values adapted from Bobbie’s model to 
build an ensemble model that captures varying levels of average patient treat-
ment times at different nodes. In Sect. 3, the creation of a network flow model is 
presented. In Sect. 4, a clinic is evaluated with metrics measuring user optimal 
wait times, system optimal wait times, and efficiency, while also exploring how 
changes to the constraints of the subspace affect the metrics. Closing remarks are 
presented in Sect. 5.

2 � Designing a Network Flow Model

In this section, the various attributes of the nodes and edges are presented for net-
work flow models, as well as equations describing patient behavior in the model. 
Various metrics are introduced, and synthetic data generation and sampling are also 
discussed.
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2.1 � Attributes of a Network Flow Model

Instead of an agent-based model that tracks individual patients as they move 
through a primary care clinic, a network flow model tracks how patients move 
through a network with capacitated edges that connect various nodes representing 
various procedures. This network flow model is assumed to be a directed acyclic 
graph, requiring patients to only flow in one direction, and requiring that no loops 
are present in the network. A sample primary care clinic is shown in Fig. 1, where 
patients visit an eye doctor and are either sent back home or referred for an eye 
exam. In this example, the “Visit Doctor” node is a bottleneck. As the network 
becomes more complex, this method should be able to be applied to other pri-
mary care clinics so long as the directed acyclic property is maintained.

In the paper, it is assumed that patients arrive at a given node equally inter-
spersed throughout a given time period. Therefore, the time between patient 
arrivals at a given node is constant. Similarly, patient treatment times at a node 
are assumed to take a constant amount of time, but this constant time can change 
between models. For example, in one of the ensemble models, a certain node may 
treat 10 patients per hour, for a constant time between patients of 6 min; but in 
a different model, that same node may treat 12 patients per hour, for a constant 
time of 5 min per patient. Attempts to assign an exact arrival time require keep-
ing track of the location of patients within the network, essentially converting this 
network flow model into an agent-based model. Furthermore, it is assumed that 
patients visiting the primary care clinic do not require urgent care, and it is pre-
dicted that this model will not work well in settings beyond a primary care clinic, 
where patients with varying urgency for treatment appear.

Nodes have the following six attributes:

•	 Node ID: A unique number identifying the node, for example, node x.
•	 Node Name: A name that gives a brief description of the procedure occurring at 

node x.
•	 Number of patients treated at a given node x (Px ): The number of patients the node 

can treat within a given time interval. Each patient’s treatment time is constant within 
a given time period, but in a different model, the number of patients treated within a 
given time period changes, causing different treatment times between models.

Fig. 1   Example network of a simple primary care practice. Node names are given above the nodes rep-
resented as circles, the capacities of the edges are given below the edges, and the arrows on the edges 
represent the direction of patient flow

Page 5 of 22    45Operations Research Forum (2022) 3: 45



1 3

•	 Flow Inx : The number of patients flowing into a given node x within a given time 
interval.

•	 Flow Outx : The number of patients flowing out of a given node x within a given 
time interval.

•	 Total Wait Time 
(

Wx

)

 : The total wait time experienced by all patients at node x.

Edges have the following five attributes:

•	 Node from: The Node ID of the node the edge is coming from.
•	 Node to: The Node ID of the node the edge is connected to.
•	 Capacity ( Cd,e ): The maximum number of patients flowing that can flow through 

an edge between nodes d and e within a given time interval.
•	 Weight: The Longest Single Patient Wait Time for the node the edge flows into.
•	 Branching coefficient ( bd,e ): The probability of a patient flowing down the edge 

from node d to node e.

The Flow Out of a node x is the sum of all capacities of i edges leaving the node.

The Flow In to a node x is the sum of all capacities of j edges entering the node.

When the Flow In to node x is greater than the Flow Out of node x, a bottleneck 
appears:

To ensure that the number of patients flowing out of a given node along multi-
ple edges is equivalent to the number of patients being treated at a given node, a 
branching coefficient b is introduced. The branching coefficient can be modeled as 
a multinomial random variable, representing the probability that a given patient will 
go down each edge. Each edge i leaving a given node is assigned a coefficient b such 
that the sum of all branching coefficients of edges leaving node x is 1.

The capacity for an edge leaving node x to node i is defined as the minimum 
of the FlowIn for a given node and the number of patients being treated at a given 
node, and that quantity times the branching coefficient for that edge:

(1)Flow Outx =
∑i

k=1
Cx,k

(2)Flow Inx =
∑j

k=1
Cx,k

(3)Flow Inx > Flow Outx

(4)
i

∑

k=1

bx,k = 1

(5)0 < bx,i ≤ 1

(6)Cx,i = MIN
(

Flow Inx,Px

)

∗ bx,i
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The effect of Eq. (6) is that the flow of patients through an edge will always equal 
the capacity of that edge. It is not necessary to know the theoretical maximum num-
ber of patients flowing through an edge. Setting capacity equal to the number of 
patients flowing through the edges makes it easier to use a graph algorithm1 to cal-
culate the flow through the network. Using Eqs. (1), (2), and (6), the capacity for 
each edge of the network can be calculated once the initial FlowIn to the network 
and the various values of Px are known.

2.2 � Metrics for a Network Flow Model

There are three metrics to measure the severity of the bottlenecks of the network:

•	 Efficiency (E): The percentage of patients that flow out of the network compared 
to the original flow in of the network.

•	 Longest Single Patient Wait Time: A user optimal metric that measures the longest 
possible wait time a single patient could experience on a path through the net-
work.

•	 Total Wait Time: A system optimal metric that measures the total wait time of all 
patients within the network.

To measure the efficiency of the network, the FlowIn for the first node a is com-
pared to the flow out for the last node z and converted to a percentage. Efficiency can 
be applied to any sub-network in the larger overall network. Kawaguchi et al. [14] 
differentiate between revenue efficiency and technical efficiency; because revenue 
is not considered in the data, the efficiency described here is a type of technical 
efficiency. As Cinaroglu [15] and Berry et al. [16] point out, specific hospital char-
acteristics such as quality management, technology level, structure of the hospital 
department, and degree of professionalism of healthcare workers potentially affect 
the efficiency and productivity of a hospital. These potential sources of inefficiency 
would be baked into the underlying model parameters discussed in Sect. 2.3.

The wait time for a given patient n at node x depends upon the difference in time 
between the patient’s arrival at a node and when they are treated.

(7)E =
Flow Outz

Flow Ina
∗ 100

(8)Wait Timex,n = Treatment Timex,n − Arrival Timex,n

1  https://​netwo​rkx.​org/​docum​entat​ion/​stabl​e//​refer​ence/​algor​ithms/​gener​ated/​netwo​rkx.​algor​ithms.​flow.​
maxim​um_​flow.​html#​netwo​rkx.​algor​ithms.​flow.​maxim​um_​flow. This graph algorithm is used to find the 
maximum single-commodity flow between a start node and an end node, that is, the path from the start 
node to the end node that has the greatest flow using the capacities of the edges. The algorithm cannot 
return a path a patient cannot take because of the directed acyclic nature of the graph. Accessed 7/26/21.
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The treatment time for each patient is dependent upon the time period T and 
the number of patients Px that can be seen within the time period at a given 
node x. Because the first patient arriving during the time interval is immediately 
treated (has a treatment time of 0), the treatment time for the nth patient can be 
given by Eq. (9).

The arrival time for each patient is dependent upon the time period T and the 
number of patients flowing into a given node x. Again, the first patient arrives 
immediately at the beginning of the time interval, so the arrival time for the nth 
patient is given by Eq. (10).

In Fig. 1, if 14 patients flow into the network at the Start Node with a time period 
of 1 h, and assuming that patient arrivals and patient treatment times are interspersed 
throughout the hours, the wait times for each patient can be calculated at the Visit 
Doctor node using Eqs. (8), (9), and (10) and are displayed in Table 2.

There is a bottleneck at the Visit Doctor node because the FlowIn to the Visit 
Doctor node (14) is greater than the FlowOut of that node (9). As shown in Table 2, 
the later a patient arrives to a node with a bottleneck, the longer that patient waits. 
The wait time increases at a constant rate for each additional patient entering a 
node.

(9)Treatment Timex,n =
T

Px

∗ (n − 1)

(10)Arrival Timex,n =
T

Flow In
∗ (n − 1)

Table 2   Wait times for patients at the Visit Doctor node from Fig. 1

Patient number Arrival time (minutes) Treatment start time 
(minutes)

Wait time (minutes)

1 0 min 0 min 0 min
2 4.29 min 6.67 min 2.38 min
3 8.57 min 13.33 min 4.76 min
4 12.86 min 20.00 min 7.14 min
5 17.14 min 26.67 min 9.52 min
6 21.43 min 33.33 min 11.90 min
7 25.71 min 40.00 min 14.29 min
8 30.00 min 46.67 min 16.67 min
9 34.29 min 53.33 min 19.05 min
10 38.57 min 60.00 min 21.43 min
11 42.86 min 66.67 min 23.81 min
12 47.14 min 73.33 min 26.19 min
13 51.43 min 80.00 min 28.57 min
14 55.71 min 86.67 min 30.95 min
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Combining Eqs. (8), (9), and (10), the wait time for the nth patient to arrive at a 
given node x for a given time interval T and 1 ≤ n ≤ Flow Inx is given in Eq. (11).

The last patient to visit node x will have the longest wait time. For Table 2, the 
Longest Single Patient Wait Time is 30.95 min, and this value is assigned to each 
edge flowing into the Visit Doctor node as the Weight attribute. A graph algorithm2 
can compute the path through the network with the highest total Weight, determin-
ing the Longest Single Patient Wait Time.

The total wait time of all n patients being treated at a given node x can also be 
calculated. If there is no bottleneck, Eq. (12) will sum to zero.3

Summing this attribute over all the nodes of the network produces the final metric 
for measuring the severity of a bottleneck, Total Wait Time.

When a bottleneck exists in a network, some patients are stopped at the bottle-
neck and do not flow through to the rest of the model. While they still contribute 
to the wait time at the node with the bottleneck, they do not contribute to the wait 
times of later nodes in the network. This property enables the measurement of the 
efficiency of the network but results in wait time measurements that are a lower 
bound for the true wait time experienced by patients in the network. If a bottle-
neck is resolved close to the beginning of the network, the newly freed patients may 
encounter another bottleneck later in the network. Therefore, the removal of this bot-
tleneck may not decrease patient wait times by as much as the removal of a similarly 
sized bottleneck towards the end of the network. Bringing the patients back inside 
the network could be achieved by adding a new attribute to the edges or relaxing the 
assumptions about patient arrival times.

2.3 � Sampling from a Random Subspace

Unlike Fig.  1, the reality of a primary care clinic is that there are a variable 
number of patients seeking treatment each day, and each patient takes a variable 
amount of time to be treated. Jiang et al. [17] find that unscheduled patient arriv-
als at hospitals can be modeled as a Poisson random variable. In this network flow 
model, a Poisson random variable determines the FlowIn to the start of the model 
as well as the number of patients being treated at each node. These parameters 

(11)Wait Timex,n =

(

T

Px

−
T

Flow Inx

)

∗ (n − 1)

(12)Wait Timex =
∑Flow Inx

n=1
MAX(0,

(

T

Px

−
T

Flow Inx

)

∗ (n − 1))

2  https://​netwo​rkx.​org/​docum​entat​ion/​stable/​refer​ence/​algor​ithms/​gener​ated/​netwo​rkx.​algor​ithms.​dag.​dag_​
longe​st_​path.​html. This algorithm returns the longest path in a directed acyclic graph based on the weight 
attribute of each edge. Accessed 7/26/21.
3  For example, using Eq. (12) to calculate the total wait time at the Visit Doctor node in Fig. 1 would 
result in a total wait time of 216.66 min.
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can be modified to account for variation in the care environment (the number of 
physicians on staff, technological capability, professionalism of staff, etc.) that 
are specific to either certain days (in case hospital demand varies greatly day to 
day) or are specific to certain hospitals. In turn, sampling from random variables 
affects the capacity of various edges for the network flow model in this paper. 
Alternatively, robust optimization could be used to estimate the model param-
eters without knowledge of the probability distribution of the model parameters 
as demonstrated by Aslani et al. [18].

Therefore, the solution space for this model is constrained by the standard devi-
ation and mean of the values sampled from a Poisson random variable for Px and 
the Flow Inx to the start of the network and a multinomial random variable forb.4 
By sampling from these distributions, a random subspace is generated and used as 
the basis for a model in the ensemble. By repeating this process, additional models 
are generated and added to the ensemble. The models in the ensemble are aver-
aged to determine where bottlenecks are likely to appear and generate summary 
statistics.

Fig. 2   Recreation of Original Orlando VAMC model [1]. Patients move through the flowchart follow-
ing the direction of arrows and doing tasks at each box. If a question is asked in a box, the answer to the 
question determines which subsequent box the patient visits

4  Other random variables or combinations thereof can be used to as constraints to the subspace if they 
better represent patient arrivals and treatment at primary care clinics.
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3 � Creating a Network Flow Model of a Primary Care Clinic

3.1 � Constructing a Network Flow Model

While the framework for the model could be applied to many different settings, in 
this paper, the network flow model is largely adapted from the agent-based model of 
the Orlando Veteran Affairs Medical Center (VAMC). Figure 2 is a modified flow-
chart of patient flow through the Orlando VAMC from Bobbie’s paper [1]. Nodes 
dedicated to patients waiting and duplicate nodes are eliminated, simplifying the 
flowchart to Fig. 3, and in Fig. 4 the names of the nodes are shortened for ease of 
reference.

In the model of the Orlando VAMC as shown in Fig. 4, patients start at the Start 
Node. From there, the patients check in with the receptionists, before traveling to 
the Nurse and getting their vitals checked. In the upper branch, scheduled patients 
are treated by a Resident Physician, whose treatment is then evaluated by a Primary 
Care Physician (PCP). The patients then Check Out at the receptionist desk. In the 
lower branch, walk-in patients are treated by a Primary Care Physician and are sent 
to Check Out.

Next, patient treatment times ( Px ) are determined for each node, as well as the 
initial number of patients being treated each day. On average, 50 patients visit the 
Orlando VAMC each day, 38 of which are scheduled, and 12 of which are walk-
in [1]. Furthermore, it appears that “there are 4 first year residents who see 1 new 

Fig. 3   Orlando VAMC model with removed nodes. Patients move through the flowchart following the 
direction of arrows and doing tasks at each box

Fig. 4   Topology of the base ensemble model. Node names are given above the nodes represented as cir-
cles, the capacities of the edges are given below the edges, and the arrows on the edges represent the 
direction of patient flow
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patient and 3 return patients, and 4  s year residents who see 1 new patient and 5 
return patients” [1]. Therefore, the Resident node is able to treat 40 scheduled 
patients each day. Furthermore, the six PCPs treat about 2 walk-in patients each, 
resulting in that node treating 12 patients per day [1]. Further patients per day num-
bers are estimated from patient treatment times [1].

The subspace for each model run is sampled from Poisson random variables with 
lambda equal to the number of patients treated per day in Table 3. A Poisson ran-
dom variable has a standard deviation equal to the square root of �. The probability 
of the Poisson random variable returning a value of x for a given lambda � is given 
by Eq. (13). For example, at the Resident node, there would be a 6.3% chance for 
PResident = 40 and a 4.85% chance for PResident = 35.

For the only branch in the network, after leaving the nurse node, patients have a 
24% change of going to the PCP node, and a 76% chance to go to the resident node 
as determined by a multinomial random variable.

3.2 � Coding the Network Flow Model

With all the necessary data gathered, the network flow model of the Orlando VAMC 
is implemented in Python, with graphs and statistics generated in R.5 Object-oriented 
programing and inheritance are used to minimize code duplication and mistakes in the 
code base. NetworkX is the main package used to build and visualize the network6; 
ggplot27 is used to create the figures. The base model is the parent class, and any top-
ological changes to the base model are implemented as child classes, using the par-
ent methods whenever possible. The base model has a constructor which declares the 
variables, and methods to initialize, build, analyze, and visualize the model. Additional 
functions are present to help gather data and calculate wait times.

(13)P(X = x) =
�xe−�

x!

Table 3   Theoretical number of 
patients that are treated per day 
on average at each given node at 
the Orlando VAMC

Node Mean number of patients 
treated per day (8 h)

Start 50
Check In 64
Nurse 192
Resident 40
PCP Evaluation 160
PCP 12
Check Out 64

5  GitHub Repository: https://​github.​com/​nbpre​ussOU/​HERE1
6  https://​netwo​rkx.​org/ Accessed 6/24/21.
7  https://​ggplo​t2.​tidyv​erse.​org/ Accessed 6/24/21.
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In the GitHub repository, there are four different versions of the model (as of 
6/05/2021): VAMCv0 is the base class, VAMCv1 is the modified model where some 
patients are sent home, VAMCv2 is a discarded model looking at modifying the 
underlying distribution, and VAMCv3 modifies the constraints of the subspace. The 
driver program creates an arbitrary number of ensemble models (500 in this case) to 
be analyzed, gathers the data in dataframes, performs analysis, and saves the data in 
a.csv to make graphs in R. If a model had a FlowIn, FlowOut, E, Total Wait Time, 
or Longest Single Patient Wait Time with a value that was more than three standard 
deviations from the mean value of all models, it was discarded as an outlier.

4 � Results and Discussion

4.1 � Base Model Results

To create the results, 500 runs of the base model are simulated and combined into 
an ensemble model to ensure adequate coverage of the subspace distributions. To 
gain an understanding of what an average day at the Orlando VAMC is, a number 
of patients flowing along each edge are averaged together from all models in the 
ensemble and are displayed below the edges in Fig.  4. From comparing the C of 
edges entering and leaving each node, it appears that there is a small bottleneck at 
the Check In node, a larger bottleneck appears at the PCP node, and a large bottle-
neck exists at the Resident node. These bottlenecks are the causes of the inefficien-
cies and long wait times present in Table 4.

As noted in Table 4, bottlenecks reduce the efficiency of the network, with the 
worst bottleneck resulting in a model run with an efficiency of 70.91%. On average, 
the bottlenecks in the network combine to cause a decrease in efficiency, with the 
average model run having an efficiency of 94.39%. The histogram in Fig. 5 further 
breaks down the distribution of efficiency: 221 of the 470 runs are 100% efficient, 
with a long tail distribution of inefficient model runs. In most cases, the ensemble 
models run smoothly at 100% efficiency and patients wait for 0 min, but in the worst 
case, wait times increase and efficiency decreases. Figure 6 shows the correlation 
between the Longest Single Patient Wait Time and the Total Wait Time. In general, 
the two metrics are highly correlated, but there appear to be two separate bottlenecks 

Table 4   Base ensemble model results for 500 runs

Metric Mean Extreme

Flow in 49.49 patients per day 69 patients per day
Flow out 46.44 patients per day 62 patients per day
Efficiency 94.39% 70.91%
Longest single patient wait time 47.82 min 316 min
Total wait time 879 min 5213 min
Average wait time per patient 17.8 min 75.6
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causing wait times. There is one bottleneck that causes higher single patient wait 
times relative to the total wait time, and it occurs relatively infrequently compared 
to the other, more common bottleneck. Therefore, to make users’ lives better and 
improve the model, this bottleneck should be removed. Likewise, improvements 
to the primary care clinic should prevent the worst-case scenarios from happening 
rather than modifying the day-to-day operations of the clinic.

These model results somewhat corroborate the results found by Bobbie in her 
agent-based model of the Orlando VAMC. Their model has an average wait time 
per patient of 21.4035 min [1]. In contrast, this model has an average wait time per 
patient of 17.8 min, as shown in Table 4. Bobbie does not use an efficiency metric, 
nor a metric equivalent to Longest Single Patient Wait Time. It is possible to come 
close to replicating the results of an agent-based model with a network flow model.

4.2 � Modifying the Topology of the Base Model

There are multiple ways to potentially remove the bottlenecks in the model, such as 
by hiring more staff or changing patient treatment techniques, it is also possible to 
remove bottlenecks by modifying the topology of the network. Since it is more dif-
ficult to turn away scheduled patients than unscheduled patients at the primary care 

Fig. 5   Efficiency histogram of 
the base ensemble model — 
221 of 470 models are 100% 
efficient
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clinic, the topological change in this model will turn away unscheduled patients if 
the wait time at the PCP node is too long. To do this, an edge between the PCP node 
and the End node (as shown in Fig. 7) is added. While this method may not be feasi-
ble in reality, it is used here to illustrate the ability of topological changes to remove 
bottlenecks in the network. The results from an ensemble model of 500 runs appear 
in Table 5.

Fig. 6   The Longest Single 
Patient Wait Time is corre-
lated with the total wait time 
for the base ensemble model 
( R2

= .8021)

Fig. 7   Topology of the send home ensemble model. Node names are given above the nodes represented 
as circles, the capacities of the edges are given below the edges, and the arrows on the edges represent 
the direction of patient flow
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Using the data provided in Table  5, the average efficiency of the send home 
ensemble model was 96.5%, compared to 94.39% for the base ensemble model. 
The minimum efficiency increased for the send home ensemble model, up to 
78.8%. The Total Wait Time decreased from 879 to 542  min on average, and 
the Longest Single Patient Wait Time decreased to 25.24  min on average from 
47.82 min. By removing the bottleneck at the PCP node, the metrics for patient 
wait time decreased and the overall efficiency of the network increased.

Table 5   Send home ensemble model results for 500 runs

Metric Mean Extreme

Flow in 49.64 patients per day 67 patients per day
Flow out 47.67 patients per day 62 patients per day
Efficiency 96.5% 78.8%
Longest single patient wait 25.24 min 190 min
Total wait 542 min 3634 min
Average wait time per patient 10.9 min 54.2

Fig. 8   Efficiency in the send 
home ensemble model — 270 of 
466 models 100% efficient
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In Fig. 7, the topological change reduces wait times for many patients, at the 
expense of sending 1.779 patients home on average across the ensemble. While 
this is good for the patients receiving treatment, the patients who delay their care 
may end up with worse health outcomes. By making the topology change, the effi-
ciency, Longest Single Patient Wait Time, and the Total Wait Time all significantly 
decreased. Looking at the histograms of the efficiency metric in Fig. 8, it appears 
that the data has become more skewed, increasing the chances for a model run 
with 100% efficiency to 270 of 466 models, but not mitigating the worst effects of 
the bottlenecks. Moreover, the system optimal wait time measurement decreases 
as the network becomes more user optimal. Meanwhile, in Fig.  9, the Longest 
Single Patient Wait Time and the Total Wait Time become more highly corre-
lated compared to Fig. 6, indicating that most patients in the send home ensemble 
model experience the same bottleneck, and that this bottleneck appears relatively 
frequently. Looking at the capacities of the edges for Fig.  7, the Resident node 
shows the greatest decrease in capacities across the node. This suggests that the 
bottleneck at the PCP node is contributing to the high values for Longest Single 
Patient Wait Time for a select few patients. Modifying the topology of a network 
flow model results in improvements to the model metrics, decreasing patients 
wait times and increasing patient satisfaction.

Fig. 9   The Longest Single 
Patient Wait Time is correlated 
with the Total Wait Time for 
the send home ensemble model 
( R2

= .9761)
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4.3 � Sensitivity Analysis

While modifying the topology of the network made the network more user opti-
mal, inefficiencies and long wait times remain. Looking at Fig.  7, the Resident 
node appears to be the culprit due to the difference between the FlowIn and Flow-
Out remaining constant through both models. As mentioned previously, the doc-
tors at the Resident node can treat 40 patients per day, but because of the sam-
pling from the subspace, the number of patients treated at the Resident node is 
not constant. It is likely that the large standard deviation of the Poisson distri-
bution gave unrealistic values for the number of patients treated at the Resident 
node in some cases. To test the changes on the constraints for sampling from the 
subspace, a third model is created where the underlying distribution is changed 
from a Poisson distribution to a normal distribution. A normal distribution ena-
bles fine-grained control over the standard deviation and mean, making it easy to 
manipulate. The standard deviation of each node’s number of patients treated is 
derived from the Coefficient of Variance, which is varied between 0 and 1. When 
this coefficient of variance equals approximately 0.707, the standard deviations 
of the variables in this model are equal to the standard deviations of the variables 
in the base model. The mean for all sampled variables is constant between the 

Fig. 10   The relationship 
between the minimum and mean 
efficiency and the coefficient of 
variance
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models, and no runs are removed as outliers. The changes in metrics with respect 
to the coefficient of variance are shown in Figs. 10, 11, and 12.

The mean efficiency decreases almost constantly as the coefficient of variance 
increases, and the minimum efficiency steadily decreases towards 40% as the 
coefficient of variance approaches 1 in Fig. 10. The decrease in efficiency is con-
stant, unlike the increases in Figs. 11 and 12, which, due to the log scale, increase 
at an exponential rate. The Total Wait Time increases exponentially in Fig. 11 as 
the Coefficient of Variance increases, and a similar pattern is seen in Fig. 12 for 
the Longest Single Patient Wait Time.

From Figs. 10, 11, and 12, it is highly likely that the model is sensitive to the 
parameters. To measure the sensitivity, Eq. (14) is used to model the sensitivity 
of the metrics to the Coefficient of Variance, ZE , as used by Lee et al. [11]. The 
sensitivity is calculated by subtracting MAX

(

ECV

)

 , the maximum efficiency for a 
given coefficient of variance (CV), by MIN

(

ECV

)

 , the minimum efficiency for a 
given CV. This is divided by the expected value, or mean ( �) , of efficiency.

(14)ZE =
MAX

CV

(

MAX
(

ECV

)

−MIN
(

ECV

))

�
∗ 100%

Fig. 11   The relationship 
between the log of the maxi-
mum and mean Total Wait Time 
and the coefficient of variance
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Evaluating Eq. (14) results in a sensitivity of 61.6%, suggesting that the model 
is highly dependent upon its parameters and the distribution. This is much higher 
than Lee et al. [11] maximum sensitivity of 1.22%. The metrics used to evaluate the 
are sensitive to the coefficient of variance and mean of the variables, and caution is 
needed when building network flow models to ensure that the underlying standard 
deviations are accurate. If the subspace being randomly sampled is not modeled cor-
rectly, the ensemble model will be unable to provide useful results.

5 � Closing Remarks

Synthetic data is generated via the random subspace method discussed in Sect. 2.3 
and the data is used to populate the various ensemble models in generated in 
Sect. 3. Bottlenecks readily appear in network flow models, and in Sect. 4.1 they 
are identified and assessed for potential removal. Moreover, modifying the topol-
ogy of the model to send walk-in patients’ home when wait times are long par-
tially removed a bottleneck at a node, leading to shorter wait times and increased 

Fig. 12   The relationship 
between the log of the maxi-
mum and mean Longest Single 
Patient Wait Time and the coef-
ficient of variance
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efficiency. In this paper, the topology modification is only an example; primary 
care centers should consult with domain experts before making modifications to 
their patient flow. After borrowing some model parameters from an agent-based 
model, the average patient wait times remained similar between the two models, 
indicating that network flow models can represent the same system effectively. As 
mentioned in Sect. 4.3, changing the constraints on the subspace by manipulating 
the standard deviation of random variables has a large effect on the efficiency of 
the model. Domain experts should verify that the data is randomly sampled from 
a viable subspace. Poorly chosen means and standard deviations for the underly-
ing variables can cause highly inefficient and inaccurate model runs that do not 
reflect reality, potentially invalidating the results of the model.

A limitation of a network flow model is that it will not give any sense of what the 
“structural” wait time is in any primary care clinic. If every patient waits a constant 
20 min before being treated, the model will not pick up that the wait time exists, 
because the rate at which new patients are being added to the line is equivalent to 
the rate at which they are being treated.

Furthermore, this model will not give a sense of what improvements could be 
made in real time to reduce the wait time of the network. In a crisis like COVID-19, 
where many more patients than average visit a primary care clinic, this model is 
unable to assist in mitigating patients’ wait times in real time. In a crisis, the solu-
tion to the bottlenecks is almost always to hire more staff or get more equipment. A 
network flow model excels at detecting bottlenecks and giving a sense of how the 
efficiency changes with regard to a variety of conditions but should not be used in 
real time to make network topology changes.

In the future, it may be possible to apply a network flow model to a scenario 
where only the topology and the number of patients flowing into the model are 
known. This model is used to help the clinic reach a certain level of efficiency, and 
the idea shares several principles with bagging and training neural networks. The 
efficiency of the model is a function that depends upon the underlying variables 
while being subject to certain constraints and taking the gradient of this function 
yields the direction in which to shift the underlying variables to reach a sufficient 
level of efficiency. This more general solution to the problem is derived by consider-
ing a larger solution space and can reach a satisficing solution to the given problem. 
An alternative method for prioritizing metrics to yield a good enough solution in a 
healthcare context is discussed by Proano and Agarwal [19].
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